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Abstract: We here address the classical bearings-only tracking problem (BOT) for a single object, which belongs

to the general class of nonlinear filtering problems. Recently, algorithms based on sequential Monte Carlo methods

(particle filtering) have been proposed. As far as performance analysis is concerned, the Posterior Cramér-Rao Bound

(PCRB) provides a lower bound on the mean square error. Classically, under a technical assumption named ”asymp-

totic unbiasedness assumption”, the PCRB is given by the inverse Fisher Information Matrix (FIM). The latter is

computed using Tichavský’s recursive formula via Monte Carlo methods. In this paper, two major problems are stud-

ied. First, we show that the ”asymptotic unbiasedness assumption” can be replaced by an assumption which is more

meaningful. Second, an exact algorithm to compute the PCRB is derived via Tichavský’s recursive formula without

using Monte-Carlo methods. This result is based on a new coordinates system named Logarithmic Polar Coordinates

(LPC) system. Simulation results illustrate that PCRB can now be computed accurately and quickly, making it suitable

for sensor management applications.
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Formule pour la borne de Cramér-Rao a posteriori dans le cadre du suivi par

mesure d’angles.

Résumé : Le suivi mono-cible par mesure d’angles appartient à la classe des problèmes de filtrage non linéaires. Ce

problème a été résolu récemment à l’aide de méthodes d’estimation séquentielles de type Monte Carlo. Concernant

l’analyse de performances, la borne de Cramér-Rao a posteriori (PCRB) fournit une borne inférieure pour la covari-

ance de l’erreur d’estimation. Classiquement, sous l’hypoth èse de biais asymptotique, la PCRB est l’inverse de la

matrice d’information de Fisher. Cette dernière est estimée l’aide de la formule Tichavský, les termes inclus dans la

formule étant estimés à l’aide de simulations de type Monte Carlo. Dans cet article, deux problèmes sont étudiés. Tout

d’abord, nous montrons que l’hypoth èse de biais asymptotique peut-être remplacée par une hypothèse ayant un sens

plus ”physique”. Puis, nous montrons que la PCRB peut-être calculée de manière exacte via la formule de Tichavský

sans avoir recours à des simulations. Ces deux résultats sont obtenus grâce à un nouveau système de coordonnées

nommé coordonnées logarithmiques polaires. Des simulations illustrent le fait la PCRB peut désormais être calculée

rapidement et de manière exacte, la rendant ainsi utilisable pour des applications de type gestion de capteurs.

Mots clés : suivi par mesure d’angles, met́hodes séquentielles de Monte Carlo , borne de Cramér-Rao a posteriori,

analyse de performances, gestion de capteurs.



Notation

LP(C): Logarithmic Polar (Coordinates),

MP(C): Modified Polar (Coordinates),

BOT: Bearings-Only Tracking,

Xt: is the target state in th Cartesian coordinates system,

Yt: is the target state in the LPC system,

ny: size of the target state (ny = 4),

�: inequality R � S means that R − S is a positive semi-definite matrix,

Idn: n × n identity matrix,

0n×m : n × m matrix composed of zero element,

⊗: Kronecker product,

X∗: denotes the transpose of matrix X .

||X ||2Q: , ||X ||2Q = E
{
X∗Q−1X

}
where X is a column vector,

δ: Dirac delta function,

∆: Laplacian operator,

∇: gradient operator,

det(X): the determinant of matrix X ,

PDF : Probability Density Function,

A: A = Id4 + δtB with B =

⎡
⎣0 1

0 0

⎤
⎦⊗ Id2,

H : H =

⎛
⎝δt

1

⎞
⎠⊗ Id2,

Q : Q = Σ ⊗ Id2 with Σ =

⎛
⎝α3 α2

α2 α1

⎞
⎠.

1 Introduction

In many applications (submarine tracking, aircraft surveillance), a bearings-only sensor is used to collect observations

about target trajectory. This problem of tracking has been of interest for the past thirty years. The aim of Bearings-

Only Tracking (BOT) is to determine the target trajectory using noise-corrupted bearing measurements from a single

observer. Target motion is classically described by a diffusion model 1 so that the filtering problem is composed of two

stochastic equations. The first one represents the temporal evolution of the target state (position and velocity) called

state equation. The second one links the bearing measurement to the target state at time t (measurement equation).

1see [1] for an exhaustive review on dynamic models
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One of the characteristics of the problem is the nonlinearity of the measurement equation so that the classical

Kalman filter is not convenient in this case. We can find in literature two kinds of solutions to this problem. The

first one, proposed by Lindgren and Gong in [2], consists of deriving a pseudolinear measurement equation. Then, a

Kalman filter can be used to solve the problem. The stochastic stability analysis of the estimates had been addressed

by Song and Speyer in [3]. However, Aidala and Nardone show in [4] that this approach produces bias range estimate

which can be reduced if the observer executes a maneuver. Consequently, bias range can be estimated as soon as it

becomes observable [5]. A second idea consists of using the Extended Kalman Filter (EKF) in Cartesian coordinates

system to solve the problem. However, simulations show that this algorithm is often divergent due to the weak ob-

servability of range ([6, 7, 8]). To remedy this problem, Aidala and Hammel in [9] proposed an EKF using another

system named Modified Polar Coordinates (MPC) system whose one salient feature is that range is not coupled with

the observable components. This constitutes a neat improvement. Another solution proposed by Peach in [10] is a

range-parametrized EKF, in which a number of EKF trackers parametrized by range run in parallel. Recently, particle

filtering algorithms have been proposed in this context ([11, 12, 13]). In [14], Arulampalam and Ristic compare the

particle filter with the range-parametrized and EKF in MPC system; while a comprehensive overview of the state of

art can be found in [15].

As far as performance analysis is concerned, the Posterior Cramér-Rao Bound (PCRB) proposed in [16] is widely

used to assess the performance of filtering algorithms, by the tracking community ([17, 18, 19, 20]) and in particular

in the bearings-only context ([15, 21, 22]). The PCRB gives a lower bound for the Error Covariance Matrix (ECM).

More precisely, under a technical assumption, the PCRB is the inverse of the Fisher Information Matrix (FIM). A

seminal contribution on performance analysis is the paper from Tichavský et al. [23]. Here, the authors noticed that

only the right lower block of the FIM inverse was of interest for investigating tracking performance. This was the

key idea for deriving a practical updating formula for the PCRB. Recently, PCRB has been used for various sensor

management problems like automating the deployment of sensors in [24] or determining the optimal sensor trajectory

in the bearings-only context in [25]. Moreover, PCRB can be used to schedule active measurements in a system in-

volving active and passive subsystems. This application will be addressed in the simulation section.

However, some problems remain to be solved. In this paper, two major issues of the PCRB are addressed. First, un-

der a technical assumption named ”asymptotic unbiasedness assumption”, the PCRB is the FIM inverse. However, the

validity of this assumption has not been thoroughly investigated in the BOT context yet. Here, our approach consists of

deriving the PCRB in an original coordinates system named Logarithmic Polar Coordinates (LPC) system . Using this

coordinates system, it is shown that the ”asymptotic unbiasedness assumption” can be replaced with another one, more

meaningful in the BOT context. Second, Tichavský’s recursive formula is a powerful result to compute the right lower

block of the FIM inverse. However, complex integrals without any closed-forms are involved in this recursion. So,

these complex integrals must be approximated via Monte Carlo methods. This approach is quite feasible but induces

high computation requirements which highly reduces its suitability for complex problems like sensor management.
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For instance, measurement scheduling would imply to consider a large number of active measurement sequences and

to perform Monte-Carlo evaluations of the PCRB for each sequence, which would rapidly become infeasible.

Another approach proposed by Ristic et al. in [15] consists of assuming that the target process noise is sufficiently

small for drastically PCRB computation. In the general case, we show that the complex integrals required for cal-

culating the PCRB admit closed-form expressions if the PCRB is derived in an original coordinates system named

Logarithmic Polar Coordinates (LPC) system . Remarkably, though this coordinate system is only a slight modifi-

cation of the MPC [9], it allows instrumental simplifications in the calculation of the elementary terms of the PCRB

recursion. Applications to active measurement scheduling is briefly considered in a simulation framework.

In section II, the BOT problem is presented in the Cartesian coordinates system and then in the LPC system. This

original coordinates system is the key point to derive a closed-form for the PCRB. In Section III, the classical PCRB is

presented. A close examination of the ”asymptotic unbiasedness assumption” is achieved so as to prove the validity of

the ”usual” PCRB, as given by the FIM inverse. We study this assumption and derive a more meaningful condition. In

particular, conditions ensuring its validity are examined in the BOT context. Calculation of closed-form expressions

of the right lower block of the FIM inverse via Tichavský’s recursive formula is addressed in section IV, in the LPC

setting. Then, the closed-form PCRB is investigated for scheduling active measurements in section V. In section VI,

simulation results present a comparison between the closed-form PCRB and the classical one (i.e. where the terms

involved in Tichavský’s formula are approximated by Monte Carlo methods). Finally, the closed-form PCRB is used

for investigating scheduling of passive and active measurements.

2 From Cartesian to LPC system

2.1 Cartesian framework for BOT

Historically, BOT is presented in the Cartesian system. Let us define target state at time t:

Xt =
[

rx(t) ry(t) vx(t) vy(t)
]∗

, (1)

made of target relative velocity and position in the x− y plane. It is assumed that the target follows a nearly constant-

velocity model. The discretized state equation2 is given by:

Xt+1 = AXt + HUt + σWt , (2)

2For a general review of dynamic models for target tracking see [1].
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where: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Wt ∼ N (0, Q) ,

A = Id4 + δtB with B =

⎡
⎣0 1

0 0

⎤
⎦⊗ Id2,

H =

⎡
⎣ δt

1

⎤
⎦⊗ Id2 ,

Q = Σ ⊗ Id2 with Σ =

⎡
⎣ α3 α2

α2 α1

⎤
⎦ .

δt is the elementary time period and Ut is the known difference between observer velocity at time t+1 and t. The state

covariance σ is unknown. However we assume classically that σ < σmax, so that we use in practice the following

equation:

Xt+1 = AXt + HUt + σmaxWt . (3)

Otherwise, we note Zt the bearing measurement received at time t. The target state is related to this measurement

through the following equation:

Zt = arctan
(

rx(t)
ry(t)

)
+ Vt −π11

arctan
�

rx(t)
ry(t)

�
+Vt> π

2
+ π11

arctan
�

rx(t)
ry(t)

�
+Vt<−π

2︸ ︷︷ ︸
(�)

, (4)

where Vt ∼ N (0, σ2
β) and σ2

β is known. Let us notice that the term (�) is classically avoided. However, it is frequent

to consider that measurement Zt is restricted to a part of the space. This is the case if symmetry of the receiver

(e.g. linear array) leads to consider measurements belonging in the interval ] − π
2 , π

2 [, so that the additional term �

in eq.(4) is necessary. Two examples of Probability Density Function (PDF) of Z t given Xt are presented in fig.1 to

enlighten the importance of the additional term (�). In fig.1.(b), the bearing measurement is close to π
2 so that there is

an overlapping phenomena.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

(a)
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

(b)

Figure 1: two examples of PDF of Zt given Xt (a) if Zt is far from the bounds (b) if Zt is close to π
2 .

The system (3-4) has two components : a linear state equation (3) and a nonlinear measurement equation (4).

Particle filter techniques (see [26],[27]) are, thus, particularly appealing. Otherwise, practical implementations of
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EKF-based algorithms ([9] and [10]) use a specific coordinates system, namely Modified Polar Coordinates (MPC).

Indeed, if the target follows a deterministic trajectory (i.e. W t = 0 ∀t ∈ {0, . . . , T} in eq.(3)), Nardone and Aidala

have demonstrated in [7] that no information on range exists as long as the observer is not maneuvering. So the idea

consists of using a coordinates system for which unobservable component (range) is not coupled with the observable

part. This is also the motivation of Aidala and Hammel [9] for defining the MPC system:[
βt

1
rt

β̇t
ṙt

rt

]∗
. (5)

Thus, the target state at time t is defined by eq.(5), where β t and rt are the relative bearing and target range. We

propose in the following section a slight modification of the MPC system, named Logarithmic Polar Coordinates

(LPC) system. The only difference is that the second component is not 1
rt

but ln(rt). Even if this tiny difference

appears very minor, it will be shown that it is instrumental for deriving a closed-form of the PCRB. Let us now derive

BOT equations given by eqs.(3,4) in the LPC framework.

