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Abstract: We here address the classical bearings-only tracking problem (BOT) for a single object, which belongs
to the general class of nonlinear filtering problems. Recently, algorithms based on sequential Monte Carlo methods
(particle filtering) have been proposed. As far as performance analysis is concerned, the Posterior Cramér-Rao Bound
(PCRB) provides a lower bound on the mean square error. Classically, under a technical assumption named “asymp-
totic unbiasedness assumption”, the PCRB is given by the inverse Fisher Information Matrix (FIM). The latter is
computed using Tichavsky’s recursive formula via Monte Carlo methods. In this paper, two major problems are stud-
ied. First, we show that the ”asymptotic unbiasedness assumption” can be replaced by an assumption which is more
meaningful. Second, an exact algorithm to compute the PCRB is derived via Tichavsky’s recursive formula without
using Monte-Carlo methods. This result is based on a new coordinates system named Logarithmic Polar Coordinates
(LPC) system. Simulation results illustrate that PCRB can now be computed accurately and quickly, making it suitable

for sensor management applications.

Key-words:  bearings-only tracking, sequential Monte Carlo methods, posterior Cramér-Rao bound, performance
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Formule pour la borne de Cramér-Rao a posteriori dans le cadre du suivi par
mesure d’angles.

Résumé : Le suivi mono-cible par mesure d’angles appartient a la classe des problémes de filtrage non linéaires. Ce
probléme a été résolu récemment a I’aide de méthodes d’estimation séquentielles de type Monte Carlo. Concernant
I’analyse de performances, la borne de Cramér-Rao a posteriori (PCRB) fournit une borne inférieure pour la covari-
ance de I’erreur d’estimation. Classiquement, sous I’hypothése de biais asymptotique, la PCRB est I’inverse de la
matrice d’information de Fisher. Cette derniére est estimée I’aide de la formule Tichavsky, les termes inclus dans la
formule étant estimés a I’aide de simulations de type Monte Carlo. Dans cet article, deux problémes sont étudiés. Tout
d’abord, nous montrons que I’hypothése de biais asymptotique peut-étre remplacée par une hypothése ayant un sens
plus "physique”. Puis, nous montrons que la PCRB peut-étre calculée de maniére exacte via la formule de Tichavsky
sans avoir recours a des simulations. Ces deux résultats sont obtenus grace a un nouveau systéme de coordonnées
nommé coordonnées logarithmiques polaires. Des simulations illustrent le fait la PCRB peut désormais étre calculée

rapidement et de maniére exacte, la rendant ainsi utilisable pour des applications de type gestion de capteurs.

Mots clés : suivi par mesure d’angles, methodes séquentielles de Monte Carlo , borne de Cramér-Rao a posteriori,

analyse de performances, gestion de capteurs.



Notation

LP(C): Logarithmic Polar (Coordinates),

1

In many applications (submarine tracking, aircraft surveillance), a bearings-only sensor is used to collect observations
about target trajectory. This problem of tracking has been of interest for the past thirty years. The aim of Bearings-
Only Tracking (BOT) is to determine the target trajectory using noise-corrupted bearing measurements from a single
observer. Target motion is classically described by a diffusion model* so that the filtering problem is composed of two
stochastic equations. The first one represents the temporal evolution of the target state (position and velocity) called

state equation. The second one links the bearing measurement to the target state at time ¢ (measurement equation).

MP(C): Modified Polar (Coordinates),

BOT: Bearings-Only Tracking,

X, is the target state in th Cartesian coordinates system,

Y;: is the target state in the LPC system,

n,: Size of the target state (n, = 4),

%= inequality R = S means that R — S is a positive semi-definite matrix,
Id,,: n x n identity matrix,

Onxm : m X m matrix composed of zero element,

®: Kronecker product,

X*: denotes the transpose of matrix X.

X115 [1X]13 = E{X*Q "X} where X is a column vector,
o0: Dirac delta function,

A: Laplacian operator,

V: gradient operator,

det(X): the determinant of matrix X,

PDF: Probability Density Function,

0 1
A: A= 1Idy+ 6B with B = ® Ids,
0 0
Ot
H:H= ® Ida,
1
. Qg Qg
Q:Q=YX®IdywithY =
g 7

Introduction

Lsee [1] for an exhaustive review on dynamic models
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One of the characteristics of the problem is the nonlinearity of the measurement equation so that the classical
Kalman filter is not convenient in this case. We can find in literature two kinds of solutions to this problem. The
first one, proposed by Lindgren and Gong in [2], consists of deriving a pseudolinear measurement equation. Then, a
Kalman filter can be used to solve the problem. The stochastic stability analysis of the estimates had been addressed
by Song and Speyer in [3]. However, Aidala and Nardone show in [4] that this approach produces bias range estimate
which can be reduced if the observer executes a maneuver. Consequently, bias range can be estimated as soon as it
becomes observable [5]. A second idea consists of using the Extended Kalman Filter (EKF) in Cartesian coordinates
system to solve the problem. However, simulations show that this algorithm is often divergent due to the weak ob-
servability of range ([6, 7, 8]). To remedy this problem, Aidala and Hammel in [9] proposed an EKF using another
system named Modified Polar Coordinates (MPC) system whose one salient feature is that range is not coupled with
the observable components. This constitutes a neat improvement. Another solution proposed by Peach in [10] is a
range-parametrized EKF, in which a number of EKF trackers parametrized by range run in parallel. Recently, particle
filtering algorithms have been proposed in this context ([11, 12, 13]). In [14], Arulampalam and Ristic compare the
particle filter with the range-parametrized and EKF in MPC system; while a comprehensive overview of the state of

art can be found in [15].

As far as performance analysis is concerned, the Posterior Cramér-Rao Bound (PCRB) proposed in [16] is widely
used to assess the performance of filtering algorithms, by the tracking community ([17, 18, 19, 20]) and in particular
in the bearings-only context ([15, 21, 22]). The PCRB gives a lower bound for the Error Covariance Matrix (ECM).
More precisely, under a technical assumption, the PCRB is the inverse of the Fisher Information Matrix (FIM). A
seminal contribution on performance analysis is the paper from Tichavsky et al. [23]. Here, the authors noticed that
only the right lower block of the FIM inverse was of interest for investigating tracking performance. This was the
key idea for deriving a practical updating formula for the PCRB. Recently, PCRB has been used for various sensor
management problems like automating the deployment of sensors in [24] or determining the optimal sensor trajectory
in the bearings-only context in [25]. Moreover, PCRB can be used to schedule active measurements in a system in-

volving active and passive subsystems. This application will be addressed in the simulation section.

However, some problems remain to be solved. In this paper, two major issues of the PCRB are addressed. First, un-
der a technical assumption named asymptotic unbiasedness assumption”, the PCRB is the FIM inverse. However, the
validity of this assumption has not been thoroughly investigated in the BOT context yet. Here, our approach consists of
deriving the PCRB in an original coordinates system named Logarithmic Polar Coordinates (LPC) system . Using this
coordinates system, it is shown that the “asymptotic unbiasedness assumption” can be replaced with another one, more
meaningful in the BOT context. Second, Tichavsky’s recursive formula is a powerful result to compute the right lower
block of the FIM inverse. However, complex integrals without any closed-forms are involved in this recursion. So,
these complex integrals must be approximated via Monte Carlo methods. This approach is quite feasible but induces

high computation requirements which highly reduces its suitability for complex problems like sensor management.
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For instance, measurement scheduling would imply to consider a large number of active measurement sequences and

to perform Monte-Carlo evaluations of the PCRB for each sequence, which would rapidly become infeasible.

Another approach proposed by Ristic et al. in [15] consists of assuming that the target process noise is sufficiently
small for drastically PCRB computation. In the general case, we show that the complex integrals required for cal-
culating the PCRB admit closed-form expressions if the PCRB is derived in an original coordinates system named
Logarithmic Polar Coordinates (LPC) system . Remarkably, though this coordinate system is only a slight modifi-
cation of the MPC [9], it allows instrumental simplifications in the calculation of the elementary terms of the PCRB

recursion. Applications to active measurement scheduling is briefly considered in a simulation framework.

In section 11, the BOT problem is presented in the Cartesian coordinates system and then in the LPC system. This
original coordinates system is the key point to derive a closed-form for the PCRB. In Section 111, the classical PCRB is
presented. A close examination of the "asymptotic unbiasedness assumption” is achieved so as to prove the validity of
the "usual” PCRB, as given by the FIM inverse. We study this assumption and derive a more meaningful condition. In
particular, conditions ensuring its validity are examined in the BOT context. Calculation of closed-form expressions
of the right lower block of the FIM inverse via Tichavsky’s recursive formula is addressed in section 1V, in the LPC
setting. Then, the closed-form PCRB is investigated for scheduling active measurements in section V. In section VI,
simulation results present a comparison between the closed-form PCRB and the classical one (i.e. where the terms
involved in Tichavsky’s formula are approximated by Monte Carlo methods). Finally, the closed-form PCRB is used

for investigating scheduling of passive and active measurements.