2.2 LPC framework for BOT

We consider now that the system state Yt is expressed in the Logarithmic Polar Coordinates (LPC) system, i.e. :

Yt =
[

βt ln rt β̇t
ṙt

rt

]∗
. (6)

As between Cartesian and MP system, we do not have a direct bijection between Cartesian and LPC system due to

arctan function definition. We just have f c
lp and f lp

c respectively LPC-to-Cartesian and Cartesian-to-LPC state mapping

functions such that:

Xt =

⎧⎨
⎩ f c

lp(Yt) if ry(t) > 0

−f c
lp(Yt) if ry(t) < 0

with f c
lp(Yt) = rt

⎡
⎢⎢⎢⎢⎢⎢⎣

sinβt

cosβt

β̇t cosβt + ṙt

rt
sin βt

−β̇t sinβt + ṙt

rt
cosβt

⎤
⎥⎥⎥⎥⎥⎥⎦ (7)

and

Yt = f lp
c (Xt) =

⎡
⎢⎢⎢⎢⎢⎢⎣

arctan
(

rx(t)
ry(t)

)
ln

(√
r2
x(t) + r2

y(t)
)

vx(t)ry(t)−vy(t)rx(t)
r2

x(t)+r2
y(t)

vx(t)rx(t))+vy(t)ry(t)
r2

x(t)+r2
y(t)

⎤
⎥⎥⎥⎥⎥⎥⎦ . (8)

Thus, using eqs.(7,8), the stochastic system given by eqs.(3,4) becomes:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Yt+1 =

⎧⎨
⎩ f lp

c

(
Af c

lp(Yt) + HUt + σmaxWt

)
if ry(t) > 0,

f lp
c

(
−Af c

lp(Yt) + HUt + σmaxWt

)
if ry(t) < 0.

Zt = βt + Vt − π11βt+Vt> π
2

+ π11βt+Vt<−π
2
.

(9)

Though, it seems that the LPC increases the complexity of the BOT problem, it has also the advantage to highlight the

multi-modality associated with the two solutions corresponding to ry(t) > 0 and ry(t) < 0 respectively.
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3 PCRB for state estimation

In this section, ”usual” PCRB given by the inverse Fisher Information Matrix (FIM) is presented. Notably, we present

in sub-section A, the proof of this classical result. The role of a technical hypothesis named ”asymptotic unbiasedness

assumption” is thus highlighted, especially in the LPC system. Then, we show in sub-section B that this hypothesis

is not always satisfied in the BOT context and we propose to replace it by an original extension. Finally, it is shown

that the ”usual” PCRB as given by FIM inverse is valid if bearing measurements are ”sufficiently” far from − π
2 and

π
2 . Let us remark that the PCRB is not derived in the Cartesian framework for two reasons. First, the ”asymptotic

unbiasedness assumption” seems rather difficult to address in this setting. Second, it is shown that a closed-form

exists in LPC but not in the classical coordinates systems (Cartesian or MPC).

3.1 Classical PCRB

Let Y0:t and Z1:t be the trajectory and the set of bearing measurements up to time t, they are random vectors of size

ny(t + 1) and t, respectively. Let Ŷ0:t be an estimator of Y0:t which is a function of Z1:t . We focus here on the Error

Covariance Matrix (ECM) at time t which is ny(t + 1) × ny(t + 1)-matrix, defined by:

ECM0:t = ‖Ŷ0:t − Y0:t‖2 . (10)

First, let us recall the Fisher Information Matrix (FIM) and bias definitions.

Definition 1 (FIM) For the filtering problem given by eq.(9); the FIM ,at time t, is denoted J 0:t and defined as:

J0:t = E
{∇Y0:t ln p(Z1:t, Y0:t)∇∗Y0:t

ln p(Z1:t, Y0:t)
}

, (11)

where p(Z1:t, Y0:t) is the joint Probability Density Function (PDF) of Z1:t and Y0:t.

Definition 2 (Bias) For the filtering problem described by eq.(9), estimation bias related to the observation sequence

Ŷ0:t is defined as:

B(Y0:t) = E

{
Ŷ0:t − Y0:t

∣∣∣Y0:t

}
. (12)

Y0:t is a ny(t + 1) vector so that B(Y0:t) is a ny(t + 1) vector too. The estimator of the trajectory Ŷ0:t is unbiased if

vector B(Y0:t) is almost surely equal to zero. This choice of the bias definition is justified in Appendix A. Proposition

1 ensures that the FIM gives a lower bound for the ECM under a specific assumption called “asymptotic unbiasedness

assumption”. Before introducing this technical assumption let us introduce a notation to simplify the presentation:

Notation 1 For a function F : R
d → R

n, U and U two R
d-vectors such that U =

[
U1, . . . , Ud

]∗
and U =[

U1, . . . ,Ud

]∗
, we define:

lim
U→U

F (U) =

⎡
⎢⎢⎢⎣

limU1→U1(F (U))1 . . . limUd→Ud
(F (U))1

...
...

limU1→U1(F (U))n . . . limUd→Ud
(F (U))n

⎤
⎥⎥⎥⎦ (13)
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where (F (U))i is the ith component of vector F (U).

Let us notice that limU1→U1(F (U))1 is a function which depends on variablesU1 and {U2, . . . , Ud} so that limU→U F (U)

depends on variables U and U . We will see that notation 1 is defined unambiguously in proposition 1 proof and will

be helpful to present the following assumption.

Assumption 1 (Asymptotic unbiasedness) For the filtering problem given by eq.(9), the asymptotic unbiasedness

assumption is defined as:

∀k ∈ {1, . . . , t}, lim
Yk→Y+

k

B(Y0:t)p(Y0:t) = lim
Yk→Y−

k

B(Y0:t)p(Y0:t) (14)

where Yk is the (connected) domain of Yk , k ∈ {1, . . . , t}, while
{Y−k , Y+

k

}
are its bounds.

Looking at LPC’s definition given by eq.(6), we haveY −l =
[
−π

2 ,−∞,−∞,−∞
]∗

andY+
l =

[
π
2 , +∞, +∞, +∞

]∗
.

Moreover, B(Y0:t)p(Y0:t) is a ny(t + 1) vector following notation 1, limYk→Y+
k

B(Y0:t)p(Y0:t) is a ny(t + 1) × ny

matrix. After introducing assumption 1, we can now present the classical result on the PCRB.

Proposition 1 (PCRB) Under assumption 1,

ECM0:t � J−1
0:t . (15)

Proposition 1 ensures that the FIM inverse gives a lower bound for the ECM conditionally to the validity of the tech-

nical Assumption 1 named ”asymptotic unbiasedness assumption”. Classically, Assumption 1 is true if the estimator

Ŷ0:t is unbiased when Yk ≈ Y−k and Yk ≈ Y+
k . However, this point is relatively complex to verify in the bearings-only

context. We propose to study assumption 1 to find a more concrete one. First, let us present a proof of the rather

classical Prop. 1. For the sake of completeness, the following lemma is reminded.

Lemma 1 Let S be a symmetric matrix defined as:

S =

⎡
⎣ A C

C∗ B

⎤
⎦ , (16)

where

• A is a non negative real symmetric matrix,

• B is a positive real symmetric matrix,

• C is a real matrix.

then S � 0 implies A − CB−1C∗ � 0 .

Proof of lemma 1 This lemma is a classical algebraic result given in [28].�
Proof of proposition 1 Using lemma 1, we build the S matrix such that:

S =

⎡
⎣ A0:t C0:t

C∗0:t B0:t

⎤
⎦ ,
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where: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A0:t = ECM0:t ,

B0:t = J0:t ,

C0:t = E

{
(Ŷ0:t − Y0:t)∇∗Y0:t

ln p(Z1:t, Y0:t)
}

.

(17)

From this definition, S is a non negative matrix. Using lemma 1, one remarks that we just have to prove that C 0:t is

equal to the identity matrix. The “asymptotic unbiasedness assumption” will be used to do so. First, let us notice that

C0:t can be rewritten as:

C0:t =
∫

(Ŷ0:t − Y0:t)∇∗Y0:t
p(Z1:t, Y0:t)d(Z1:t, Y0:t) . (18)

C0:t is a ny(t+1)×ny(t+1) matrix made of (t+1)× (t+1) elementary blocks. We study each of these elementary

blocks (denoted C0:t(k, l)):

C0:t(k, l) =
∫

(Ŷk − Yk)∇∗Yl
p(Z1:t, Y0:t)d(Z1:t, Y0:t) , k ∈ {1, · · · , ny} , l ∈ {1, · · · , ny}. (19)

Before integrating by parts, let us introduce the following notation:

Notation 2 For a function F : R
d → R

n, U , U− and U+ three R
d-vectors such that U =

[
U1, . . . , Ud

]∗
, U− =[

U−1 , . . . ,U−d
]∗

and U+ =
[
U+

1 , . . . ,U+
d

]∗
, then we can define:

[F (U)]U
+

U− = lim
U→U+

F (U) − lim
U→U−

F (U) (20)

where limU→U+ F (U) and limU→U− F (U) are defined using notation 1.

Integrating by parts and using the previous notation, a matrix element of C 0:t given by eq.(19) can be rewritten:

C0:t(k, l) = Idny δk=l +
∫ [

(Ŷk − Yk)p(Z1:t, Y0:t)
]Y+

l

Y−
l

d(Z1:t, Y
−{l}
0:t ) , (21)

where Y
−{l}
0:t is a whole target trajectory except the term Yl. Now, if limit and integral operators can be reversed, we

have:

C0:t(k, l) = Idny δk=l +
∫ [ ∫

(Ŷk − Yk)p(Z1:t, Y0:t)dZ1:t

]Y+
l

Y−
l

dY
−{l}
0:t . (22)

Using bias notation previously introduced, we finally obtain:

C0:t(k, l) = Idnyδk=l +
∫ [

B(Y0:t)p(Y0:t)
]Y+

l

Y−
l

dY
−{l}
0:t . (23)

Thus, under assumption 1, C0:t is the identity matrix.�
Then we can apply proposition 1 to the BOT problem if ”asymptotic unbiasedness assumption” is satisfied. More

precisely, this assumption assures that the term C0:t is the identity matrix. Let us now study the validity of this

hypothesis in the BOT context.
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3.2 Validity of the ”asymptotic unbiasedness assumption” in BOT context

We show in this section that the ”asymptotic unbiasedness assumption” is not always true in the BOT context. More

precisely, this classical result can not be used when measurements obtained by the observer are close to − π
2 or π

2 . First

let us remind that proposition 1 is true under a technical assumption named ”asymptotic unbiasedness assumption”.

According to the previous section, C0:t given by eq.(17) is not the identity matrix if this assumption is not verified.

Van Trees showed in [16] that there is a more general result which is valid without this technical assumption:

Proposition 2 (PCRB) for a filtering problem given by eq.(9)

ECM0:t � C0:tJ
−1
0:t C∗0:t with C0:t = E

{
(Ŷ0:t − Y0:t)∇∗Y0:t

ln p(Z1:t, Y0:t)
}

. (24)

Proof of proposition 2 The result is a direct application of lemma 1 with A 0:t, B0:t and C0:t given by eq.(17).�
Proposition 2 is a classical result which is not often used in practice because this bound depends on the estimator i.e.

Ŷ0:t via C0:t. This last term must be estimated using Monte-Carlo methods. Here, an original result is proposed which

specifies proposition 2 in the bearings-only context. In particular, we propose a simple formula for C 0:t.

Proposition 3 (PCRB) For a filtering problem given by eq.(9),

ECM0:t � C∗0:tJ
−1
0:t C0:t

where C0:t is a ny(t + 1) × ny(t + 1) block diagonal matrix where diagonal terms are expressed as follows:

C0:t(l, l) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − πp(βl)
∣∣∣

π
2

0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦ , ∀l ∈ {0, . . . , t}. (25)

where p(βl) is the PDF of βl.

Proposition 3 is adapted from proposition 2 to fit to the BOT context. More precisely, proposition 3 gives a more

simple formula for C0:t. This result is quite intuitive. When bearing measurements are close to a bound (i.e. − π
2 or π

2 )

there is an overlapping phenomenon due to the arctan definition as the underlying Probability Density Function (PDF)

is not Gaussian but something like that function represented in fig.1. Finally let us notice that p(β l) is not defined in

π
2 because βl is in ] − π

2 , π
2 [. However, the limit exists.

Proof of proposition 3 The complete proof of proposition 3 is given in Appendix B with three intermediate results

skipped in sub-Appendix B1, B2 and B3. The idea of the proof consists of studying C 0:t using the formula given by

eq.(22) in Prop. 1 proof. To study eq.(22), the PDF of Y t+1 given Yt i.e. p(Yt+1|Yt) and the PDF of Zt given Yt i.e.

p(Zt|Yt) are derived in Appendix B1 and B2. Then, a technical lemma allows us to end the proof.�
In the filtering context, we are generally not interested in ECM 0:t but only in the right lower block ECMt =

‖Ŷt − Yt‖2. Thus, it is not the whole matrix C0:tJ
−1
0:t C∗0:t which is of interest but just the right lower block. As C0:t is
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a diagonal matrix according to Pro. 3, we have:

ECMt � CtJ
−1
t C∗t ,

with:

Ct =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − πp(βt)
∣∣∣

π
2

0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦ . (26)

Matrix J−1
t is the right lower block of J0:t-inverse, given by eq.(11). Now from a practical point of view, the problem

is to be able to estimate J−1
t and Ct. Concerning the first one, J−1

t is classically obtained by means of Tichavský’s

recursive formula via Monte-Carlo methods. Looking at eq.(26), we can see that C t only modifies the PCRB linked to

the first component of the target state βt. The PCRB associated to this component is overestimated because p(βt)
∣∣∣

π
2

is not zero all the time. When bearing measurements are sufficiently far from the bounds − π
2 and π

2 , Ct is the identity

matrix, so that the classical PCRB is given by the FIM inverse.

Assumption 2 (Side assumption) For a filtering problem given by eq.(9), the side assumption is defined as:

p(βl)
∣∣∣

π
2

= 0 ∀l ∈ {0, . . . , T} , (27)

where p(βl) is the PDF of βl.

Proposition 4 (PCRB) Under assumption 2,

ECMt � J−1
t . (28)

Proof of proposition 4 Proposition 4 is easily derived from proposition 3.�
Comparing proposition 1 and 4, we see that we have given a more concrete meaning to the assumption we use for

PCRB calculation.

4 Closed-form formulation for Tichavský’s formula in the LPC coordinates

system

We have derived in the previous section a PCRB adapted to the BOT context, given by eq.(29). Now it is necessary

to estimate J−1
t . The classical approach consists of using J−1

t recursive formula proposed by Tichavský’s et al.

However, some terms involved in this formula must be estimated using Monte Carlo methods. We demonstrate here

that all these terms have closed-form expressions if the PCRB is derived using the LPC system, so that J −1
t can be

computed exactly via Tichavský’s formula. In section A, Tichavský’s recursive formula is reminded. We remark in

section B that no closed-form expressions for the terms involved in this formula can be obtained using Cartesian or

MPC framework. Then we show in section C that closed-form calculation can be derived in the new LPC system.

Irisa



4.1 Tichavský’s formula

Tichavský et al. proposed a recursive formula in [23] for the right lower block of the FIM inverse noted J −1
t .

Proposition 5 (Tichavský’s formula) For a filtering problem given by eq.(9), the right lower block of the FIM inverse

noted J−1
t has a recursive formula:

J−1
t+1 =

(
D22

t + D33
t − D21

t

(
J−1

t + D11
t

)−1
D12

t

)−1

,

where D11
t , D12

t , D21
t , D22

t , D33
t are defined by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D11
t = E{∇Yt ln p(Yt+1|Yt)∇∗Yt

ln p(Yt+1|Yt
}} ,

D21
t = E{∇Yt+1 ln p(Yt+1|Yt)∇∗Yt

ln p(Yt+1|Yt)} ,

D12
t = E{∇Yt ln p(Yt+1|Yt)∇∗Yt+1

ln p(Yt+1|Yt)} ,

D22
t = E{∇Yt+1 ln p(Yt+1|Yt)∇∗Yt+1

ln p(Yt+1|Yt)} ,

D33
t = E{∇Yt+1 ln p(Zt+1|Yt+1)∇∗Yt+1

ln p(Zt+1|Yt+1)} .

(29)

Proposition 5 is proved in [23]. However, for the BOT context, even if PDF p(Y l+1|Yl) and p(Zt|Yt) are known

and simple, D11
t , D12

t , D21
t , D22

t and D33
t do not have closed-form expressions altogether. We shall show now that

existence of closed-form expressions is a characteristic of the LPC system, introduced in section II.B.

4.2 Closed form expressions of D11
t , D12

t , D22
t , D21

t and D33
t in different coordinates systems

Ristic et al. in [15] have derived the PCRB in the Cartesian coordinates system. Matrices D 11
t , D12

t , D22
t and D21

t have

closed-form expressions using this system. However D 33
t has no closed-form, so that the authors assumed that the

process noise makes a very small effect on the PCRB (i.e. Wt = 0) for approximating D33
t . Otherwise, the classical

PCRB has not been derived in MP coordinates system yet. It seems that no closed-form for D 11
t , D12

t , D22
t and D21

t

can be expected, though a closed-form of D 33
t exists under assumption 2. These results are summed up in tab.1.

Cartesian modified polar logarithmic polar

D11
t Yes No Yes

D12
t Yes No Yes

D21
t Yes No Yes

D22
t Yes No Yes

D33
t No Yes Yes

Table 1: Closed-forms in different coordinates systems

Now the question is whether we can find a coordinates system allowing closed-forms for all terms. First, it seems

that the coordinates system must include βt so that under assumption 2, D33
t has a closed-form as in the MPC system.
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Second, in the Cartesian framework, it seems that the existence of closed-forms for D 11
t , D12

t , D22
t and D21

t in

eq.(28) are inherited from the linear property of ∇Xt ln p(Xt+1|Xt) and ∇Xt+1 ln p(Xt+1|Xt). First, considering

LPC definition given by eq.(6), we can see that β t is one of the component of the state. Second, we can show that

gradients ∇Yt ln p(Xt+1|Xt) and ∇Yt+1 ln p(Xt+1|Xt) are quadratic forms in Xt, Xt+1. Indeed, we have:⎧⎨
⎩ ∇∗Yt

ln p(Xt+1|Xt) = (Xt+1 − AXt − HUt)∗Q−1A∇Yt{Xt} ,

∇∗Yt+1
ln p(Xt+1|Xt) = (Xt+1 − AXt − HUt)∗Q−1∇Yt+1{Xt+1} ,

(30)

where ∇Yt{Xt} and ∇Yt+1{Xt+1} are LPC-to-Cartesian mapping function derivatives at time t and t + 1 (LPC-to-

Cartesian mapping function is given by eq.(7)). These two terms can be expressed using the Cartesian framework:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇Yt{Xt} =

⎡
⎢⎢⎢⎢⎢⎢⎣

ry(t) −rx(t) 0 0

rx(t) ry(t) 0 0

vy(t) −vx(t) ry(t) −rx(t)

vx(t) vy(t) rx(t) ry(t)

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

∇Yt+1{Xt+1} =

⎡
⎢⎢⎢⎢⎢⎢⎣

ry(t + 1) −rx(t + 1) 0 0

rx(t + 1) ry(t + 1) 0 0

vy(t + 1) −vx(t + 1) ry(t + 1) −rx(t + 1)

vx(t + 1) vy(t + 1) rx(t + 1) ry(t + 1)

⎤
⎥⎥⎥⎥⎥⎥⎦ .

(31)

so that ∇Yt{Xt} and ∇Yt+1{Xt+1} given by eq.(31) are linear operators in X t, Xt+1.

4.3 An algorithm for calculating a closed-form PCRB, in the LPC system

Based on previous sections, Section C1, C2, C3 and C4 give closed-forms for D 11
t , D12

t , D22
t and D33

t in the LPC

framework. Moreover, we show that these closed-forms can be written in a recursive manner. The algorithm that

calculates the closed-form PCRB is summed up in fig.2. We can see that calculation of D 11
t , D12

t and D22
t is splitted

in two steps. In step 1, the auxiliary matrices Γ11
t , Γ12

t and Γ22
t , defined by eqs.(36,40,44), are computed via a linear

system. Then, D11
t , D12

t and D22
t are extracted from Γ11

t , Γ12
t , Γ22

t in step 2. This algorithm will be compared in the

simulations section with the classical PCRB summed up in fig.3.

4.3.1 D11
t closed-form

We show in Appendix D that D11
t can be expressed as an expectation of a simple function in the Cartesian coordinates

system:

D11
t =

1
σ2

max

E
{
F ∗Xt

A∗Q−1AFXt

}
with FXt = ∇Yt{Xt} . (32)

The problem is now to compute this expectation. We show now that no “direct” recursive formula can be derived for

D11
t but the latter can be obtained as the by product of a general linear system in Prop.6.1. First let us investigate the

Irisa



• Initialization of J−1
0 using the initial error covariance matrix given by eq.(56).

• Initialization of Γ11
0 , Γ12

0 and Γ22
0 using eqs.(38,42,46).

• J−1
1 is calculated using only step 2 and 3 with t = 0.

• For t = 1 to T

1. Calculation of auxiliary matrices Γ11
t , Γ12

t and Γ22
t

(a) Calculate Λ11
t−1, Λ12

t−1 and Λ22
t−1 using eqs.(37,41,45) if observer maneuvers (else these terms are

equal to zero).

(b)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Γ11
t = Ω11 + Ψ Γ11

t−1 ( + Λ11
t−1 ) ,

Γ12
t = Ω12 + Ψ Γ12

t−1 ( + Λ12
t−1 ) ,

Γ22
t = Ω22 + Ψ Γ22

t−1 ( + Λ22
t−1 ) .

Remark : Ω11, Ω12 and Ω22 are given by eqs.(37,41,45). Ψ is given by eq.(37).

2. Calculation of D11
t , D12

t and D22
t

(a) If observer maneuvers, computeΥ12
t and Υ22

t using eq.(39) and eq.(43) (else these terms are equal

to zero).

(b)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D11
t =

[
Idny 0ny×3ny

]
Γ11

t ,

D12
t = −

[
Idny 0ny×3ny

]
Γ12

t ( − Υ12
t ) ,

D22
t =

[
Idny 0ny×3ny

]
Γ22

t + C ( + Υ22
t ) .

.

Remark : C is given by eq.(43) and D21
t is given by the relation D21

t =
�
D12

t

�∗
.

(c) D33
t is given by eq.(47).

3. Calculate J−1
t+1 using Tichavský’s formula:

J−1
t+1 =

(
D22

t + D33
t − D21

t

(
J−1

t + D11
t

)−1
D12

t

)−1

.

Figure 2: Closed-form calculation of the PCRB.
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• Initialisation of J−1
0 using the initial error covariance matrix given by eq.(56).

• For t = 0 to T

1. Approximation of D11
t , D12

t and D22
t by Monte Carlo.

2. D21
t is given by the relation D21

t =
(
D12

t+1

)∗
and D33

t is given by eq.(47).

3. Compute J−1
t+1 using Tichavský’s formula:

J−1
t+1 =

(
D22

t + D33
t − D21

t

(
J−1

t + D11
t

)−1
D12

t

)−1

.

Figure 3: Classical computation of the PCRB.

non maneuvering case. In this case, using the statistical properties of X t+1 given Xt and the linear property of f ,

eq.(32) can be rewritten:

D11
t =

1
σ2

max

E

{
F ∗Xt−AXt−1

A∗Q−1AFXt−AXt−1

}
︸ ︷︷ ︸

constant

+
1

σ2
max

E

{
F ∗AXt−1

A∗Q−1AFAXt−1

}
(33)

The first term can be calculated remarking that X t − AXt−1 ∼ N (0, Q) and F is a linear operator. We derived in

appendix D from the linear property of F that:

⎧⎨
⎩ FAXt = FXt + δtGXt ,

GAXt = GXt ,
where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

FXt = ∇Yt{Xt} ,

GXt = Id2 ⊗
⎛
⎝vy(t) −vx(t)

vx(t) vy(t)

⎞
⎠ .

(34)

Incorporating eq.(34) in eq.(33), we obtain:

D11
t = constant +

1
σ2

max

E

{
F ∗Xt−1

A∗Q−1AFXt−1

}
︸ ︷︷ ︸

=D11
t−1

+
δ2
t

σ2
max

E

{
G∗Xt−1

A∗Q−1AGXt−1

}

+
δt

σ2
max

E

{
F ∗Xt−1

A∗Q−1AGXt−1

}
+

δt

σ2
max

E

{
G∗Xt−1

A∗Q−1AFXt−1

}
. (35)

Looking at eq.(35), It seems that no “direct” recursive formula can be derived for D 11
t . However, we can propose an

original recursive formula for D11
t via a joint matrix Γ11

t formed with the four terms involved in eq.(35) which is valid

in the general case including the maneuvering case:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D11
t =

[
Idny 0ny×3ny

]
Γ11

t ,

Γ11
t = 1

σ2
max

⎛
⎜⎜⎜⎜⎜⎜⎝

E
{
F ∗Xt

A∗Q−1AFXt

}
E
{
F ∗Xt

A∗Q−1AGXt

}
E
{
G∗Xt

A∗Q−1AFXt

}
E
{
G∗Xt

A∗Q−1AGXt

}

⎞
⎟⎟⎟⎟⎟⎟⎠ where FXt and GXt are defined by eq.(34).

(36)
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We can see that D11
t is just one block of Γ11

t . Now the following proposition assumes that we have a recursive formula

for Γ11
t , so that D11

t is obtained as a by product.

proposition 6.1( Γ11
t formula ) For a filtering problem given by eq.(9), we have the following recursive formula

for Γ11
t :

Γ11
t = Ω11 + Ψ Γ11

t−1 ( + Λ11
t−1 )

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 δt δt δ2
t

0 1 0 δt

0 0 1 δt

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠⊗ Id4 ,

Ω11 =

⎛
⎜⎜⎜⎜⎜⎜⎝

2α3A
∗Q−1A + 2α1BA∗Q−1AB∗ + 2α2BA∗Q−1A + 2α2A

∗Q−1AB∗

2α1BA∗Q−1A + 2α2A
∗Q−1A

2α1A
∗Q−1AB∗ + 2α2A

∗Q−1A

2α1A
∗Q−1A

⎞
⎟⎟⎟⎟⎟⎟⎠

and

Λ11
t−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

04ny×ny if Ut−1 = 0 ,

1
σ2

max

⎛
⎜⎜⎜⎜⎜⎜⎝

F ∗
EXt

A∗Q−1AFEXt − F ∗AEXt−1
A∗Q−1AFAEXt−1

F ∗
EXt

A∗Q−1AGEXt − F ∗AEXt−1
A∗Q−1AGAEXt−1

G∗
EXt

A∗Q−1AFEXt − G∗AEXt−1
A∗Q−1AFAEXt−1

G∗
EXt

A∗Q−1AGEXt − G∗AEXt−1
A∗Q−1AGAEXt−1

⎞
⎟⎟⎟⎟⎟⎟⎠ if Ut−1 
= 0 .