2 From Cartesian to LPC system

2.1 Cartesian framework for BOT

Historically, BOT is presented in the Cartesian system. Let us define target state at time ¢:

*

Xe=[ ) m0) v w0 ] @

made of target relative velocity and position in the = — y plane. It is assumed that the target follows a nearly constant-

velocity model. The discretized state equation? is given by:

Xiy1 = AXy + HU 4 oW, 2

2For a general review of dynamic models for target tracking see [1].
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where:

WtNN(OaQ)a
. 0 1
A:Id4+5tBW|thB: ®Id2,
0 0
Ot
H = ® Ids
1
. a3 Qa2
Q=X ®IdywithY =
Qo (1

d; is the elementary time period and Uy is the known difference between observer velocity at time ¢ 41 and ¢. The state
covariance o is unknown. However we assume classically that o < o ,,42, SO that we use in practice the following

equation:
Xip1 =AXe + HU + 0pa Wt - 3

Otherwise, we note Z; the bearing measurement received at time ¢. The target state is related to this measurement
through the following equation:

2 (t)
Ty (1)

Zy = arctan + V-7l o (t .+l . 4
arctan(728>+\/t>§ arcta11(7;8)+\/f,<—§ ’ ( )

()
where V; ~ N(0,0%) and o3 is known. Let us notice that the term () is classically avoided. However, it is frequent
to consider that measurement Z; is restricted to a part of the space. This is the case if symmetry of the receiver
(e.g. linear array) leads to consider measurements belonging in the interval | — 7, 5[, so that the additional term x
in eq.(4) is necessary. Two examples of Probability Density Function (PDF) of Z, given X, are presented in fig.1 to
enlighten the importance of the additional term (). In fig.1.(b), the bearing measurement is close to 7 so that there is

an overlapping phenomena.

Figure 1: two examples of PDF of Z; given X, (a) if Z; is far from the bounds (b) if Z; is close to 7.

The system (3-4) has two components : a linear state equation (3) and a nonlinear measurement equation (4).

Particle filter techniques (see [26],[27]) are, thus, particularly appealing. Otherwise, practical implementations of
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EKF-based algorithms ([9] and [10]) use a specific coordinates system, namely Modified Polar Coordinates (MPC).
Indeed, if the target follows a deterministic trajectory (i.e. W, =0 V¢ € {0,...,T} ineq.(3)), Nardone and Aidala
have demonstrated in [7] that no information on range exists as long as the observer is not maneuvering. So the idea
consists of using a coordinates system for which unobservable component (range) is not coupled with the observable

part. This is also the motivation of Aidala and Hammel [9] for defining the MPC system:

60 L 4 2] . (5)
Thus, the target state at time ¢ is defined by eq.(5), where 3, and r; are the relative bearing and target range. We
propose in the following section a slight modification of the MPC system, named Logarithmic Polar Coordinates
(LPC) system. The only difference is that the second component is not r% but In(r;). Even if this tiny difference
appears very minor, it will be shown that it is instrumental for deriving a closed-form of the PCRB. Let us now derive

BOT equations given by egs.(3,4) in the LPC framework.

2.2 LPC framework for BOT

We consider now that the system state Y; is expressed in the Logarithmic Polar Coordinates (LPC) system, i.e. :

*

Y;‘/ = |: 515 In Tt Bt L3 . (6)

Tt

As between Cartesian and MP system, we do not have a direct bijection between Cartesian and LPC system due to

arctan function definition. We just have f; and f, Ip respectively LPC-to-Cartesian and Cartesian-to-LPC state mapping

[ sin B, ]
CAOLIORT I o
_fle(Y;f) ifry(t) <0 B¢ cos By + :—Zsinﬁt

— (B sin By + T—Icos B

functions such that:

Xt:

and

ra (t)
arctan (ry(t))

In ( r2(t) + rg(t))
vy (8)ry (8) —vy ()7 (1)
r2(t)+rg(t)

vz ()T (t))'H)y (t)Ty (t)
rz(t)+r3 (1)

Y= fP(Xy) = )

Thus, using egs.(7,8), the stochastic system given by egs.(3,4) becomes:

Yoo = & (Afli,(Yt) + HU, + amth) ifr,(t) >0,

I (—Afl;(Y;) + HU, + amath) if r,(t) < 0. (9)
Zy =P+ Vi =7l 1visz + 7l pvicz.

Though, it seems that the LPC increases the complexity of the BOT problem, it has also the advantage to highlight the

multi-modality associated with the two solutions corresponding to r,(¢) > 0 and r, (¢) < 0 respectively.
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3 PCRSB for state estimation

In this section, "usual” PCRB given by the inverse Fisher Information Matrix (FIM) is presented. Notably, we present
in sub-section A, the proof of this classical result. The role of a technical hypothesis named ”asymptotic unbiasedness
assumption” is thus highlighted, especially in the LPC system. Then, we show in sub-section B that this hypothesis
is not always satisfied in the BOT context and we propose to replace it by an original extension. Finally, it is shown
that the "usual” PCRB as given by FIM inverse is valid if bearing measurements are "sufficiently” far from — 7 and
5. Let us remark that the PCRB is not derived in the Cartesian framework for two reasons. First, the “asymptotic
unbiasedness assumption” seems rather difficult to address in this setting. Second, it is shown that a closed-form

exists in LPC but not in the classical coordinates systems (Cartesian or MPC).

3.1 Classical PCRB

Let Yy.; and Z;.; be the trajectory and the set of bearing measurements up to time t, they are random vectors of size
ny(t + 1) and ¢, respectively. Let Y;.; be an estimator of Y;., which is a function of Z;.; . We focus here on the Error

Covariance Matrix (ECM) at time ¢ which is n, (¢t + 1) x n, (¢t + 1)-matrix, defined by:
ECMo.s = [[Yo. — Youe || - (10)
First, let us recall the Fisher Information Matrix (FIM) and bias definitions.
Definition 1 (FIM) For the filtering problem given by eq.(9); the FIM ,at time ¢, is denoted J ., and defined as:
Jo:t = E{Vyy,, np(Z1t, You) Vi, mp(Zrat, You) } (11)
where p(Z1.+, Yo.¢) is the joint Probability Density Function (PDF) of Z1.; and Yy.;.

Definition 2 (Bias) For the filtering problem described by eq.(9), estimation bias related to the observation sequence

Yo, is defined as:
B(Yo) = E{ You = You| Yo} - (12)

Yo.¢ is any(t + 1) vector so that B(Yy.;) is a n,(t + 1) vector too. The estimator of the trajectory Yo, is unbiased if
vector B(Yy..) is almost surely equal to zero. This choice of the bias definition is justified in Appendix A. Proposition
1 ensures that the FIM gives a lower bound for the ECM under a specific assumption called “asymptotic unbiasedness

assumption”. Before introducing this technical assumption let us introduce a notation to simplify the presentation:
Notation 1 For a function F : R? — R", U and ¢/ two R?-vectors such that U = {Ul, . ;Ud} and U =

[L{l, . ,udr, we define:

[V, o (F@))1 o T, s, (F(0)1 ]
lim F(U) = : : (13)

U—-Uu
1imU1*>U1 (F(U))n NN thd*)ud (F(U))n
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where (F'(U)); is the ith component of vector F'(U).

Letus notice that limgr, —¢4, (F(U)); is a function which depends on variablesi/; and {Us, ... , Uy} so thatlimy .y F'(U)
depends on variables &/ and U. We will see that notation 1 is defined unambiguously in proposition 1 proof and will

be helpful to present the following assumption.

Assumption 1 (Asymptotic unbiasedness) For the filtering problem given by eq.(9), the asymptotic unbiasedness

assumption is defined as:

\Vlk (S {1, e ,t}, hm B(YO:t)p(YO:t) = hm B(Ybf)p(yz)f) (14)
Yi— Yk Y-V,

where ), is the (connected) domain of Y3, , k € {1,...,¢}, while {), , Y, } are its bounds.

*

Looking at LPC’s definition given by eq.(6), we have Y, = {_g, —00, —00, _oo} and Y, = [g, ~+00, +00, +00
Moreover, B(Yo.)p(Yo.+) is a ny(t + 1) vector following notation 1, limykﬁy,j B(Yo:t)p(Yo.t) isany(t +1) x ny

matrix. After introducing assumption 1, we can now present the classical result on the PCRB.