(37)

We refer to eq.(2), for a definition of the various terms {A, B, Q, α1, α2, α3} involved in this closed form. For defini-

tions of F and G see eq.(34).

Let us now make some remarks about the previous proposition. We can see that the recursive formula for Γ 11
t

given by eq.(37) is just a simple linear equation, where all the terms have closed-form expressions. Moreover, if

the maneuvering term Ut−1 is zero, then EXt = AEXt−1. As a consequence, Λ11
t−1 is zero if the maneuvering

term Ut−1 is zero. If this condition does not hold, Λ11
t−1 can be computed exactly using E(X0) and the recursion

E(Xt) = AE(Xt−1) + HUt−1.

Finally, we must pay attention to the initialization of Γ11
t . We show in Appendix F that Γ11

0 can be expressed as a

function of the first moments of target state in LPC system, more precisely we have:

Γ11
0 =

Er2
0

σ2
max

⎛
⎜⎜⎜⎜⎜⎜⎝

Σ11 ⊗ RR11 + Σ11
↖ ⊗ V V 11 + Σ11

↑ ⊗ V R11 + Σ11
← ⊗ RV 11

Σ11
↑ ⊗ V V 11 + Σ11 ⊗ RV 11

Σ11
← ⊗ V V 11 + Σ11 ⊗ V R11

Σ11 ⊗ V V 11

⎞
⎟⎟⎟⎟⎟⎟⎠
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Σ11 =

⎡
⎣ 1 0

δt 1

⎤
⎦Σ−1

⎡
⎣1 δt

0 1

⎤
⎦ Σ12 =

⎡
⎣ 1 0

δt 1

⎤
⎦Σ−1 Σ22 = Σ−1 =

⎡
⎣α3 α2

α2 α1

⎤
⎦−1

Σ11
↑ =

⎡
⎣0 1

0 0

⎤
⎦Σ11 Σ12

↑ =

⎡
⎣0 1

0 0

⎤
⎦Σ12 Σ22

↑ =

⎡
⎣0 1

0 0

⎤
⎦Σ22

Σ11← = Σ11

⎡
⎣0 0

1 0

⎤
⎦ Σ12← = Σ12

⎡
⎣0 0

1 0

⎤
⎦ Σ22← = Σ22

⎡
⎣0 0

1 0

⎤
⎦

Σ11
↖ =

⎡
⎣0 1

0 0

⎤
⎦Σ11

⎡
⎣0 0

1 0

⎤
⎦ Σ12

↖ =

⎡
⎣0 1

0 0

⎤
⎦Σ11

⎡
⎣0 0

1 0

⎤
⎦ Σ22

↖ =

⎡
⎣0 1

0 0

⎤
⎦Σ11

⎡
⎣0 0

1 0

⎤
⎦

Table 2: Initialization of the Γij
t recursion (t = 0).

where Σ11, Σ11
↖, Σ11

↑ and Σ11← are given in tab.2 and⎧⎪⎪⎪⎨
⎪⎪⎪⎩

RR11 = Id2 , V V 11 =
(

Eβ̇2
0 + E

ṙ2
0

r2
0

)
Id2 ,

RV 11 =

⎛
⎝E

ṙ0
r0

−Eβ̇0

Eβ̇0 E
ṙ0
r0

⎞
⎠ , V R11 =

⎛
⎝ E

ṙ0
r0

Eβ̇0

−Eβ̇0 E
ṙ0
r0

⎞
⎠ .

(38)

From a practical point of view, RR11, V V 11, RV 11, V R11 can be derived from the initial PDF in LPC system i.e.

p(Y0).

4.3.2 D12
t closed-form

Using the same approach as in the previous section, we show in Appendix D that:

D12
t = − 1

σ2
max

E
{
F ∗Xt

A∗Q−1FAXt

}
︸ ︷︷ ︸

(�)

( − Υ12
t ) ,

with

Υ12
t =

⎧⎨
⎩ 0ny×ny if Ut = 0 ,

1
σ2

max

(
F ∗

EXt
A∗Q−1FEXt+1 − F ∗

EXt
A∗Q−1FAEXt

)
if Ut 
= 0

(39)

where operator F is defined by eq.(34). Comparing eq.(39) with eq.(32), we can notice that we have now two terms to

compute. The term Υ12
t can be easily calculated. We can remark that the latter is zero if U t is zero. If this condition

is not verified, E(Xt) is computed for any value of t using E(X0) and the relation E(Xt) = AE(Xt−1) + HUt−1.

Otherwise, (�) can be computed recursively using the same approach as for D 11
t . D12

t is deduced from Γ12
t , via:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D12
t =

[
Idny 0ny×3ny

]
Γ12

t ( + Υ12
t ) ,

Γ12
t = 1

σ2
max

⎛
⎜⎜⎜⎜⎜⎜⎝

E
{
F ∗Xt

A∗Q−1FAXt

}
E
{
F ∗Xt

A∗Q−1GAXt

}
E
{
G∗Xt

A∗Q−1FAXt

}
E
{
G∗Xt

A∗Q−1GAXt

}

⎞
⎟⎟⎟⎟⎟⎟⎠

(40)
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where operators F and G are given by eq.(34). Again, we have a recursive formula for Γ 12
t , yielding D12

t as a by

product.

proposition 6.2( Γ12
t formula ) For a filtering problem given by eq.(9), we have the following recursive formula

for Γ12
t :

Γ12
t = Ω12 + Ψ Γ12

t−1 ( + Λ12
t−1 )

where:

Ω12 =

⎛
⎜⎜⎜⎜⎜⎜⎝

2(α3 + δtα2)A∗Q−1 + 2α1BA∗Q−1B∗ + 2(α2 + δtα1)BA∗Q−1 + 2α2A
∗Q−1B∗

2α1BA∗Q−1 + 2α2A
∗Q−1

2α1A
∗Q−1B∗ + 2(α2 + δtα1)A∗Q−1

2α1A
∗Q−1

⎞
⎟⎟⎟⎟⎟⎟⎠

and:

Λ12
t−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

04ny×ny if Ut−1 = 0 ,

1
σ2

max

⎛
⎜⎜⎜⎜⎜⎜⎝

F ∗
EXt

A∗Q−1FAEXt − F ∗AEXt−1
A∗Q−1FA2EXt−1

F ∗
EXt

A∗Q−1GAEXt − F ∗AEXt−1
A∗Q−1GA2EXt−1

G∗
EXt

A∗Q−1FAEXt − G∗AEXt−1
A∗Q−1FA2EXt−1

G∗
EXt

A∗Q−1GAEXt − G∗AEXt−1
A∗Q−1GA2EXt−1

⎞
⎟⎟⎟⎟⎟⎟⎠ if Ut−1 
= 0 .

(41)

Ψ is given by eq.(37). We refer to eq.(2), for a definition of the various terms {A, B, Q, α 1, α2, α3} involved in this

closed form. For definitions of F and G see eq.(34).

Again, the recursion giving Γ12
t is linear and have a closed-form. Similarly to Γ11

t recursion, Λ12
t−1 is zero if no

maneuver occurs ( EXt = AEXt−1). Else, Λ12
t−1 is updated from E(X0). Considering the initialization of the Γ12

t

recursion, we show in Appendix F that Γ12
0 can be expressed as a function of the first moments of target state in LPC,

as:

Γ12
0 =

Er2
0

σ2
max

⎛
⎜⎜⎜⎜⎜⎜⎝

Σ12 ⊗ RR12 + Σ12
↖ ⊗ V V 12 + Σ12

← ⊗ V R12 + Σ12
↑ ⊗ RV 12

Σ12
↑ ⊗ V V 12 + Σ12 ⊗ RV 12

Σ12
← ⊗ V V 12 + Σ12 ⊗ V R12

Σ12 ⊗ V V 12

⎞
⎟⎟⎟⎟⎟⎟⎠

where Σ12, Σ12
↖, Σ12

↑ and Σ12
← are given in tab.2 and⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

RR12 = Id2 + δt

⎛
⎝E

ṙ0
r0

−Eβ̇0

Eβ̇0 E
ṙ0
r0

⎞
⎠ , V V 12 =

(
Eβ̇2

0 + E
ṙ2
0

r2
0

)
Id2

RV 12 =

⎛
⎝E

ṙ0
r0

−Eβ̇0

Eβ̇0 E
ṙ0
r0

⎞
⎠ , V R12 =

⎛
⎝ E

ṙ0
r0

Eβ̇0

−Eβ̇0 E
ṙ0
r0

⎞
⎠ + δt

(
Eβ̇2

0 + E
ṙ2
0

r2
0

)
Id2×2 .

(42)
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4.3.3 D22
t closed-form

Using the same approach as in the previous section, we show in Appendix D that:

D22
t =

1
σ2

max

E
{
F ∗AXt

Q−1FAXt

}
︸ ︷︷ ︸

(�)

+C ( + Υ22
t ) ,

where:

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

C1 0 0 0

0 16 + C1 0 C3

0 0 C2 0

0 C3 0 C2

⎞
⎟⎟⎟⎟⎟⎟⎠

with: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C1 = 576α2
3

δ6
t

+ 672α2
2

δ4
t

+ 64α2
1

δ2
t

− 1152α3α2
δ5

t
+ 288α3α1

δ4
t

− 384α2α1
δ3

t
,

C2 = 144α2
3

δ4
t

+ 32α2
2

δ2
t

− 192α3α2
δ3

t
+ 32α3α1

δ2
t

,

C3 = − 288α2
3

δ5
t

− 192α2
2

δ3
t

+ 480α3α2
δ4

t
− 96α3α1

δ3
t

+ 64α2α1
δ2

t

and

Υ22
t =

⎧⎨
⎩ 0ny×ny if Ut = 0 ,

1
σ2

max

(
F ∗

EXt+1
Q−1FEXt+1 − F ∗AEXt

Q−1FAEXt

)
if Ut 
= 0 .

(43)

where the operator F is defined by eq.(34). As we can see above, C is just a constant term and Υ 22
t is a maneuvering

term which can be calculated using the same approach as for Υ12
t in section B.2. Otherwise, (�) in eq.(43) can be

calculated recursively. The matrix D22
t is deduced from Γ22

t via:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D22
t+1 =

[
Idny×ny 0ny×3ny

]
Γ22

t+1 + C ( + Υ22
t ) ,

Γ22
t = 1

σ2
max

⎛
⎜⎜⎜⎜⎜⎜⎝

E
{
F ∗AXt

Q−1FAXt

}
E
{
F ∗AXt

Q−1GAXt

}
E
{
G∗AXt

Q−1FAXt

}
E
{
G∗AXt

Q−1GAXt

}

⎞
⎟⎟⎟⎟⎟⎟⎠

(44)

where operators F and G are given by eq.(34). Again, the following proposition yields a closed-form recursive formula

for Γ22
t , and for D22

t as a by product.

proposition 6.3( Γ22
t formula ) For a filtering problem given by eq.(9), a closed-form recursive formula for Γ 22

t is

given by:

Γ22
t = Ω22 + Ψ Γ22

t−1 ( + Λ22
t−1 )

where:

Ω22 =

⎛
⎜⎜⎜⎜⎜⎜⎝

2(α3 + 2δtα2 + δ2
t α1)Q−1 + 2α1BQ−1B∗ + 2(α2 + δtα1)

(
BQ−1 + Q−1B∗

)
2α1BQ−1 + 2(α2 + δtα1)Q−1

2α1Q
−1B∗ + 2(α2 + δtα1)Q−1

2α1Q
−1

⎞
⎟⎟⎟⎟⎟⎟⎠
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and:

Λ22
t−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0ny×ny if Ut−1 = 0 ,

1
σ2

max

⎛
⎜⎜⎜⎜⎜⎜⎝

F ∗AEXt
Q−1FAEXt − F ∗A2EXt−1

Q−1FA2EXt−1

F ∗AEXt
Q−1GAEXt − F ∗A2EXt−1

Q−1GA2EXt−1

G∗AEXt
Q−1FAEXt − G∗A2EXt−1

Q−1FA2EXt−1

G∗AEXt
Q−1GAEXt − G∗A2EXt−1

Q−1GA2EXt−1

⎞
⎟⎟⎟⎟⎟⎟⎠ if Ut−1 
= 0 .

(45)

Always using the same approach, we show in Appendix F that Γ22
0 can be expressed as a function of the first moments

of target state in LPC system, i.e. :

Γ22
0 =

Er2
0

σ2
max

⎛
⎜⎜⎜⎜⎜⎜⎝

Σ22 ⊗ RR22 + Σ22
↖ ⊗ V V 22 + Σ22

↑ ⊗ V R22 + Σ22
← ⊗ RV 22

Σ22
↑ ⊗ V V 22 + Σ22 ⊗ RV 22

Σ22← ⊗ V V 22 + Σ22 ⊗ V R22

Σ22 ⊗ V V 22

⎞
⎟⎟⎟⎟⎟⎟⎠

where Σ22, Σ22
↖, Σ22

↑ and Σ22← are given in tab.2 and⎧⎪⎪⎪⎨
⎪⎪⎪⎩

RR22 = (1 + 2δtE
ṙ0
r0

+ δ2
t Eβ̇2

0 + δ2
t E

ṙ2
0

r2
0
)Id2×2 , V V 22 =

(
Eβ̇2

0 + E
ṙ2
0

r2
0

)
Id2×2 ,

RV 22 =

⎛
⎝E

ṙ0
r0

−Eβ̇0

Eβ̇0 E
ṙ0
r0

⎞
⎠ + δt

(
Eβ̇2

0 + E
ṙ2
0

r2
0

)
Id2×2 , V R22 =

⎛
⎝ E

ṙ0
r0

Eβ̇0

−Eβ̇0 E
ṙ0
r0

⎞
⎠ + δt

(
Eβ̇2

0 + E
ṙ2
0

r2
0

)
Id2×2 .

(46)

4.3.4 D33
t closed-form

We show in Appendix D that D33
t is simply:

D33
t =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
σ2

β
0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠ . (47)

5 About active measurements scheduling for state estimation

We assume now that additionally to (passive) bearing measurements, there is an other sub-system which can produce

a noise corrupted range measurement at time t noted d t:

dt = rt + ηt where ηt ∼ N (
0, σ2

r

)
. (48)

where σr is the range standard deviation. However, active measurements have a cost so that the total active measure-

ments budget is fixed. The aim of measurement scheduling is to optimize the time-distribution of active measurements

to obtain an accurate target state estimate.

The general problem of optimizing the time-distribution of measurements has a long history. Avitzour et al. in

[29] have proposed an algorithm to optimize the time-distribution of measurements when estimating a scalar random
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variable by solving a nonquadratic minimization problem. This result has been extended by Shakeri et al in [30] to

discrete-time stochastic processes. However, this previous approach is devoted to linear systems when the BOT is

highly nonlinear. Then, Le Cadre has proposed to use the CRB to solve the problem in [31] for nonlinear systems

where the state equation is deterministic. We show in this section that a closed-form PCRB derived can be used for

active measurement scheduling.

In the previous section, a closed-form PCRB has been derived for bearings-only measurements. What happens if

range measurements are included ? We show in this section that the PCRB has still a closed-form. First, looking at

eq.(29), we can see that only D33
t depends on the measurement equation. Then, only the latter has to be modified. If

the sensor produces a range measurement at time t, then:

D33
t = E{∇Yt+1 ln p(Zt+1, dt+1|Yt+1)∇∗Yt+1

ln p(Zt+1, dt+1|Yt+1)} . (49)

Using the independence property between bearings and range measurements, eq.(49) can be rewritten:

D33
t = E{∇Yt+1 ln p(Zt+1|Yt+1)∇∗Yt+1

ln p(Zt+1|Yt+1)}︸ ︷︷ ︸
=D33

t

+E{∇Yt+1 ln p(dt+1|Yt+1)∇∗Yt+1
ln p(dt+1|Yt+1)} . (50)

Using D33
t given by eq.(47) and range measurement equation given by eq.(48), we obtain

D33
t =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
σ2

β
0 0 0

0 Er2
t+1

σ2
r

0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ . (51)

Consequently, the problem is to compute Er2
t+1. We show now that there is no ”direct” recursive formula to calculate

Er2
t+1 but the latter can be obtained as a by product of a linear system. First let us address the non maneuvering case.

Using the state equation given by eq.(3) and the statistical properties of W t, elementary calculations yield:

Er2
t+1 = E{r2

x(t + 1) + r2
y(t + 1)}

= 2σ2
maxα3 + E{r2

x(t) + r2
y(t)}︸ ︷︷ ︸

=Er2
t

+2δtE{vx(t)rx(t) + vy(t)ry(t)} + δ2
t E

{
v2

x(t) + v2
y(t)

}
. (52)

Then looking at eq.(52), It seems that no “direct” recursive formula can be derived for Er 2
t+1. However, we can

propose an original recursive formula for the latter via a joint matrix Γ 33
t formed with the three terms involved in

eq.(52) which is valid in the general case including the maneuvering case:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Er2
t+1 =

[
1 0 0

]
Γ33

t ,

Γ33
t =

⎡
⎢⎢⎢⎣

E{r2
x(t + 1) + r2

y(t + 1)}
E{vx(t + 1)rx(t + 1) + vy(t + 1)ry(t + 1)}

E
{
v2

x(t + 1) + v2
y(t + 1)

}
⎤
⎥⎥⎥⎦ .

(53)

We can see that Er2
t+1 is the first component of Γ33

t . We have a simple recursive formula for Γ33
t given by:
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Proposition 7( Γ33
t formula )

Γ33
t = Ω33 + Φ Γ33

t−1 ( + Λ33
t−1 )

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ω33 = 2σ2
max

⎡
⎢⎢⎢⎣
α3

α2

α1

⎤
⎥⎥⎥⎦ ,

Φ =

⎡
⎢⎢⎢⎣
1 2δt δ2

t

0 1 δt

0 0 1

⎤
⎥⎥⎥⎦ ,

and

Λ33
t−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2δt

⎡
⎣Erx(t)

Ery(t)

⎤
⎦∗ Ut + 2δ2

t

⎡
⎣Evx(t)

Evy(t)

⎤
⎦∗ Ut + δ2

t U∗t Ut⎡
⎣Erx(t)

Ery(t)

⎤
⎦∗ Ut + 2δt

⎡
⎣Evx(t)

Evy(t)

⎤
⎦∗ Ut + δtU

∗
t Ut

2

⎡
⎣Erx(t)

Ery(t)

⎤
⎦∗ Ut + U∗t Ut

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(54)

We refer to eq.(2), for a definition of the various terms {α1, α2, α3} involved in this closed form.

Proof of proposition 7 We incorporate the diffusion equation given by eq.(3) in Γ 33
t given by eq.(53). Finally, we

obtain eq.(54) using the statistical properties of Wt.�
Λ33

t−1 is zero if no maneuver occurs. Concerning the initialization, Γ 33
0 can be expressed using the first moments:

Γ33
0 = ΦEr2

0

⎛
⎜⎜⎜⎝

1

E
ṙ0
r0

Eβ̇2
0 + E

ṙ2
0

r2
0

⎞
⎟⎟⎟⎠ + Λ33

−1 . (55)

Eq.(55) is obtained by applying the Cartesian-to-LPC mapping function given by eq.(8) to eq.(53) with t = 0 and

prop.7. The algorithm is summed up in fig.4 and will be illustrated by simulation results in the following section.

6 Simulations

We have shown in the section IV that under assumption 2, the PCRB has a closed-form. We have presented the

algorithm in fig.2. The aim of this section is double. First, we show that these original formulas are valid and allow to

compute accurately the PCRB without high computation load. Second, this bound can be used for optimal scheduling

of active measurements in a sensor management context.

To check formulas, the closed-form PCRB is compared with the classical one using two scenarios. In the first

one, the observer goes straight line while in the second one, the observer maneuvers. For the sake of completeness,
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all the constants involved in the two scenarios are presented in tab.3. For these two scenarios, the standard deviation

of the process noise in the state equation σmax is fixed to 0.05 ms−1 so that target trajectory strongly departs from a

straight line. The classical PCRB algorithm is reminded in fig.3 (the sample size to approximate D 11
t , D12

t , D22
t and

D21
t by Monte-Carlo methods is 1000). For all the algorithms, the initial FIM inverse is computed using the initial

error covariance matrix. The latter is computed using Monte-Carlo methods. More precisely, N initial target states

in LPC, noted {Y (i)
0 }i∈{1,... ,N}, are sampled by using the initial range, bearing and speed standard deviations which

are respectively set to σr0 = 2 km, σβ0 = 0.05 rad (about 3 deg.) and σs = 1 ms−1. Then, we obtain J−1
0 using the

following approximation:

J−1
0 ≈ E {(Y0 − E {Y0})∗(Y0 − E {Y0})} ≈ 1

N

N∑
i=1

(Y (i)
0 − Y0)∗(Y

(i)
0 − Y0) (56)

The first scenario is presented in fig. 5. An example of trajectory is presented in fig. 5(a1), while the set of bearing

measurements is presented in Fig. 5(b1). Fig. 6 presents the comparison of PCRB obtained by the algorithms given

fig.2 and fig.3 for the four components of the target state. The closed-formed PCRB and the classical one produce the

same results which verify formulas. Moreover, the computation load difference between the two methods is important.

The approximated PCRB takes about 600 seconds when closed-form PCRB takes about 3 seconds. Now looking at

ln rt’s bound given fig. 6.b , it is a bit surprising to see that the two PCRBs decrease while r t is weakly observable.

The fact is that ln rt is not a meaningful component such that the bound given fig. 6.b for ECM ln rt (i.e. the error

covariance matrix related to ln rt) is not intuitive. A bound for ECMrt (i.e. the error covariance matrix related to r t)

would be more meaningful. Using a Taylor series, we can demonstrate that:

ECMrt ≈ e2E(ln rt)ECMln rt (57)

so that

ECMrt ≥ e2E(ln rt)FIMln rt . (58)

Consequently, we can use the PCRB related to ln rt to derive a bound for the error covariance matrix related to r t. The

problem is that E(ln rt) is generally weakly observable. We have computed in fig. 9 the bound given by eq.(58) using

the true rt. We can see that the bound increases over time which matches theoretical observability results.

In the second scenario, the closed-form PCRB is checked when maneuvering terms appear. We consider that the

observer follows a leg-by-leg trajectory. Its velocity vector is constant on each leg:

1500 ≤ t ≤ 4500

⎛
⎝ vobs

x (t)

vobs
y (t)

⎞
⎠ =

⎛
⎝ 4 ms−1

12 ms−1

⎞
⎠ , 4500 ≤ t ≤ end

⎛
⎝ vobs

x (t)

vobs
y (t)

⎞
⎠ =

⎛
⎝ 8 ms−1

−7 ms−1

⎞
⎠ . (59)

An example of trajectory for the second scenario is presented in fig. 5(a2), while the set of bearing measurements is

presented in fig. 5(b2). Fig. 7 presents a comparison of PCRB obtained by the algorithms given in fig.2 and fig.3. We

obtain the same results. Then the closed-form PCRB is valid in the maneuvering case. As for the previous scenario,

we compute the bound given by eq.(58) which is given by fig. 10. As expected, the PCRB dramatically decreases

when the observer maneuvers at time periods 1500 and 4500.
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Consequently, we can now compute the PCRB accurately and quickly, making it suitable for sensor management

applications. We have proposed in section V an algorithm given by fig.4 which calculates the closed-form PCRB for

active measurement scheduling application. Fig. 8 presents a comparison based on the first scenario of the closed-form

PCRB with active measurements produced every 80 seconds with the closed-form when no active measurements are

produced. In simulations, The range standard deviation is set to σ r = 100 m. As we can see in fig. 8.b. ln rt bound

falls when the sensor produces a range measurement. Fig. 11 presented the related bounds for r t given by eq.(58).

7 Conclusion

Along this paper, an innovative analysis of the PCRB in the bearings-only context has been presented. In particular,

strong results were shown with regards to the PCRB calculation; namely we derived an original closed-form PCRB.

This powerful result, asserted by various simulations, cascades down from an original frame that consists in a new

coordinates system: the Logarithmic Polar Coordinates system. Computing the PCRB then becomes an accurate and

time-varying technique of particular interest for real-time sensor management issues.

Appendix A: About the bias

Bias definition as given by eq.(12) may appear surprising at first. A more natural definition could be E{ Ŷ0:t − Y0:t}
where Ŷ0:t is an estimator of Y0:t, function of Z1:t. This is this point of view we are now going to enlighten through a

decomposition of the mean square error related to the estimation of Y 0:t. When estimating a deterministic parameter,

the mean square error can be classically decomposed in estimation variance and bias. However, in the stochastic case,

using eq.(10), we only have the following relation:

ECM0:t =
∥∥∥Y0:t − E

{
Ŷ0:t

∣∣∣Y0:t

}∥∥∥2

+
∥∥∥E

{
Ŷ0:t

∣∣∣Y0:t

}
− Ŷ0:t

∥∥∥2

. (60)

The mean square error is then equal to the covariance estimation error if and only if∥∥∥Y0:t − E

{
Ŷ0:t

∣∣∣Y0:t

}∥∥∥2

= 0 . (61)

Assumption (61) is equivalent to:

E

{
Y0:t − Ŷ0:t

∣∣∣Y0:t

}
= 0, for almost Y0:t . (62)

which is the retained definition of an unbiased estimator.

Appendix B: Proof of proposition 3

Proposition 3 is adapted from proposition 2 to BOT context. More precisely, proposition 3 gives a more simple formula

for C0:t. The idea of proof is to study this term. Looking at eq.(22) in proposition 1 proof, each n y × ny-matrix term

of C0:t can be rewritten:

C0:t(k, l) = Idny×nyδk=l +
∫

Θ(k, l)d(Z1:t, Y
−{l}
0:t ) ,
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where

Θ(k, l) =
[
(Ŷk − Yk)p(Z1:t, Y0:t)

]Y+
l

Y−
l

. (63)

Remark that Y−l and Y+
l are ny-vectors, so that Θ(k, l) is a ny × ny-matrix (notation [ ]Y

+
l

Y−
l

defined in eq.(20). First,

let us rewrite Θ(k, l) using the statistical property of stochastic system (9). The idea is to use the following relation:

p(Z1:t, Y0:t) =
t∏

j=1

{p(Zj |Yj)p(Yj |Yj−1)} p(Y0) , (64)

which is true under two assumptions. First, the measurement at time t depends only on the target state at time t.