Proposition 1 (PCRB) Under assumption 1,
ECMo. = Jy} - (15)

Proposition 1 ensures that the FIM inverse gives a lower bound for the ECM conditionally to the validity of the tech-
nical Assumption 1 named “asymptotic unbiasedness assumption”. Classically, Assumption 1 is true if the estimator
Yo.; is unbiased when Y, ~ Y, and Y} ~ y,j. However, this point is relatively complex to verify in the bearings-only
context. We propose to study assumption 1 to find a more concrete one. First, let us present a proof of the rather

classical Prop. 1. For the sake of completeness, the following lemma is reminded.
Lemma 1 Let .S be a symmetric matrix defined as:

A C
8= ; (16)
C* B

where
e Ais a non negative real symmetric matrix,
e B is a positive real symmetric matrix,
e Cis areal matrix.
then S &= 0 impliess A — CB~'C* = 0.

Proof of lemma 1 This lemma is a classical algebraic result given in [28].00
Proof of proposition 1 Using lemma 1, we build the S matrix such that:

AO:t C(O:t
Cf)k:t BO!t

S:
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where:

AO:t = EC,\/lo:t 5
BO:t = JO:t 5 (17)
Cov = E{ (Yo = You) Vi, Ip(Z1, You) | -

From this definition, S is a non negative matrix. Using lemma 1, one remarks that we just have to prove that C ¢.; is
equal to the identity matrix. The “asymptotic unbiasedness assumption” will be used to do so. First, let us notice that

Co.¢ can be rewritten as:
Cot = /(Yo:t —Y0.t)Vy, . p(Z1:t, Yo )d( Z1:t, Your) - (18)

Co:¢ isany(t+1) x ny(t+ 1) matrix made of (t+ 1) x (¢t + 1) elementary blocks. We study each of these elementary
blocks (denoted Co.(k,1)):

CO:t(kv l) = /(Yfk - Yk)V;,P(leta YO:t)d(letv YO:t) ;k € {]-a e any} ’ le {17 e any}' (19)
Before integrating by parts, let us introduce the following notation:

Notation 2 For a function F : R — R", U, U~ and U™ three R<-vectors such that U = [Ul, e ,Ud} U™ =

[Z/{f7,,, ,udrandu = {Z,{l s 7Z,{dTF,t|’1(-3‘l’]W€‘C8.I’]d(-l‘ﬁn(-l‘l
i' —_— 1. - 1. 20
[F(U)]y 1m+l (U) 111/{1171 (U) (20)

where lim;_;+ F(U) and limy_;— F(U) are defined using notation 1.

Integrating by parts and using the previous notation, a matrix element of C' ., given by eq.(19) can be rewritten:

+
1

N Y,
Coalh,) = Id, Bt + [ [ = Yi)p(Z1as Vo) |

1

A(Z14, Yo (21)

where Yoft{l} is a whole target trajectory except the term Y;. Now, if limit and integral operators can be reversed, we
have:

5 A
Coalh,) = Tdu St + [ [ [ = Ypl(Zu Yoyizoa] | avi 22)

1

Using bias notation previously introduced, we finally obtain:
Wt
Coslhi) = Hdnfir+ [ [Bop(an)] av, 23)

Thus, under assumption 1, C., is the identity matrix.(]
Then we can apply proposition 1 to the BOT problem if ”asymptotic unbiasedness assumption” is satisfied. More
precisely, this assumption assures that the term Cl.; is the identity matrix. Let us now study the validity of this

hypothesis in the BOT context.
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3.2 Validity of the ”asymptotic unbiasedness assumption” in BOT context

We show in this section that the ’asymptotic unbiasedness assumption” is not always true in the BOT context. More
precisely, this classical result can not be used when measurements obtained by the observer are close to — 7 or 3. First
let us remind that proposition 1 is true under a technical assumption named “asymptotic unbiasedness assumption”.
According to the previous section, C.; given by eq.(17) is not the identity matrix if this assumption is not verified.

Van Trees showed in [16] that there is a more general result which is valid without this technical assumption:

Proposition 2 (PCRB) for a filtering problem given by eq.(9)
EC Moy = CouJii) Coy with oy = E{ (Yo = You) Vi, Inp(Z1, You) } (24)

Proof of proposition 2 The result is a direct application of lemma 1 with A .;, Bg.; and Cy.; given by eq.(17).0
Proposition 2 is a classical result which is not often used in practice because this bound depends on the estimator i.e.
Yot Via Co.;. This last term must be estimated using Monte-Carlo methods. Here, an original result is proposed which

specifies proposition 2 in the bearings-only context. In particular, we propose a simple formula for C' g.;.
Proposition 3 (PCRB) For a filtering problem given by eq.(9),
ECMo. = CgyJo; Cout

where Cy., isan,(t + 1) x n,(t + 1) block diagonal matrix where diagonal terms are expressed as follows:

L—mp(B)]_ 0 0 0

Co(1,1) = 0 oo V1 e{0,... th (25)
0 010
0 00 1J

where p(;) is the PDF of ;.

Proposition 3 is adapted from proposition 2 to fit to the BOT context. More precisely, proposition 3 gives a more
simple formula for C'.;. This result is quite intuitive. When bearing measurements are close to a bound (i.e. — 5 or 7)
there is an overlapping phenomenon due to the arctan definition as the underlying Probability Density Function (PDF)
is not Gaussian but something like that function represented in fig.1. Finally let us notice that p(3;) is not defined in
7 because 3; isin | — 7, Z[. However, the limit exists.

Proof of proposition 3 The complete proof of proposition 3 is given in Appendix B with three intermediate results
skipped in sub-Appendix B1, B2 and B3. The idea of the proof consists of studying C .+ using the formula given by
eq.(22) in Prop. 1 proof. To study eq.(22), the PDF of Y, given Y; i.e. p(Y:41|Y%) and the PDF of Z, given Y; i.e.
p(Z:|Y:) are derived in Appendix B1 and B2. Then, a technical lemma allows us to end the proof.C]

In the filtering context, we are generally not interested in EC'M ., but only in the right lower block ECM; =

HY} —Y;||?. Thus, it is not the whole matrix Co;tJJ:th&t which is of interest but just the right lower block. As C|.; is
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a diagonal matrix according to Pro. 3, we have:
ECM, = Ci g 'Cr |

with:
L—mp(B)|_ 0 0 0

c, — 0 10 o (26)
0 010

0 0 01

Matrix Jt‘1 is the right lower block of Jy.;-inverse, given by eq.(11). Now from a practical point of view, the problem
is to be able to estimate .J,* and C;. Concerning the first one, .J; ! is classically obtained by means of Tichavsky’s
recursive formula via Monte-Carlo methods. Looking at eq.(26), we can see that C'; only modifies the PCRB linked to
the first component of the target state 5;. The PCRB associated to this component is overestimated because p(3;) i

2
is not zero all the time. When bearing measurements are sufficiently far from the bounds — 7 and 7, C is the identity

matrix, so that the classical PCRB is given by the FIM inverse.

Assumption 2 (Side assumption) For a filtering problem given by eq.(9), the side assumption is defined as:

p(B)] =0 Vvlie{o,...,T}, (27)

[ME]

where p(5;) is the PDF of 3.
Proposition 4 (PCRB) Under assumption 2,
ECM; = J b (28)

Proof of proposition 4 Proposition 4 is easily derived from proposition 3.0
Comparing proposition 1 and 4, we see that we have given a more concrete meaning to the assumption we use for
PCRB calculation.

4  Closed-form formulation for Tichavsky’s formula in the LPC coordinates
system

We have derived in the previous section a PCRB adapted to the BOT context, given by eq.(29). Now it is necessary
to estimate J{l. The classical approach consists of using .J;,* recursive formula proposed by Tichavsky’s et al.
However, some terms involved in this formula must be estimated using Monte Carlo methods. We demonstrate here
that all these terms have closed-form expressions if the PCRB is derived using the LPC system, so that .J,”* can be
computed exactly via Tichavsky’s formula. In section A, Tichavsky’s recursive formula is reminded. We remark in
section B that no closed-form expressions for the terms involved in this formula can be obtained using Cartesian or

MPC framework. Then we show in section C that closed-form calculation can be derived in the new LPC system.
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4.1 Tichavsky’s formula
Tichavsky et al. proposed a recursive formula in [23] for the right lower block of the FIM inverse noted .J ;*.

Proposition 5 (Tichavsky’s formula) For a filtering problem given by eq.(9), the right lower block of the FIM inverse

noted .J; ! has a recursive formula:
. _ —1
Joh= (DR DP - DR (7 4 DY D)

where D}, D}?, D21, D?2, D33 are defined by:

D' = E{Vy, Inp(Yi1|[Y0)Vy, np(Yii1py, }}

D' = E{Vy,, np(Ye1|Ye) V3, Inp(Yii1[Y2)}

D} = E{Vy,Inp(Yi1|Y) V3, Inp(Yipa|Vi)}, (29)
D = E{Vy,, lnp(Yiu:1[Y)Vy,,  np(Yea|Ye)},

D = E{Vy,, nWp(Z1|Ye1) V3, np(Zes1[Vigr)} -

Proposition 5 is proved in [23]. However, for the BOT context, even if PDF p(Y;41|Y;) and p(Z;|Y;) are known
and simple, D}, D}2, D?', D?? and D3* do not have closed-form expressions altogether. We shall show now that

existence of closed-form expressions is a characteristic of the LPC system, introduced in section 11.B.