Second, {Yt}t∈N is a Markovian process. These two assumptions are easily deduced from the formulation of the BOT

problem given by eq.(9). Then using eq.(64), eq.(63) is equivalent to :

Θ(k, l) =

⎡
⎣(Ŷk − Yk)

t∏
j=1

{p(Zj|Yj)(Yj |Yj−1)} p(Y0)

⎤
⎦Y

+
l

Y−
l

. (65)

Now, one can see that some terms in eq.(65) do not depend on Y l so that they can be factorized. Then we obtain:

Θ(k, l) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

θ(k, l)p(Zl+1:t, Yl+2:t|Yl+1), if l = 0 ,

θ(k, l)p(Zl+1:t, Yl+2:t|Yl+1)p(Yl−1), if l = 1 ,

θ(k, l)p(Zl+1:t, Yl+2:t|Yl+1)p(Z1:l−1, Y0:l−1), if 1 < l < t ,

θ(k, l)p(Z1:l−1, Y0:l−1), if l = t

where:

θ(k, l) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
(Ŷk − Yk)p(Yl+1|Yl)p(Yl)

]Y+
l

Y−
l

, if l = 0 ,[
(Ŷk − Yk)p(Zl|Yl)p(Yl+1|Yl)p(Yl|Yl−1)

]Y+
l

Y−
l

, if 0 < l < t ,[
(Ŷk − Yk)p(Zl|Yl)p(Yl|Yl−1)

]Y+
l

Y−
l

, if l = t.

(66)

We are thus reduced to calculate θ(k, l). Thus, the following limits must be studied:

lim
Yl→Y+

l

p(Yl|Yl−1) , lim
Yl→Y−

l

p(Yl|Yl−1) , lim
Yl→Y+

l

p(Yl+1|Yl) , lim
Yl→Y−

l

p(Yl+1|Yl) , (67)

lim
Yl→Y+

l

p(Zl|Yl) , lim
Yl→Y−

l

p(Zl|Yl).

To study the first four limits, p(Yl+1|Yl) derived in Appendix B1 is needed:

p(Yt+1|Yt) = r4
t+1p(Xt+1|Xt)α(Yt) ,

where: ⎧⎨
⎩ p(Xt+1|Xt) = 1

4π2
√

det(Q)
e−

1
2 ‖Xt+1−AXt−HUt‖2Q ,

α(Yt) = P(ry(l) > 0|Yl)11{ry(l)>0} + P(ry(l) < 0|Yl)11{ry(l)<0} .
(68)

Irisa



We can notice that in eq.(68), p(Xt+1|Xt) is just the PDF of the diffusion process given by eq.(3). The PDF of Y t+1

given Yt is less simple than in Cartesian coordinates system because we do not have a direct bijection between the two

coordinates systems.

Now let us remark that Yl takes its values in ] − π
2 , π

2 [×R
3 so that Y−l =

[
−π

2 ,−∞,−∞,−∞
]

and Y+
l =[

π
2 , +∞, +∞, +∞

]
. According to eq.(57), we must study limYl→Y−

l
p(Xt+1|Xt) and limYl→Y+

l
p(Xt+1|Xt) to de-

rive the first four limits of eq.(67). Using f c
lp definition given by eq.(7), we can obtain limYl→Y−

l
Xt and limYl→Y+

l
Xt

via limYl→Y−
l

f c
lp(Yl) and limYl→Y+

l
f c

lp(Yl) and finally derive:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

limYl→Y−
l

p(Xt|Xt−1) =
[
p(Xt|Xt−1)

∣∣∣
βl=−π

2

0 0 0
]

,

limYl→Y+
l

p(Xt|Xt−1) =
[
p(Xt|Xt−1)

∣∣∣
βl=

π
2

0 0 0
]

,

limYl→Y−
l

p(Xt+1|Xt) =
[
p(Xt+1|Xt)

∣∣∣
βl=−π

2

0 0 0
]

,

limYl→Y+
l

p(Xt+1|Xt) =
[
p(Xt+1|Xt)

∣∣∣
βl=

π
2

0 0 0
]

.

(69)

Now using eq.(69) and notice that P(ry(l) > 0|Yl) and P(ry(l) < 0|Yl) are bounded functions, we obtain:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

limYl→Y+
l

p(Yl|Yl−1) =
[

p(Yl|Yl−1)
∣∣∣
βl=

π
2

0 0 0
]

,

limYl→Y−
l

p(Yl|Yl−1) =
[

p(Yl|Yl−1)
∣∣∣
βl=−π

2

0 0 0
]

,

limYl→Y+
l

p(Yl+1|Yl) =
[

p(Yl+1|Yl)
∣∣∣
βl=

π
2

0 0 0
]

,

limYl→Y−
l

p(Yl+1|Yl) =
[

p(Yl+1|Yl)
∣∣∣
βl=−π

2

0 0 0
]

.

(70)

We have studied the four first limits of eq.(67). Now, let us turn toward the two last ones. The PDF of Z l given Yl is

derived in Appendix B2:

p(Zl|Yl) =
1√

2πσβ

(
e
− (Zl−βl)

2

2σ2
v + e

− (Zl−βl−π)2

2σ2
v + e

− (Zl−βl+π)2

2σ2
v

)
11−π

2 <Zt<
π
2

. (71)

We deduce from eq.(71) that:⎧⎪⎪⎨
⎪⎪⎩

limYl→Y+
l

p(Zl|Yl) =
[

p(Zl|βl)
∣∣∣
βl=

π
2

p(Zl|βl) p(Zl|βl) p(Zl|βl)
]

,

limYl→Y−
l

p(Zl|Yl) =
[

p(Zl|βl)
∣∣∣
βl=−π

2

p(Zl|βl) p(Zl|βl) p(Zl|βl)
]

.
(72)

Using limits given by eq.(70) and eq.(72), θ(k, l) given by eq.(67) can be rewritten:

θ(k, l) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[[
(Ŷk − Yk)p(Yl+1|Yl)p(Yl)

] π
2

−π
2

0ny×(ny−1)

]
if l = 0,[[

(Ŷk − Yk)p(Zl|Yl)p(Yl+1|Yl)p(Yl|Yl−1)
]π

2

−π
2

0ny×(ny−1)

]
if 1 < l < t,[[

(Ŷk − Yk)p(Zl|Yl)p(Yl|Yl−1)
] π

2

−π
2

0ny×(ny−1)

]
if l = t.

(73)

Consequently, lots of terms in θ(k, l) are equal to zero without any technical assumption. The problem is now to study

more precisely the first column of θ(k, l). The following result assure a more simple formulation for this column.

PI n ˚ 1701



Lemma 2 For a filtering problem given by eq.(9)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

limβl→−π
2

p(Zl|Yl) ≈ limβl→π
2

p(Zl|Yl) ,

limβl→−π
2

p(Yl|Yl−1) = limβl→π
2

p(Yl|Yl−1) ,

limβl→−π
2

p(Yl+1|Yl) = limβl→π
2

p(Yl+1|Yl).

(74)

Lemma 2 is proved in Appendix B3. Using previous lemma, θ(k, l) formula given by eq.(73) becomes:

θ(k, l) = δ{k=l}

⎡
⎢⎢⎢⎢⎢⎢⎣

−πζ(l) 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

where:

ζ(l) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p(Yl+1|Yl)p(Yl)
∣∣∣
βl=

π
2

if l = 0 ,

p(Zl|Yl)p(Yl+1|Yl)p(Yl|Yl−1)
∣∣∣
βl=

π
2

if 0 < l < t ,

p(Z1:t, Y0:t)
∣∣∣
βl=

π
2

if l = t .

(75)

Incorporating θ(k, l) new formula given by eq.(75) in Θ(k, l) formulation given by eq.(66), yields:

Θ(k, l) = δ{k=l}

⎡
⎢⎢⎢⎢⎢⎢⎣

−πp(Z1:t, Y0:t)
∣∣∣
βl=

π
2

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ (76)

Putting the new expression of Θ(k, l) given by eq.(76) in C 0:t formula given by eq.(63), we deduce that C0:t is a

diagonal matrix with diagonal element:

C0:t(l, l) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − πp(βl)
∣∣∣

π
2

0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦ . (77)

�

Appendix B1: A closed-form for for p(Yl+1|Yl).

The aim of this section is to derive the PDF of Yl+1 given Yl. The classical approach consists of proving that there

exists a function gYl
(.) such that:

P(Yl+1 ∈ A|Yl) =
∫

A

gYl
(yl+1)dλ(yl+1), ∀A ∈ B(] − π

2
,
π

2
[×R

3) (78)
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where B(] − π
2 , π

2 [×R
3) is the σ-algebra of Borel subsets of ] − π

2 , π
2 [×R

3 and λ(.) is Lebesgue measure. If this

property is true then gYl
(.) is the distribution density function of Y l+1 given Yl. To obtain this result we will use the

distribution density function of X l+1 given Xl. However, computation is not easy because there is no direct bijection

between Cartesian and LPC system. We only have eq.(7) and eq.(8). Then we have:

P(Yl+1 ∈ A|Yl) = P(f lp
c (Xl+1) ∈ A|Yl)

= P(f lp
c (Xl+1) ∈ A|Yl, {ry(l) > 0})P({ry(l) > 0}|Yl) (79)

+P(f lp
c (Xl+1) ∈ A|Yl, {ry(l) < 0})P({ry(l) < 0}|Yl) (80)

Then, using the PDF of Xl+1 given Xl and the Change of Variable Theorem, we obtain the PDF of Y l+1 given Yl:

p(Yl+1|Yl) = r4
l+1p(Xl+1|Xl)α(Yl)

with: ⎧⎨
⎩ p(Xl+1|Xl) = 1

4π2
√

det(Q)
e−

1
2‖Xl+1−AXl−HUl‖2Q ,

α(Yl) = 11{ry(l)>0}P({ry(l) > 0}|Yl) + 11{ry(l)<0}P({ry(l) < 0}|Yl) .
(81)

One can remark that the Jacobian term is r4
l+1 where rl+1 is the relative range at time t + 1. Moreover p(X l+1|Xl)

is the PDF of the diffusion process given by eq.(3). This term can be rewritten as function of Y l and Yl+1 using

Cartesian-to-LPC state mapping function given by eq.(7).

Appendix B2: A closed-form for p(Zl|Yl).

The aim of this section is to derive the PDF of Zl given Yl. To obtain this result we will use eq.(9). Let us remind that:

Zl =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

βl + Vl + π if βt + Vl < −π
2 ,

βl + Vl if −π
2 < βt + Vl < π

2 ,

βl + Vl − π if π
2 < βt + Vl .

(82)

Then the PDF of Zl given Yl is:

p(Zl|Yl) =
1√

2πσβ

(
e
− (Zl−βl)

2

2σ2
β + e

− (Zl−βl−π)2

2σ2
β + e

− (Zl−βl+π)2

2σ2
β

)
11−π

2 <Zt< π
2

. (83)

We can see examples of PDF of Zl given Yl in fig.1.

Appendix B3: lemma 2 proof

First relation of lemma 2

Using p(Zl|Yl) definition given by eq.(83), we can remark the second relation of lemma 2 is satisfied if⎧⎪⎪⎨
⎪⎪⎩

e
− (Zl− 3π

2 )2

2σ2
β ≈ 0 ,

e
− (Zl+

3π
2 )2

2σ2
β ≈ 0 ,

∀Zl ∈] − π

2
,
π

2
[ . (84)
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We can see easily that this assumption is equivalent to e
− 2π2

σ2
β ≈ 0, so that the first relation of lemma 2 is true if σβ is

not too large.

Second relation of lemma 2

Looking at eq.(81), we can see that we have just to prove that:

lim
βl→−π

2

p(Xl|Xl−1) = lim
βl→π

2

p(Xl|Xl−1) . (85)

Then we need to express Xl as a function which depends on Yl. Using eq.(7), we obtain:⎧⎨
⎩ limβl→−π

2
p(Xl|Xl−1) = limβl→−π

2
p(f c

lp(Yl)|Xl−1)11ry(l)>0 + limβl→−π
2

p(−f c
lp(Yl)|Xl−1)11ry(l)<0 ,

limβl→ π
2

p(Xl|Xl−1) = limβl→π
2

p(f c
lp(Yl)|Xl−1)11ry(l)>0 + limβl→π

2
p(−f c

lp(Yl)|Xl−1)11ry(l)<0 .
(86)

Now if we note

X
π
2

l =
[
rl 0 rl

ṙl

rl
−rlβ̇l

]∗
, (87)

we finally obtain ⎧⎨
⎩ limβl→−π

2
p(Xl|Xl−1) = p(X

π
2

l |Xl−1) + p(−X
π
2
l |Xl−1) ,

limβl→π
2

p(Xl|Xl−1) = p(−X
π
2

l |Xl−1) + p(X
π
2

l |Xl−1) ,
(88)

so that the second relation of lemma 2 is true.