4.2 Closed form expressions of D}, D%, D22, D?! and D} in different coordinates systems

Ristic et al. in [15] have derived the PCRB in the Cartesian coordinates system. Matrices D}, D}2, D?2 and D?! have
closed-form expressions using this system. However D3$3 has no closed-form, so that the authors assumed that the
process noise makes a very small effect on the PCRB (i.e. W, = 0) for approximating D}3. Otherwise, the classical
PCRB has not been derived in MP coordinates system yet. It seems that no closed-form for D }!, D}2, D?? and D?!

can be expected, though a closed-form of D33 exists under assumption 2. These results are summed up in tab.1.

Cartesian modified polar logarithmic polar

D}t Yes No Yes
D}? Yes No Yes
D# Yes No Yes
D# Yes No Yes
D33 No Yes Yes

Table 1: Closed-forms in different coordinates systems

Now the question is whether we can find a coordinates system allowing closed-forms for all terms. First, it seems

that the coordinates system must include 3; so that under assumption 2, D3 has a closed-form as in the MPC system.
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Second, in the Cartesian framework, it seems that the existence of closed-forms for D}, D}?, D?? and D?! in
eq.(28) are inherited from the linear property of V x, In p(X;41|X;) and Vx,,, Inp(X;;1|X;). First, considering
LPC definition given by eq.(6), we can see that 3, is one of the component of the state. Second, we can show that

gradients Vy, Inp(X;11|X;) and Vy,, , Inp(X;41]X;) are quadratic forms in X, X, ;. Indeed, we have:

V?’, h’lp(Xt+1|Xt) = (Xt+1 - AXt - HUt)*QilAth {Xt} 5

(30)
Vi, np(Xe | Xe) = (X1 — AXy — HUD) Q7' Wy, { X }

where Vy, {X:} and Vy,+1{X+1} are LPC-to-Cartesian mapping function derivatives at time ¢ and ¢ + 1 (LPC-to-

Cartesian mapping function is given by eq.(7)). These two terms can be expressed using the Cartesian framework:

ry(t) —rz(t) 0 0
Uy, (X)) = re(t)  ry(t) 0 0
oy(t)  —va(t) ry(t)  —ra(t)
va(t)  wy(t)  ra(t)  ry(t) 31)
ry(t+1) —re(t+1) 0 0
Vyoi1{Xpi} = re(t+1)  ry(t+1) 0 0
vy(t+1) —vp(t+1) ry(t+1) —ra(t+1)
ve(t+1)  wy(t+1) re(t+1) ry(t+1)

so that Vy, {X:} and Vy,+1{X;+1} given by eq.(31) are linear operators in X ;, X; 1.

4.3 An algorithm for calculating a closed-form PCRB, in the LPC system

Based on previous sections, Section C1, C2, C3 and C4 give closed-forms for D }!, D2, D#2 and D33 in the LPC
framework. Moreover, we show that these closed-forms can be written in a recursive manner. The algorithm that
calculates the closed-form PCRB is summed up in fig.2. We can see that calculation of D }!, D}2? and D?? is splitted
in two steps. In step 1, the auxiliary matrices T'1*, I'}2 and I'Z2, defined by egs.(36,40,44), are computed via a linear
system. Then, D}1, D}? and D?#? are extracted from T'}1, T'}2, T'?2 in step 2. This algorithm will be compared in the

simulations section with the classical PCRB summed up in fig.3.

431 D}! closed-form

We show in Appendix D that D}! can be expressed as an expectation of a simple function in the Cartesian coordinates

system:

1

2
mazx

D} = E{F} A*Q 'AFx,} with Fx, = Vy,{X;} . (32)

The problem is now to compute this expectation. We show now that no “direct” recursive formula can be derived for

D} but the latter can be obtained as the by product of a general linear system in Prop.6.1. First let us investigate the
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Initialization of J(jl using the initial error covariance matrix given by eq.(56).

Initialization of T'}!, I'}? and I'2? using egs.(38,42,46).

Jy ! is calculated using only step 2 and 3 with ¢ = 0.

Fort=1toT

1. Calculation of auxiliary matrices I'}!, I'}? and I'7?

(@) Calculate A}, A2, and A?2, using eqgs.(37,41,45) if observer maneuvers (else these terms are
equal to zero).
It =o' + 0 Ly (+ Ai}il )
(b) § T = Q2 +¥ IP2, (+4A:2,),
[ = 02 +0 T2, (+A72,)).
Remark : Q'', Q' and Q22 are given by egs.(37,41,45). W is given by eq.(37).
2. Calculation of D}!, D}? and D#?

(a) If observer maneuvers, compute }2 and Y22 using eq.(39) and eq.(43) (else these terms are equal

to zero).
D' = |Idn, Onxsn,|TH
®) § D = = [y, Ouyuan, | TH (= Y12,
D¥ = [Idny nm}F?%C +07).
i

Remark : C is given by eq.(43) and D?! is given by the relation D?! (Dt12)*.
(c) D3 is given by eq.(47).
3. Calculate J;,; using Tichavsky’s formula:

-1

Jih = (D2 + pP — D (47 + D) Dp?)

Figure 2: Closed-form calculation of the PCRB.
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o Initialisation of JO‘1 using the initial error covariance matrix given by eq.(56).
e Fort=0toT

1. Approximation of D}!, D}? and D?? by Monte Carlo.
2. D?'is given by the relation D?' = (D}?,)" and D}® is given by eq.(47).

3. Compute J,;; using Tichavsky’s formula:

_ —1
Jih = (D2 + D~ D (47" + DY) D)

Figure 3: Classical computation of the PCRB.

non maneuvering case. In this case, using the statistical properties of X ;, 1 given X, and the linear property of f,

eg.(32) can be rewritten:

1 * * )— 1 * * )—
D' = ——E{Fx,_ax, , A"Q ' AFx,-ax,_ | +——E{Fix,_, A"Q" AFax,_, } (33)

max max

constant

The first term can be calculated remarking that X, — AX; 1 ~ N (0,Q) and F is a linear operator. We derived in

appendix D from the linear property of F that:

FXt = VYt{Xt} )

Fax, = Fx, +8Gx,,
‘ where vy () —va(t) (34)
GAXt = GXt 5 GXt = Id2 ® .

Incorporating eq.(34) in eq.(33), we obtain:

DM = constant + LI[-Z{F* A*Q’IAF } 5t2 E{G* A*O~AG }
K B 2 Xe—1 Xeoa gt 2 Xi-1 Q Xi—1

max max

—pl1
7Dt—1

O_QLE {F;‘(HA*Q_lAGXt_l} + f—tE {G}HA*Q—lAFXt_l} . (35)

+

Looking at eq.(35), It seems that no “direct” recursive formula can be derived for D }*. However, we can propose an
original recursive formula for D} via a joint matrix I'+* formed with the four terms involved in eq.(35) which is valid

in the general case including the maneuvering case:

‘Dt11 = [Idny Onyx?my] P}l ’
E {F)*QA*Q_lAFXt}

E{F} A" Q' AGx,} (36)

= where F, and G'x, are defined by eq.(34).

o2

L E {G}tA*QflAFXt}
E {G}tA*Q_lAGXt}
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We can see that D} is just one block of I'}1. Now the following proposition assumes that we have a recursive formula
for I'}1, so that D} is obtained as a by product.

proposition 6.1( T'}* formula ) For a filtering problem given by eq.(9), we have the following recursive formula
for I'}:

=0+ wrt, (+ AR

where
1 6 06 62
e |0 10 5 o 1,
00 1 6
00 0 1
2035A*Q 1A + 20, BA*Q ' AB* + 200 BA*Q A + 200, A*Q 1 AB*
ol — 201 BA*Q 1A + 200 A*Q 1A
201 A*Q T AB* + 20, A* Q1A
201 A*Q7 A
and
04nyxny ifU;i—1=0,
Fiy, A*Q " AFsx, — Flipy, A*Q 'AFapx,
AL, = 4 iy, A*Q ' AGrx, — Fipx, A" Q'AGarx,_, U 20, (37)
Tmer | Gry AFQT AFgx, — Gy, A" Q' AFupx, /
Gix, A*Q 'AGex, — Gax, , A*Q'AGapx,_,

We refer to eq.(2), for a definition of the various terms { A, B, Q, a1, a2, ag} involved in this closed form. For defini-
tions of F' and G see eq.(34).

Let us now make some remarks about the previous proposition. We can see that the recursive formula for I" }!
given by eq.(37) is just a simple linear equation, where all the terms have closed-form expressions. Moreover, if
the maneuvering term U,;_ is zero, then EX; = AEX, ;. As a consequence, A%il is zero if the maneuvering
term U;_, is zero. If this condition does not hold, A,‘;il can be computed exactly using E(X) and the recursion
E(X;) = AE(X;—1) + HU; 1.

Finally, we must pay attention to the initialization of I" }1. We show in Appendix F that I'}! can be expressed as a

function of the first moments of target state in LPC system, more precisely we have:

SU@RRM + 3 @ VvV + 5 @ VR + 5 @ RV

1 1 1 1
T Er2 e vt 4+ xtte RV
02,0 DUyl £ il g VR

211 ® Vvll
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B —1
Yl = 10 y-1 1o yi2 = 10 y-1 Y22 = oyl asz Q2
o 1 0 1 6 1 ay o
2%1 = 0 1 »il 2%2 = 0 1 »12 2%2 = 0 1 22
0 0 0 0 0 0
»il = »i 00 DA 12 00 »22 = 3122 00
1 0 1 0 1 0
s - 0 1 oy |00 21\2:0121100 z¥:0121100
0 0 1 0 0 0 1 0 0 0 1 0
Table 2: Initialization of the T'/ recursion (¢ = 0).
where 11, Z}\l, 2%1 and X! are given in tab.2 and
RRY = Idy ,VV' = (Eﬂ'g +1E—) Idy |
0
R Efe  —Efp VRl - EZ2  Ef | (38)
Efy E2 -Efy EI

From a practical point of view, RR'!, VV!1, RV VR can be derived from the initial PDF in LPC system i.e.
p(Yo).

432 D}? closed-form

Using the same approach as in the previous section, we show in Appendix D that:

1
D2 = - o E{F5,A*"Q 'Fax,} ( —7Y;%),

(%)
with
Onyxny if Ut =0 ,
021 (FI[::kXtA*Q_lFEXf,+1 - F]]ijtA*Q_lFAEX,,) if Ut 7é 0

max

T2 = (39)

where operator F' is defined by eq.(34). Comparing eq.(39) with eq.(32), we can notice that we have now two terms to
compute. The term Y }2 can be easily calculated. We can remark that the latter is zero if U, is zero. If this condition
is not verified, E(X:) is computed for any value of ¢ using E(X) and the relation E(X;) = AE(X;_1) + HU;_1.

Otherwise, () can be computed recursively using the same approach as for D }*. D}? is deduced from T'}2, via:

D = |Idu, Onyusn, | TH (+082 ),
E{Ff A"Q ' Fax, )
e E{F;,A*Q7'Gax, } (40)
" | E{GX, A*Q 7 Fax, }
E{G%,A*Q'Gax, }
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where operators F' and G are given by eq.(34). Again, we have a recursive formula for I" }2, yielding D}? as a by
product.
proposition 6.2( T'}2 formula ) For a filtering problem given by eq.(9), we have the following recursive formula

for I'}2:

ry? =02+ 0r2, (+A2)

where:
2(0[3 + 5t042)A*Q_1 =+ 20&1314*@_13* + 2(0{2 + 5t041)BA*Q_1 + 20{214*@_13*
Q2 _ 20[1314*@71 + 20[2A*Q71
200 A*Q 1 B* + 2(ag + 0y ) A*Q L
20{1A*Q_1
and:
O4m,><ny if Ut—l =0 s
FgXtA*QleA]EXt — FI’fUEXFlA*Q*FAQEXF1
AP, = L | Fix, A" Q 'Gasx, — Figx, A" Q 'Gamx, , (41)

ifU—1 #0.
" | Gy, A*Q  Fagx, — Gy, (A" Q 'Fazx,_,

1 1
Gix, A"Q " Gapx, — Gapx, ,A"Q " Gazx,_,

U is given by eq.(37). We refer to eq.(2), for a definition of the various terms {A, B, @, a1, aa, a3} involved in this
closed form. For definitions of F' and G see eq.(34).

Again, the recursion giving I'}2 is linear and have a closed-form. Similarly to T'}! recursion, A}2, is zero if no
maneuver occurs (EX, = AEX, ;). Else, A}2, is updated from E(X). Considering the initialization of the I'}2
recursion, we show in Appendix F that I" }? can be expressed as a function of the first moments of target state in LPC,

as:

Y2 @RRZ + 32 @VV2 + X2 @ VRY? + %12 @ RV

i _ Erd P eVVE4n2e RV
P O 22 @ VV'2 4 £12 @ VRY
vy

where ¥12, 23\2, Z%Q and 12 are given in tab.2 and

Efe —Ef : :
RR2Z2 =TIdy+6, | ™ _50 , VY2 = (Eﬁg + E@) Idy
Ef Ef "
' ] T0o ) . (42)
Ee _F E E : :
RV2— | 7o T-ﬁo , VR2 = ro fo + 0y (EBS + E%) Idays .
Efy E —Efp EZ
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4.3.3 D?? closed-form
Using the same approach as in the previous section, we show in Appendix D that:

22 _
D;* =

E{Fix,Q "Fax,}+C ( + Y2*),

max

()

where:
Cq 0 0 O
0 164+C; 0 (s
C fr—
0 0 Cy 0
0 Cg 0 C2
with:
C1 — 576013 + 672012 + 640(1 _ 115%0)13&2 + 288?43&1 _ 384(?320(1 ,
t t
CQ _ 144013 + 32012 _ 192(?233&2 + 32013&1 ,
Cs = _28;35043 _ 19623042 + 480;13042 _ 960(3041 + 640(2&1
t t t
and
Onyxny |f Ut :0 5

Y22 — (43)

o (Fix, QP — Fligx, @ 'Fasx,) iU #0.

where the operator F is defined by eq.(34). As we can see above, C is just a constant term and Y 22 is a maneuvering
term which can be calculated using the same approach as for Y }2 in section B.2. Otherwise, (%) in eq.(43) can be

calculated recursively. The matrix D22 is deduced from I'?? via:

D2y = [1duyxn, Onyxsn, | T21+C (+ 032,
E{FZXtQ_lFAX,,}
1 | B Q7 Cax (@4)
"t [ E{Ghx, Q@ " Fax, }
E{G%x,Q 'Gax,}

where operators F'and G are given by eq.(34). Again, the following proposition yields a closed-form recursive formula

for I'?2, and for D22 as a by product.

proposition 6.3( T'#2 formula ) For a filtering problem given by eq.(9), a closed-form recursive formula for I" 22 is

given by:

P2 = Q%2 40 I'?2, (+A2))

where:

2(ag + 2602 + 6201)Q 7 + 201 BQTIB* + 2(a2 + §a) (BQTL + Q71B¥)
200 BQ™! + 2(ag + dpa1 ) Q1
201Q I B* + 2(ag + 6p1)Q 7
201Q7!

922 —_
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and:

Onyxny ifU,_1=0 ,
Fipx,Q 'Fapx, — Fiagy, Q 'Faex, ,
AP = 1 Fiex,Q@ 'Gaex, — F,Zz]EXleflGAth_l iU,y £0 (45)
2 — .
e | Ghex, Q Fapx, — Ghopx, Q' Fazex,
Gipx, @ 'Garx, — Glppx, Q 'Gazex,_,

Always using the same approach, we show in Appendix F that T'22 can be expressed as a function of the first moments

of target state in LPC system, i.e. :

Y2 @ RR*? + Y2 @ VV* + X @ VR + ¥22 @ RV*

2 _ Er? ¥22@VV* 4+ 52 @ RV
P O £2 @ VV22 4 £2 @ VR
222 ® Vv22

where ¥22, 22\2, Z%Q and X22 are given in tab.2 and

. . .2 . .o
RE? = (14 26,B2 + B + FES) [z, VV? = (BB + B ) [y,

Ele —Ef T Ef R o (46)
RV22 — 7to 'ﬁo 16 (Eﬁg—FE:—é) Id2><27VR22: ro' B'O + 4, (Eﬁg—l—E:—é) Idsyo .
Efy E ’ —Efy E ’
43.4 D3 closed-form
We show in Appendix D that D33 is simply:
L 000
B
) 0 0 0 O
D = (47)
0 0 0 O
0 0 0 O

5 About active measurements scheduling for state estimation

We assume now that additionally to (passive) bearing measurements, there is an other sub-system which can produce

a noise corrupted range measurement at time ¢ noted d;:
di =1y + Mt where ne ~ N (0, O'?) . (48)

where o, is the range standard deviation. However, active measurements have a cost so that the total active measure-
ments budget is fixed. The aim of measurement scheduling is to optimize the time-distribution of active measurements
to obtain an accurate target state estimate.