Third relation of lemma 2

Looking at eq.(81), we can see that we have to prove that:

lim
βl→−π

2

p(Xl+1|Xl)α(Yl) = lim
βl→π

2

p(Xl+1|Xl)α(Yl) . (89)

The proof is a little bit more difficult because we need to study α(Y l) limit. First let us remark that α(Yt) definition

given by eq.(81) can rewritten as:

α(Yt) = P(ry(l) > 0||ry(l)|)11{ry(l)>0} + P(ry(l) < 0||ry(l)|)11{ry(l)<0} . (90)

Now to study α(Yl) limit, we need the following lemma.

Lemma 3 For X a scalar random variate⎧⎨
⎩ P

(
X > 0

∣∣∣|X | = x
)

= pX (x)
pX(x)+pX (−x) ,

P

(
X < 0

∣∣∣|X | = x
)

= pX (−x)
pX(x)+pX (−x)

(91)

where pX is the PDF of X .
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Lemma 3 proof First let us remark that for a positive ε, we can write:

P

(
X > 0

∣∣∣|X | ∈ [x − ε, x + ε]
)

=

∫ x+ε

x−ε
pX(x)dx∫ x+ε

x−ε
pX(x)dx +

∫ −x+ε

−x−ε
pX(x)dx

(92)

so that

M−
ε ≤ P

(
X > 0

∣∣∣|X | ∈ [x − ε, x + ε]
)
≤ M+

ε

with ⎧⎨
⎩ M−

ε = inf[x−ε,x+ε] pX (x)

sup[x−ε,x+ε] pX (x)+sup[−x−ε,−x+ε] pX (x) ,

M+
ε =

sup[x−ε,x+ε] pX (x)

inf[x−ε,x+ε] pX (x)+inf[−x−ε,−x+ε] pX(x) .
(93)

Then let ε converge to zero so that the first relation of the lemma is proved. The second relation is straight forward. �
Applying lemma 3 with X = ry(l) and finally remarking that limβl→−π

2
ry(l) = limβl→π

2
ry(l) = 0, we obtain:

lim
βl→−π

2

α(Yt) = lim
βl→π

2

α(Yt) =
1
2

(94)

so that ⎧⎨
⎩ limβl→−π

2
p(Xl+1|Xl)α(Yl) = 1

2p(Xl+1| − X
π
2

l ) + 1
2p(Xl+1|X

π
2

l ) ,

limβl→π
2

p(Xl|Xl−1)α(Yl) = 1
2p(Xl+1|X

π
2

l ) + 1
2p(Xl+1| − X

π
2

l )
(95)

with X
π
2

l defined by eq.(87). The third relation of lemma is proven.

Appendix C: Properties of operators F and G

Operators F and G are defined by eq.(34). Before investigating the properties of such operators, let us remark that

these operators can be rewritten using direct tensor product. First, let us study F Xt which represents the derivative of

the LPC to Cartesian mapping w.r.t. state in LPC. Using eq.(7), we have:

FXt = ∇Yt{Xt} =

⎧⎨
⎩ ∇Ytf

c
lp(Yt) if ry(t) > 0 ,

−∇Ytf
c
lp(Yt) if ry(t) < 0 .

(96)

Using now f c
lp definition given by eq.(7) , we have:

∇Ytf
c
lp(Yt) = rt

⎡
⎢⎢⎢⎢⎢⎢⎣

cosβt − sinβt 0 0

sin βt cosβt 0 0
ṙt

rt
cosβt − β̇t sin βt − ṙt

rt
sin βt − β̇t cosβt cosβt − sinβt

ṙt

rt
sinβt + β̇t cosβt

ṙt

rt
cosβt − β̇t sin βt sin βt cosβt

⎤
⎥⎥⎥⎥⎥⎥⎦ . (97)

We can notice the block structure of∇Ytf
c
lp(Yt). Then using eq.(96) and eq.(97), FXt can be rewritten using Kronecker

products, so that eq.(34) can be rewritten as:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

FXt = Id2×2 ⊗ RXt +

⎡
⎣ 0 0

1 0

⎤
⎦⊗ VXt ,

GXt = Id2×2 ⊗ VXt
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where:

RXt =

⎡
⎣ ry(t) −rx(t)

rx(t) ry(t)

⎤
⎦ and VXt =

⎡
⎣ vy(t) −vx(t)

vx(t) vy(t)

⎤
⎦ . (98)

Now let us detail the basic properties of F. and G. operators.

Property 1 G. and F. are linear operators i.e. let Xt and X̃t to state vector, then FXt+X̃t
= FXt + FX̃t

and

GXt+X̃t
= GXt + GX̃t

.

Property 2 Reminding that A =

⎡
⎣ 1 δt

0 1

⎤
⎦⊗ Id2×2, terms GAkXt

and FAkXt
stand as follows:

⎧⎨
⎩ FAkXt

= FXt + kδtGXt ,

GAkXt
= GXt .

(99)

Proofs are omitted.

Appendix D: Closed-forms for D11
t , D12

t and D22
t and D33

t

We show in this section that eq.(29) can be rewritten as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D11
t = E

{
F ∗Xt

A∗Q−1AFXt

}
,

D12
t = −E

{
F ∗Xt

A∗Q−1FAXt

}− Υ12
t ,

D22
t = E

{
F ∗AXt

Q−1FAXt

}
+ C + Υ22

t ,

D33
t =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
σ2

β
0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

(100)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Υ12
t = F ∗

EXt
A∗Q−1FEXt+1 − F ∗

EXt
A∗Q−1FAEXt ,

Υ22
t = F ∗

EXt+1
Q−1FEXt+1 − F ∗AEXt

Q−1FAEXt ,

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

C1 0 0 0

0 16 + C1 0 C3

0 0 C2 0

0 C3 0 C2

⎞
⎟⎟⎟⎟⎟⎟⎠

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C1 = 576α2
3

δ6
t

+ 672α2
2

δ4
t

+ 64α2
1

δ2
t

− 1152α3α2
δ5

t
+ 288α3α1

δ4
t

− 384α2α1
δ3

t
,

C2 = 144α2
3

δ4
t

+ 32α2
2

δ2
t

− 192α3α2
δ3

t
+ 32α3α1

δ2
t

,

C3 = − 288α2
3

δ5
t

− 192α2
2

δ3
t

+ 480α3α2
δ4

t
− 96α3α1

δ3
t

+ 64α2α1
δ2

t
.

(101)
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Considering at D11
t , D12

t and D22
t and D33

t formulas given by eq.(29), it is necessary to derive p(Y t+1|Yt) and

p(Zt|Yt). According to Appendix B1 and B2:⎧⎪⎪⎨
⎪⎪⎩

p(Yt+1|Yt) = r4
t+1p(Xt+1|Xt)α(Yt) ,

p(Zt|Yt) = 1√
2πσβ

(
e
− (Zl−βl)

2

2σ2
β + e

− (Zl−βl−π)2

2σ2
β + e

− (Zl−βl+π)2

2σ2
β

)
11−π

2 <Zt< π
2
.

(102)

More precisely, according to eq.(29), we need ∇Yt ln p(Yt+1|Yt), ∇Yt+1 ln p(Yt+1|Yt) and ∇Yt ln p(Zt|Yt). Using

p(Yt+1|Yt) as given by eq.(102) and remarking that ∇Ytα(Yt) = 0, we obtain:⎧⎨
⎩ ∇Ytp(Yt+1|Yt) = −r4

t+1F
∗
Xt

A∗Q−1(Xt+1 − AXt − HUt)p(Xt+1|Xt)α(Yt) ,

∇Yt+1p(Yt+1|Yt) = r4
t+1

(
F ∗Xt+1

Q−1(Xt+1 − AXt − HUt) +
[
0 4 0 0

]∗)
p(Xt+1|Xt)α(Yt)

(103)

where FXt is defined by eq.(34). Then, using eq.(102) and eq.(103), we obtain:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇Yt ln p(Yt+1|Yt) = F ∗Xt
A∗Q−1(Xt+1 − AXt − HUt) ,

∇Yt+1 ln p(Yt+1|Yt) = −F ∗Xt+1
Q−1(Xt+1 − AXt − HUt) −

[
0 4 0 0

]∗
,

∇Yt ln p(Zt|Yt) =
[

Zt−βt−π11 π
2 <Zt−βt< 3π

2
+π11− 3π

2 <Zt−βt<− π
2

σ2
β

0 0 0
]∗

.

(104)

Incorporating ∇Yt ln p(Zt|Yt) given by (104) in eq.(29) and using the statistical properties of Z t given Yt, we obtain

D33
t formula given eq.(101) . Otherwise, incorporating ∇Yt ln p(Yt+1|Yt), ∇Yt+1 ln p(Yt+1|Yt) given by (104) in

eq.(29), we obtain:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D11
t = E

{
F ∗Xt

A∗Q−1(Xt+1 − AXt − HUt)(Xt+1 − AXt − HUt)∗Q−1AFXt

}
,

D12
t = −E

{
F ∗Xt

A∗Q−1(Xt+1 − AXt − HUt)(Xt+1 − AXt − HUt)∗Q−1FXt+1

}
,

D22
t = E

{
F ∗Xt+1

Q−1(Xt+1 − AXt − HUt)(Xt+1 − AXt − HUt)∗Q−1FXt+1

}
+ E

{
F ∗Xt+1

Q−1(Xt+1 − AXt − HUt)
}[

0 4 0 0
]

+
[
0 4 0 0

]∗
E
{
(Xt+1 − AXt − HUt)∗Q−1FXt+1

}
.

(105)

Now, we are dealing with the calculation of each elementary term of eq.(105) separately.

D11
t formula

Let us rewrite D11
t as given by eq.(105), we have:

D11
t = E

{
F ∗Xt

A∗Q−1(Xt+1 − AXt − HUt)(Xt+1 − AXt − HUt)∗Q−1AFXt

}
,

= E{F ∗Xt
A∗Q−1

E {(Xt+1 − AXt − HUt)(Xt+1 − AXt − HUt)∗|Xt}︸ ︷︷ ︸
= Q

Q−1AFXt} . (106)

Then using the statistical property of Xt+1 given Xt i.e. N (AXt + HUt, Q) given by eq.(3), we obtain D11
t formula

as given by eq.(101).
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D12
t formula

Our aim is now to render explicit D12
t given by eq.(105). Let us first use the linear property of F .:

D12
t = −

= 0︷ ︸︸ ︷
E
{
F ∗Xt

A∗Q−1(Xt+1 − AXt − HUt)(Xt+1 − AXt − HUt)∗Q−1FXt+1−AXt−HUt

}
− E

{
F ∗Xt

A∗Q−1(Xt+1 − AXt − HUt)(Xt+1 − AXt − HUt)∗Q−1FAXt+HUt

}
. (107)

Using the statistical property of Xt+1 i.e Xt+1 given Xt is a N (AXt + HUt, Q), we obtain:

D12
t = −E

{
F ∗Xt

A∗Q−1FAXt

}− F ∗
EXt

A∗Q−1FHUt . (108)

Now remarking that HUt = EXt+1−Xt and the linearity of operator F , we obtain D 12
t expression given by eq.(101).

D22
t formula

Starting from D22
t given by eq.(105) and using again the linearity of F .:

D22
t =

= 0︷ ︸︸ ︷
E
{
F ∗AXt+HUt

Q−1(Xt+1 − AXt − HUt)(Xt+1 − AXt − HUt)∗Q−1FXt+1−AXt−HUt

}
,

+ E
{
F ∗AXt+HUt

Q−1(Xt+1 − AXt − HUt)(Xt+1 − AXt − HUt)∗Q−1FAXt+HUt

}
+ C (109)

with:

C = E{F ∗Xt+1−AXt−HUt
Q−1(Xt+1 − AXt − HUt)(Xt+1 − AXt − HUt)∗Q−1FXt+1−AXt−HUt} ,

+ E{F ∗Xt+1−AXt−HUt
Q−1(Xt+1 − AXt − HUt)}

(
0 4 0 0

)
,

+ E{
(
0 4 0 0

)∗
E(Xt+1 − AXt − HUt)∗Q−1FXt+1−AXt−HUt} ,

+
(
0 4 0 0

)∗ (
0 4 0 0

)
.