The general problem of optimizing the time-distribution of measurements has a long history. Avitzour et al. in

[29] have proposed an algorithm to optimize the time-distribution of measurements when estimating a scalar random
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variable by solving a nonquadratic minimization problem. This result has been extended by Shakeri et al in [30] to
discrete-time stochastic processes. However, this previous approach is devoted to linear systems when the BOT is
highly nonlinear. Then, Le Cadre has proposed to use the CRB to solve the problem in [31] for nonlinear systems
where the state equation is deterministic. We show in this section that a closed-form PCRB derived can be used for
active measurement scheduling.

In the previous section, a closed-form PCRB has been derived for bearings-only measurements. What happens if
range measurements are included ? We show in this section that the PCRB has still a closed-form. First, looking at
eq.(29), we can see that only D33 depends on the measurement equation. Then, only the latter has to be modified. If

the sensor produces a range measurement at time ¢, then:
D;* = E{Vy,., mp(Zit1, der|Ye)) Vi, Inp(Zesr, dega[Yern)} (49)
Using the independence property between bearings and range measurements, eq.(49) can be rewritten:

D =E{Vy,,, np(Ze1|Yi1) V5, p(Zis1|Yi1)} +E{ Vi, Inp(deg1|Yis1)Vy, | Inp(dea|Yigr)} . (50)

— 733
7Dt

Using D33 given by eq.(47) and range measurement equation given by eq.(48), we obtain

4~ 0 00
B 5
Er
: 0 =%+ 0 0
D = o (51)
0O 0 00
0 0 00

Consequently, the problem is to compute Er7, ;. We show now that there is no "direct” recursive formula to calculate
Er#, , but the latter can be obtained as a by product of a linear system. First let us address the non maneuvering case.

Using the state equation given by eq.(3) and the statistical properties of 17;, elementary calculations yield:

E{rZ(t+1)+r;(t+1)}

= 2070005 + E{r5(t) + 15 (1)} +20E {02 ()ra (1) + vy (ry (D} + GE {03 (1) +v5(1)} . (52)
~—_————

_w,2
=Er;{

2
Eriq

Then looking at eq.(52), It seems that no “direct” recursive formula can be derived for Er §+1. However, we can
propose an original recursive formula for the latter via a joint matrix T' 33 formed with the three terms involved in

eq.(52) which is valid in the general case including the maneuvering case:

Erf =1 0 0T,
E{rZ(t+1)+r2(t+1)}

TP = |E{oa(t + Dra(t +1) + vy (t+ Dry (£ + 1)}
E{v}(t+1) +vy(t+1)}

(53)

We can see that Er7. ; is the first component of I'}%. We have a simple recursive formula for I'}* given by:
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Proposition 7( T'3 formula )

F?S =% + @ Ffi ( + A?EI )

where
ag
QBS:QU?ﬂaw (0%] ’
a1
1 20, &7
® = 0 1 5f ;
0 O 1
and
[ Er,(t ’ Ev,(t ) |
26, =) Uy + 267 o U, + 82U; U,
Ery(t) Ev, (¢
Er,(t Vg (T
AB O 1, 405, =D 1, 4 s, (54)
Ery (1) By ()
Er,(t)
2 U, + UpU,
i Er,(t |

We refer to eq.(2), for a definition of the various terms {« 1, a2, a3} involved in this closed form.
Proof of proposition 7 We incorporate the diffusion equation given by eq.(3) in " 32 given by eq.(53). Finally, we
obtain eq.(54) using the statistical properties of W,.(J

A3, is zero if no maneuver occurs. Concerning the initialization, I" 3% can be expressed using the first moments:

1
33 = OEr2 ELe + A% (55)
EB3 + ]E:Jj%
Eq.(55) is obtained by applying the Cartesian-to-LPC mapping function given by eq.(8) to eq.(53) with ¢ = 0 and

prop.7. The algorithm is summed up in fig.4 and will be illustrated by simulation results in the following section.

6 Simulations

We have shown in the section IV that under assumption 2, the PCRB has a closed-form. We have presented the
algorithm in fig.2. The aim of this section is double. First, we show that these original formulas are valid and allow to
compute accurately the PCRB without high computation load. Second, this bound can be used for optimal scheduling
of active measurements in a sensor management context.

To check formulas, the closed-form PCRB is compared with the classical one using two scenarios. In the first

one, the observer goes straight line while in the second one, the observer maneuvers. For the sake of completeness,
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all the constants involved in the two scenarios are presented in tab.3. For these two scenarios, the standard deviation
of the process noise in the state equation o, is fixed to 0.05 ms~? so that target trajectory strongly departs from a
straight line. The classical PCRB algorithm is reminded in fig.3 (the sample size to approximate D}, D}?, D?? and
D?! by Monte-Carlo methods is 1000). For all the algorithms, the initial FIM inverse is computed using the initial
error covariance matrix. The latter is computed using Monte-Carlo methods. More precisely, IV initial target states
in LPC, noted {Yo(i)}ie{l,,,, ,N}» are sampled by using the initial range, bearing and speed standard deviations which
are respectively set to o, = 2 km, o, = 0.05 rad (about 3 deg.) and o; = 1 ms~!. Then, we obtain JO‘1 using the

following approximation:

N
T R E{(Yo - BN (Y~ BN} ~ 1 > - %oy (v - ¥) (56)
=1

The first scenario is presented in fig. 5. An example of trajectory is presented in fig. 5(al), while the set of bearing
measurements is presented in Fig. 5(b1). Fig. 6 presents the comparison of PCRB obtained by the algorithms given
fig.2 and fig.3 for the four components of the target state. The closed-formed PCRB and the classical one produce the
same results which verify formulas. Moreover, the computation load difference between the two methods is important.
The approximated PCRB takes about 600 seconds when closed-form PCRB takes about 3 seconds. Now looking at
Inr,’s bound given fig. 6.b , it is a bit surprising to see that the two PCRBs decrease while r; is weakly observable.
The fact is that In r; is not a meaningful component such that the bound given fig. 6.b for EC M, ., (i.e. the error
covariance matrix related to In r,) is not intuitive. A bound for EC' M., (i.e. the error covariance matrix related to r)

would be more meaningful. Using a Taylor series, we can demonstrate that:

ECM,, ~ W) RO M, ,, (57)
so that

ECM,, > W) I My, ., (58)

Consequently, we can use the PCRB related to In r; to derive a bound for the error covariance matrix related to ;. The
problem is that E(In r; ) is generally weakly observable. We have computed in fig. 9 the bound given by eq.(58) using
the true r;. We can see that the bound increases over time which matches theoretical observability results.

In the second scenario, the closed-form PCRB is checked when maneuvering terms appear. We consider that the

observer follows a leg-by-leg trajectory. Its velocity vector is constant on each leg:

025 (t) 4ms~! v2bs(¢) g ms~1

1500 < ¢ < 4500 = , 4500 < t < end = . (59)
vobs(t) 12 mst vobs(t) —7ms!

Yy

An example of trajectory for the second scenario is presented in fig. 5(a2), while the set of bearing measurements is
presented in fig. 5(b2). Fig. 7 presents a comparison of PCRB obtained by the algorithms given in fig.2 and fig.3. We
obtain the same results. Then the closed-form PCRB is valid in the maneuvering case. As for the previous scenario,
we compute the bound given by eq.(58) which is given by fig. 10. As expected, the PCRB dramatically decreases

when the observer maneuvers at time periods 1500 and 4500.
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Consequently, we can now compute the PCRB accurately and quickly, making it suitable for sensor management
applications. We have proposed in section V an algorithm given by fig.4 which calculates the closed-form PCRB for
active measurement scheduling application. Fig. 8 presents a comparison based on the first scenario of the closed-form
PCRB with active measurements produced every 80 seconds with the closed-form when no active measurements are
produced. In simulations, The range standard deviation is set to o, = 100 m. As we can see in fig. 8.b. Inr; bound

falls when the sensor produces a range measurement. Fig. 11 presented the related bounds for r ; given by eq.(58).

7 Conclusion

Along this paper, an innovative analysis of the PCRB in the bearings-only context has been presented. In particular,
strong results were shown with regards to the PCRB calculation; namely we derived an original closed-form PCRB.
This powerful result, asserted by various simulations, cascades down from an original frame that consists in a new
coordinates system: the Logarithmic Polar Coordinates system. Computing the PCRB then becomes an accurate and

time-varying technique of particular interest for real-time sensor management issues.

Appendix A: About the bias

Bias definition as given by eq.(12) may appear surprising at first. A more natural definition could be E{ Yo — Yot}
where Yp.; is an estimator of Y;.;, function of Z,.,. This is this point of view we are now going to enlighten through a
decomposition of the mean square error related to the estimation of Y.;. When estimating a deterministic parameter,
the mean square error can be classically decomposed in estimation variance and bias. However, in the stochastic case,

using eq.(10), we only have the following relation:

2

ECMy, = HYM ~E{Yo Yozt}HQ + HE {You|You | — You (60)
The mean square error is then equal to the covariance estimation error if and only if
HYM _E {YM Ym}HQ —0. (61)
Assumption (61) is equivalent to:
E {Yo:t — Yo:t’Y():t} =0, for almost Yy.; . (62)

which is the retained definition of an unbiased estimator.