Let us notice that we can show using F definition given by eq.(34) and the statistical property of X t+1 ( i.e. Xt+1

given Xt is N (AXt + HUt, Q) distributed) that the C definition given by eq.(110) is equivalent to the C definition

given by eq.(101). Now, using again the statistical property of X t+1, we obtain:

D22
t = E

{
F ∗AXt+HUt

Q−1(Xt+1 − AXt − HUt)(Xt+1 − AXt − HUt)∗Q−1FAXt+HUt

}
+ C . (110)

To end the proof, the linearity of the operator F and the equality HU t = EXt+1 −Xt allow us to infer eq.(101) from

eq.(110).
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Appendix E1: Proof of proposition 6.1

The proof of proposition 6.1 is based on the properties of F Xt and GXt investigated in Appendix C. Developing Γ11
t

given by eq.(36) and using the linearity of operator F , we obtain

Γ11
t = Ω11 +

⎛
⎜⎜⎜⎜⎜⎜⎝

E

{
F ∗(AXt−1+HUt−1)A

∗Q−1AF(AXt−1+HUt−1)

}
E

{
F ∗(AXt−1+HUt−1)A

∗Q−1AG(AXt−1+HUt−1)

}
E

{
G∗(AXt−1+HUt−1)A

∗Q−1AF(AXt−1+HUt−1)

}
E

{
G∗(AXt−1+HUt−1)A

∗Q−1AG(AXt−1+HUt−1)

}

⎞
⎟⎟⎟⎟⎟⎟⎠

where

Ω11 =

⎛
⎜⎜⎜⎜⎜⎜⎝

E

{
F ∗(Xt−AXt−1−HUt−1)A

∗Q−1AF(Xt−AXt−1−HUt−1)

}
E

{
F ∗(Xt−AXt−1−HUt−1)A

∗Q−1AG(Xt−AXt−1−HUt−1)

}
E

{
G∗(Xt−AXt−1−HUt−1)A

∗Q−1AF(Xt−AXt−1−HUt−1)

}
E

{
G∗(Xt−AXt−1−HUt−1)A

∗Q−1AG(Xt−AXt−1−HUt−1)

}

⎞
⎟⎟⎟⎟⎟⎟⎠ . (111)

Now remarking that HUt−1 = EXt − AEXt−1 and using linear property of operator F , we obtain:

Γ11
t = Ω11 +

⎛
⎜⎜⎜⎜⎜⎜⎝

E

{
F ∗AXt−1

A∗Q−1AFAXt−1

}
E

{
F ∗AXt−1

A∗Q−1AGAXt−1

}
E

{
G∗AXt−1

A∗Q−1AFAXt−1

}
E

{
G∗AXt−1

A∗Q−1AGAXt−1

}

⎞
⎟⎟⎟⎟⎟⎟⎠ + Λ11

t−1 (112)

where Λ11
t−1 is defined by eq.(37). According to Appendix C, FAXt−1 = FXt−1 + δtGXt−1 and GAXt−1 = GXt−1 ,

so that:

Γ11
t = Ω11 + Ψ Γ11

t−1 + Λ11
t−1 (113)

where Ψ is defined by eq.(37). It remains to show that Ω11 has a more simple formula using the following lemma:

Lemma 4 For X and Y two state vectors, let us define

Θ =

⎛
⎜⎜⎜⎜⎜⎜⎝

E (F ∗X(Σ ⊗ Id2×2)FY )

E (F ∗X(Σ ⊗ Id2×2)GY )

E (G∗X(Σ ⊗ Id2×2)FY )

E (G∗X(Σ ⊗ Id2×2)GY )

⎞
⎟⎟⎟⎟⎟⎟⎠ (114)

where operators F and G are defined by eq.(34). Then

Θ =

⎛
⎜⎜⎜⎜⎜⎜⎝

Σ ⊗ E {R∗XRY } + Σ↖ ⊗ E {V ∗XVY } + Σ↓ ⊗ E {V ∗XRY } + Σ↑ ⊗ E {R∗XVY }
Σ↑ ⊗ E {V ∗XVY } + Σ ⊗ E {R∗XVY }
Σ← ⊗ E {V ∗XVY } + Σ ⊗ E {V ∗XRY }

Σ ⊗ E {V ∗XVY }

⎞
⎟⎟⎟⎟⎟⎟⎠
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where:

Σ↑ =

⎡
⎣ 0 1

0 0

⎤
⎦Σ , Σ← = Σ

⎡
⎣ 0 0

1 0

⎤
⎦ , Σ↖ =

⎡
⎣ 0 1

0 0

⎤
⎦Σ

⎡
⎣ 0 0

1 0

⎤
⎦ . (115)

Proof of lemma 4 We just have to rewrite eq.(114) using F and G formulas given by eq.(34). We prove lemma 4

using direct tensor product properties. �
To end the proof, Lemma 4 is applied with:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
X = Xt − AXt−1 − HUt−1 ,

Y = Xt − AXt−1 − HUt−1 ,

Σ ⊗ Id2×2 = A∗Q−1A .

(116)

Then, using the statistical property of Xt i.e Xt given Xt−1 is N (AXt−1 + HUt−1, Q)-distributed, we obtain:⎧⎨
⎩ E {R∗XRY } = 2α3Id2×2 , E {R∗XVY } = 2α2Id2×2 ,

E {V ∗XRY } = 2α2Id2×2 , E {V ∗XVY } = 2α1Id2×2

(117)

so that Ω11 is given by eq.(37).

Appendix E2: Proof of proposition 6.2

Using the same approach as in proposition 6.1 proof, we have:

Γ12
t = Ω12 + Ψ Γ12(t − 1) + Λ12

t−1

where Ψ and Λ12
t−1 given by eq.(37) and eq.(45) and

Ω12 =

⎛
⎜⎜⎜⎜⎜⎜⎝

E

{
F ∗(Xt−AXt−1−HUt−1)A

∗Q−1FA(Xt−AXt−1−HUt−1)

}
E

{
F ∗(Xt−AXt−1−HUt−1)A

∗Q−1GA(Xt−AXt−1−HUt−1)

}
E

{
G∗(Xt−AXt−1−HUt−1)A

∗Q−1FA(Xt−AXt−1−HUt−1)

}
E

{
G∗(Xt−AXt−1−HUt−1)A

∗Q−1GA(Xt−AXt−1−HUt−1)

}

⎞
⎟⎟⎟⎟⎟⎟⎠ . (118)

Lemma 4 is again the key for simplifying Ω12, and is used with:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X = Xt − AXt−1 − HUt−1 ,

Y = A(Xt − AXt−1 − HUt−1) ,

Σ ⊗ Id2×2 = A∗Q−1 .

(119)

Now, using the statistical property of Xt i.e Xt given Xt−1 is N (AXt−1 + HUt−1, Q)-distributed, we obtain for Ω12

the simple formula given by eq.(41). �

Irisa



Appendix E3: Proof of proposition 6.3

The proof again mimics that of proposition 6.1. Thus, we first obtain:

Γ22
t = Ω22 + Ψ Γ22

t−1 + Λ22
t ,

where Ψ and Λ22
t−1 given by eq.(37) and eq.(45), and:

Ω22 =

⎛
⎜⎜⎜⎜⎜⎜⎝

E

{
F ∗A(Xt−AXt−1−HUt−1)Q

−1FA(Xt−AXt−1−HUt−1)

}
E

{
F ∗A(Xt−AXt−1−HUt−1)Q

−1GA(Xt−AXt−1−HUt−1)

}
E

{
G∗A(Xt−AXt−1−HUt−1)Q

−1FA(Xt−AXt−1−HUt−1)

}
E

{
G∗A(Xt−AXt−1−HUt−1)Q

−1GA(Xt−AXt−1−HUt−1)

}

⎞
⎟⎟⎟⎟⎟⎟⎠ . (120)

We prove now that Ω22 has a more simple formula using lemma 4 with:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X = A(Xt − AXt−1 − HUt−1) ,

Y = A(Xt − AXt−1 − HUt−1) ,

Σ ⊗ Id2×2 = Q−1 .

(121)

Then, using the statistical property of Xt i.e Xt given Xt−1 is N (AXt−1 + HUt−1, Q)-distributed, we obtain for

Ω22 the formula given by eq.(45). �

Appendix F: Initialization

Initialization of Γ11
0

We apply lemma 4 with:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X = X0 ,

Y = X0 ,

Σ ⊗ Id2×2 = A∗Q−1A .

Initialization of Γ12
0

We apply lemma 4 with:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X = X0 ,

Y = AX0 ,

Σ ⊗ Id2×2 = A∗Q−1 .

Initialization of Γ22
0

We apply lemma 4 with:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X = AX0 ,

Y = AX0 ,

Σ ⊗ Id2×2 = Q−1 .
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• Initialization of J−1
0 using the initial error covariance matrix given by eq.(56).

• Initialization of Γ11
0 , Γ12

0 , Γ22
0 and Γ33

0 using eqs.(38,42,46,54).

• J−1
1 is calculated using only step 2 and 3 with t = 0.

• For t = 1 to T

1. Calculation of auxiliary matrices Γ11
t , Γ12

t , Γ22
t and Γ33

t

(a) Calculate Λ11
t−1, Λ12

t−1, Λ22
t−1 and Λ33

t−1 using eqs.(37,41,45) if observer maneuvers (else these

terms are null).

(b)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Γ11
t = Ω11 + Ψ Γ11

t−1 ( + Λ11
t−1 ) ,

Γ12
t = Ω12 + Ψ Γ12

t−1 ( + Λ12
t−1 ) ,

Γ22
t = Ω22 + Ψ Γ22

t−1 ( + Λ22
t−1 ) ,

Γ33
t = Ω33 + Φ Γ33

t−1 ( + Λ33
t−1 ) .

Remark : Ω11, Ω12, Ω22 and Ω33 are given by eqs.(37,41,45). Ψ and Φ are given by eq.(37) and eq.(53).

2. Calculation of D11
t , D12

t , D22
t , D33

t and D33
t

(a) If observer maneuvers, computeΥ12
t and Υ22

t using eq.(39) and eq.(43) (else these terms are null).

(b)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D11
t =

[
Idny×ny 0ny×3ny

]
Γ11

t ,

D12
t = −

[
Idny×ny 0ny×3ny

]
Γ12

t ( − Υ12
t ) ,

D22
t =

[
Idny×ny 0ny×3ny

]
Γ22

t + C ( + Υ22
t ) .

Remark : C is given by eq.(43) and D21
t is given by the relation D21

t =
�
D12

t

�∗
.

(c) Calculation of D33
t using eq.(47) (passive meas.).

(d) Calculation of D33
t is given by eq.(51) (active meas. + passive meas.)

Remark : Er2
t+1 is calculated by using eq.(53) and Γ33

t .

3. Calculate J−1
t+1 using Tichavský’s formula:

J−1
t+1 =

⎧⎪⎨
⎪⎩

(
D22

t + D33
t − D21

t

(
J−1

t + D11
t

)−1
D12

t

)−1

(passive meas.) ,(
D22

t + D33
t − D21

t

(
J−1

t + D11
t

)−1
D12

t

)−1

(active meas. + passive meas.)

Figure 4: Closed-form calculation of the PCRB for active measurements scheduling.

[30] M. Shakeri, K.R. Pattipati, and D.L. Kleinman. Optimal Measurements Scheduling for State Estimation. IEEE
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Scenario 1 Scenario 2

duration 6000 s 6000 s

robs
x (0) 3, 5 km 3, 5km

robs
y (0) 0 km 0 km

vobs
x (0) 10 ms−1 10 ms−1

vobs
y (0) −2 ms−1 −2 ms−1

rcib
x (0) 0 km 0 km

rcib
y (0) 3, 5 km 3, 5 km

vcib
x (0) 6 ms−1 6 ms−1

vcib
y (0) 3 ms−1 3 ms−1

δt 6 s 6 s

σmax 0.05 ms−1 0.05 ms−1

σβ 0.05 rad (about 3 deg.) 0.05 rad (about 3 deg.)

σr0 2 km 2 km

σv0 1 ms−1 1 ms−1

σβ0 0.05 rad (about 3 deg.) 0.05 rad (about 3 deg.)

Table 3: Scenarios Constants
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Figure 5: Scenario 1:(a1) example of trajectory of the target (solid line) and the observer (dashed line) (b1) set of

bearings measurements Scenario 2: (a2) example of trajectory of the target (solid line) and the observer (dashed)

(b2) set of bearings measurements

PI n ˚ 1701



0 1000 2000 3000 4000 5000 6000
0

0.005

0.01

0.015

0.02

0.025

0.03
beta

(a)

0 1000 2000 3000 4000 5000 6000
0

0.01

0.02

0.03

0.04

0.05

0.06
ln(r)

(b)

0 1000 2000 3000 4000 5000 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−4 dot(beta) 

(c)

0 1000 2000 3000 4000 5000 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−4 dot(r)/r 

(d)

Figure 6: PCRB for (a) βt, (b) ln rt,(c) β̇t, (d) ṙt

rt
with scenario 1: closed-form PCRB (dashed line) versus approxi-

mated PCRB (solid line)
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Figure 7: PCRB for (a) βt, (b) ln rt,(c) β̇t, (d) ṙt

rt
with scenario 2: closed-form PCRB (dashed line) versus approxi-

mated PCRB (solid line)

PI n ˚ 1701



0 1000 2000 3000 4000 5000 6000
0

0.005

0.01

0.015

0.02

0.025

0.03
beta

(a)

0 1000 2000 3000 4000 5000 6000
0

0.01

0.02

0.03

0.04

0.05

0.06
ln(r)

(b)

0 1000 2000 3000 4000 5000 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−4 dot(beta) 

(c)

0 1000 2000 3000 4000 5000 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−4 dot(r)/r 

(d)

Figure 8: Closed-form PCRB with range measurements each 80 seconds (solid line) versus closed-form PCRB (dashed

line). (a) βt, (b) ln rt,(c) β̇t, (d) ṙt

rt
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Figure 9: PCRB for rt with scenario 1: closed-form PCRB (dashed line) versus approximated PCRB (solid line)
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Figure 10: PCRB for scenario 2: closed-form PCRB for rt (dashed line) versus approximated PCRB for rt (solid line)
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Figure 11: Closed-form PCRB with range measurements each 80 seconds for r t (solid line) versus closed-form PCRB

for rt (dashed line)
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