Appendix B: Proof of proposition 3

Proposition 3 is adapted from proposition 2 to BOT context. More precisely, proposition 3 gives a more simple formula
for Co.;. The idea of proof is to study this term. Looking at eq.(22) in proposition 1 proof, each n , x n,-matrix term

of Cy.; can be rewritten:

Cou(ks1) = Idn, v, St + / Ok, d(Z1s, Y1) |
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where

1

Ok 1) = [ = Yip(Zua Vo) 63)

n

Remark that ), and ;" are n,-vectors, so that ©(k, 1) is a n,, x n,-matrix (notation | ]z’, defined in eq.(20). First,
l

let us rewrite ©(k, 1) using the statistical property of stochastic system (9). The idea is to use the following relation:

t
p(Z1:4, Yo:t) H (Z;[Y3)p(Y;]Y;-1)} p(Yo) , (64)

which is true under two assumptions. First, the measurement at time ¢ depends only on the target state at time ¢.
Second, {Y:}.en is a Markovian process. These two assumptions are easily deduced from the formulation of the BOT
problem given by eq.(9). Then using eq.(64), eq.(63) is equivalent to :

v

t
O(k,1) = Yk—YkH (Z)|Y) (YY) p(Yo) | . (65)

A%
Now, one can see that some terms in eq.(65) do not depend on Y so that they can be factorized. Then we obtain:

9(/€,Z)P(Zl+1:t;3/2+2:t|yl+1), ifi=0,
Ok, D)p(Zi1:4, Yigou|Yig1)p(Yi—1), ifl =1,

o= 0(k, Dp(Zisr:e, Yoo |Yir)p(Z1a-1, You ), if1 <1 <t
O(k, )p(Z1.4-1,Y0u-1), ifl =1
where:
{(Yk — Yk)p(Yl+1|Yl)p(Yl)} f Lifl=0,
0(k,l) = [(Yk - Yk)P(Zl|3ﬁ)P(3ﬁ+1|3ﬁ)P(3ﬁ|3ﬁ1)}il+ Lifo<i<t, (66)

l

[0~ Yopzypii ] =1

l

We are thus reduced to calculate 6(k, 7). Thus, the following limits must be studied:

lim p(Yi[Yi—1), lm p(Yi[Yi—1) ., lm p(Yi|V)), lim p(Yl+1|Y) (67)
Y-y Y=Y Y=Y =

lim p(Z|Y;) , lim p(ZV).

Y-Vt Y=Y~

To study the first four limits, p(Y;+1|Y;) derived in Appendix B1 is needed:

p(Yes1|Ve) = ri 1 p(Xepa [ Xe)a (V) |

where:
X1 X)) = — L3 IXeni—AXe—HULIG
{ PR i ’ (68)
a(Yy) = P(ry() > 0[Y) gy, )0 + P(ry (D) < OIY1) g, y<0y -
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We can notice that in eq.(68), p(X+1|X:) is just the PDF of the diffusion process given by eq.(3). The PDF of Y41
given Y; is less simple than in Cartesian coordinates system because we do not have a direct bijection between the two

coordinates systems.

s
_57

Now let us remark that Y; takes its values in | — Z, Z[xRR3 so that )"

—00, —00, —oo} and Y,
[g, +00, +00, +00|. According to eq.(57), we must study limyﬁyl_ p(Xp41|X:) and limyﬁyr p(Xi41|X:) to de-
rive the first four limits of eq.(67). Using f;;, definition given by eq.(7), we can obtain limyﬁyl_ X;and limyﬁyr X

via hmeJ’F fi, (Y1) and lim,, oyt fi,(Y1) and finally derive:

limYI*}yl— p(Xt|Xt71): p(Xt|Xt71) 0 0 0:| s
, =z
timy, s (XX 1) = [P(XIXea)| 00 o],
r o (69)
timy, e p(Xee11X0) = [p(XenX0|, 0 0 0] ,
) L -2
liny, e p(Xes1|X0) = [p(XealX0| 00 0] .
, | =z
Now using eq.(69) and notice that P(r,, (1) > 0|Y;) and P(r,(I) < 0]Y;) are bounded functions, we obtain:
iy, (il = | pOTYD)], 0 0 0]
] =3
iy, p(iY) = | pOTD], 0 0 0]
- e (70)
timy, e p(¥ial¥) = | pYia¥)[ 0 0 0},
L =2
timny, - p(Via Vi) = | PO 0 0 o].
) L -2

We have studied the four first limits of eq.(67). Now, let us turn toward the two last ones. The PDF of Z,; given Y; is

derived in Appendix B2:

1 7(2,—[;1)2 7(21—%—#)2 7(Zl—lf12+7r)2
p(Z,|V) Vi, (e ¥ 4+e % te % )ﬂ—g<zf<g (71)
We deduce from eq.(71) that:
iy, pZIYE) = | DI, w2180 w21 98 |
e (72)
iy, p(AIY) = | 2], p(zI) pzI) pzis) |.
Using limits given by eq.(70) and eq.(72), 6(k, 1) given by eq.(67) can be rewritten:
[[(%—Yk)p(mm)p(m}; onyxmyl)} it =0,
b(0.1) = § | [T = YO Z ¥V PDROEIYE)] O] i< <1, (73)

s
2

H(f/k - Yk)p(Zl|Yl)p(Yl|Ylfl)}i Onyx(ny—l):| ifl =t.

Consequently, lots of terms in 6(k, 1) are equal to zero without any technical assumption. The problem is now to study

more precisely the first column of (%, 7). The following result assure a more simple formulation for this column.
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Lemma 2 For a filtering problem given by eq.(9)

limg, .z p(Z1Y)) = limg, . z p(Z1|Y7) ,
hmﬁz—’—ﬂ p(Yllyl—l) = hmﬁl—’% p(Y”Yl—l) ) (74)

2

limp, 5 p(Yisr|Yi) = limg, — 5 p(Yisa |Y0).

2

Lemma 2 is proved in Appendix B3. Using previous lemma, 6(k, [) formula given by eq.(73) becomes:

—7¢(l) 0 0 0
0 0 0 O
0(k,1) = dp=ry
0 0 O
0 0O 0 O
where:
P(Yi V(YD) ifl=0,
=3
W)= PZNYDRYin Vp(YiYiy)|  ifo<i<t, (75)
P(Z1.4, Yout) ifl=t¢t.
Bi=

Incorporating 6(k, I) new formula given by eq.(75) in ©(k, [) formulation given by eq.(66), yields:

—WP(ZLmYo:t)’ﬁ 000

=73

0
0
0

o
o
o

O(k,1) = o (76)

o O
o O
o O

Putting the new expression of ©(k, 1) given by eq.(76) in Cy.; formula given by eq.(63), we deduce that Cy.; is a

diagonal matrix with diagonal element:

1—mp(B)|. 0 0 0

Cou(l,1) = 0 Lo0p (77)

0 0 1
0 0 0

SE]

= o O

O

Appendix B1: A closed-form for for p(Y;.,1|Y)).

The aim of this section is to derive the PDF of Y;,; given Y;. The classical approach consists of proving that there

exists a function gy, (.) such that:

P(ier € AIY) = [ onilms)iNun). VA € B0 - 3 51<R) (78)
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where B(] — %, Z[xR?) is the o-algebra of Borel subsets of | — Z, Z[xR? and A(.) is Lebesgue measure. If this
property is true then gy, (.) is the distribution density function of Y, given Y;. To obtain this result we will use the
distribution density function of X ;. given X;. However, computation is not easy because there is no direct bijection

between Cartesian and LPC system. We only have eq.(7) and eg.(8). Then we have:

B(Yir € AIY) = P(f¥(Xiu1) € AlY)
= P(P(Xir1) € AL {ry (1) > 0)P({ry (1) > 0}[¥2) (79)
FB(SP(X141) € AlYL {ry (1) < ODE({ry (1) < 0}[¥3) (80)

Then, using the PDF of X, given X; and the Change of Variable Theorem, we obtain the PDF of ;1 given Y;:

p(Yir1|YD) = 1 p( X | Xp)a(V7)

with:

724 /det(Q) ’ (81)

{ P(Xi41] X)) = A== 3 IXin—AX=HUG
4
(V) = L, y>0yP{ry (1) > 0}Y)) + T, )<y P({7y (1) < 0}[Y7) .

One can remark that the Jacobian term is ;' ; where r;,, is the relative range at time ¢ + 1. Moreover p(X;,1|X;)
is the PDF of the diffusion process given by eq.(3). This term can be rewritten as function of Y; and Y;4, using

Cartesian-to-LPC state mapping function given by eq.(7).

Appendix B2: A closed-form for p(Z,|Y)).
The aim of this section is to derive the PDF of Z; given Y;. To obtain this result we will use eq.(9). Let us remind that:

Bi+Vi+n if B+Vi<-3%,
Zi=4 B+ Vi if —Z<B+V<Z, (82)
G+Vi—m if %<ﬁt+w.

Then the PDF of Z; given Y is:

1 _(Zl—/fl)2 _(Zl—ﬁl—ﬂ')Q _(Zl—ﬁl+7r)2
71Y;) = 20% 26% 26% 1 33
p(Z11Y1) = N e +e +e —I<Z<E - (83)
B

We can see examples of PDF of Z; given Y in fig.1.

Appendix B3: lemma 2 proof

First relation of lemma 2

Using p(Z;]Y;) definition given by eq.(83), we can remark the second relation of lemma 2 is satisfied if

_ B
202
e 5 =0, T
(Z,43)? VZ, E]_§’§[' (84)
T 202
e B =0,
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2n2

We can see easily that this assumption is equivalent to e % a0, so that the first relation of lemma 2 is true if ogis

not too large.

Second relation of lemma 2

Looking at eq.(81), we can see that we have just to prove that:

lim p(X;[Xi-1) = 511111” (X[ Xi—1) . (85)
[Aandt>y

Bl—’—f

Then we need to express X as a function which depends on Y;. Using eq.(7), we obtain:

limg, .2 p(Xi]X;-1)
limg, . z p(Xi|Xi-1)

limg, . — = p(ff, (V)| Xi—1) 1L, 1y>0 + limp,—— = p(— £, (Y1) [ Xi—1) 1, 1y <0
limg, — = p(fi, (YD) Xi—1) Ly, 1)>0 + limp,— = p(— f1, (Y1) | Xi—1)Lr 1y <0 -

(86)

Now if we note

X7 = [7’1 0 ni —7“151} ) (87)
we finally obtain
\ . (88)

so that the second relation of lemma 2 is true.

Third relation of lemma 2

Looking at eq.(81), we can see that we have to prove that:
lim  p(XiaX)a(Vi) = lim p(Xi|Xi)a (YD) . (89)
17— 3 173

The proof is a little bit more difficult because we need to study «(Y7) limit. First let us remark that «(Y;) definition

given by eq.(81) can rewritten as:

a(Yy) = P(ry (1) > Ollry (D) Lir, >0y +B(ry(1) < Ollry (D) Lgr, @y<0y - (90)
Now to study «(Y;) limit, we need the following lemma.

Lemma 3 For X a scalar random variate

) px (z)

P(X>0[X|=2) = i, (91)
— ) = ()

P(X <0fix]=2) = 8 EH1 -

where px is the PDF of X.
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Lemma 3 proof First let us remark that for a positive ¢, we can write:

[ px(z)da
P(X>O‘|X|€[m—e,a:+e]) = — e (92)
[ iox(@)de + [~ px (x)da
so that
M- g]}»(X > 0‘|X| c [m—e,x—i—e]) < M*
with
- inf[m_gym_*_‘] Px (m)
I T O T ——r O (93)
Mt = SUP[y c,pte) PX (%)

inf[m_gym_*_‘] X (I)Jrinf[_,,‘_gy_w_*_(] px(z) *
Then let € converge to zero so that the first relation of the lemma is proved. The second relation is straight forward. (]
Applying lemma 3 with X' = r, () and finally remarking that lim g, -, = 7, (l) = limg, , = r,(l) = 0, we obtain:

lim a(¥y) = lim a(¥;) = = (94)

Bi——5% Bi—%

[\)

so that

limg, .z p(Xi41[X3) (Y1)
limg, .z p(Xi|Xi-1)a(Y7)

(95)

$p(Xia| = X)) + 50X X}7)
(X141 |X)?) + 3p(Xipa| — X))

with Xl% defined by eq.(87). The third relation of lemma is proven.

Appendix C: Properties of operators F' and G

Operators F' and G are defined by eq.(34). Before investigating the properties of such operators, let us remark that
these operators can be rewritten using direct tensor product. First, let us study F'x, which represents the derivative of

the LPC to Cartesian mapping w.r.t. state in LPC. Using eq.(7), we have:

Vv, £, (Y3) i ry (1) > 0,

FXt = VYt{Xt} = ) (96)
—Vytf[;(Yt) ifry () <0.
Using now f7, definition given by eq.(7) , we have:
cos By — sin G 0 0
sin 3 cos [y 0 0
Vv fo() =1 | ' | ) : (97)
% cos By — By sin By —:—: sin B; — By cos By cosfBy —sinf

:—2 sin B; + B cos B :—2 cos B — Bysin By sinf;  cosf
We can notice the block structure of Vy, f (Y;). Thenusing eq.(96) and eq.(97), F'x, can be rewritten using Kronecker

products, so that eq.(34) can be rewritten as:

0 0
Fx, =Idoxo ® Rx, + ® Vx, ,
1 0

Gx, = Idaxa ® Vx,
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where:

Ry, — () —re(t) | 4V, = v(t) —valt) | (98)

Ty (t) Ty (t) Vg (t) Uy (t)

Now let us detail the basic properties of F'. and G operators.

Property 1 G. and F are linear operators i.e. let X, and X, to state vector, then Fy %, = Fx, + Fg, and
GXtJrXt = GXf, + Gf(t'

1 0
Property 2 Reminding that A = ! ® Idayo, terms G 4k x, and Fax x, stand as follows:

0 1

FAkXt = }7)(t =+ k(StGXt R (99)

GAkXt = GX¢~

Proofs are omitted.

Appendix D: Closed-forms for D}!, D}* and D?? and D}*
We show in this section that eq.(29) can be rewritten as:

D' = E{F} A*Q'AFx,} ,

D}? = -E{F% A*Q 'Fax,} -7},

D = E{F;x,Q 'Fax,} +C+7Y?,

- 0 0 (100)
3
0 0
0 0
0 0

33 _
Dy =

0
0 0
0 0
0 0
with
T%Q = FI[:ijtA*QilFEXt-H _FIEXtA*QilFAEXf, ,
TP = Fix,,,Q '"Fex,, — Figx,Q 'Fagx,
Ci 0 0 O
0 164+C 0 Cs

0 0 Cy 0
0 C3 0 C2

and

576a3 | 672a3 | 64ai  1152asa 288azr 384as0x
Cl = 7586 3 4 57 2 4 521 - 553 2+ 543 L — 532 1 3
t t t t t t

14402 3202 192 32c
C2 — 643 + 622 _ (?3)302_'_ Otégal
t t t

(101)

Y

_ 288a2 19202 | 480aszas  96asa; |, 6dasa;
C3 - - 6;:’ - 6? + 54 - 53 + 52 .
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Considering at D}, D}? and D?2 and D3? formulas given by eq.(29), it is necessary to derive p(Y;41|Y;) and
p(Z¢Yy). According to Appendix B1 and B2:

p(Yia|Vi) = ri p(Xe [ Xp)e(Yr)

7(2,—519 7(2,—ﬁlz—w>2 7(Z;7B12+7r>2
_ 1 20 20+ 20
YD = \e 7 Fe T ke T lgaacy

(102)

More precisely, according to eq.(29), we need Vy, Inp(Yi11|Y;:), Vy,, Inp(Yi41]Y:) and Vy, Inp(Z;|Y;). Using
p(Yi+1|Y:) as given by eq.(102) and remarking that V y, a(Y;) = 0, we obtain:

Vy,p(Yeia|Ys) = -1t Fx, A" Q N (Xip1 — AXy — HU)p(X 41| Xi)a(Yr) (103)
Vv (YY) = 1y (F}MQ_l(XtH — AX; — HU;) + [O 4 0 0} )p(Xt+1|Xt)04(Yt)
where Fx, is defined by eq.(34). Then, using eq.(102) and eq.(103), we obtain:
Vy, Inp(Yiy1|Y7) = F)?tA*Q*l(XtH - AX; - HUy),
Vv, np(Yea|Ve) = —F%,, Q' (Xep1 — AXy — HU) — [0 40 o} : (104)

Vy, Inp(Z[Y?) =

uqm l\f|<"‘

Incorporating Vy, In p(Z;|Y;) given by (104) in eq.(29) and using the statistical properties of Z; given Y;, we obtain
D33 formula given eq.(101) . Otherwise, incorporating Vy, In p(Y;11]Y;), Vy,,, Inp(Y;11|Y;) given by (104) in
eq.(29), we obtain:

Dyt E{F§ A*Q (X1 — AX, — HU) (X410 — AX, — HU)*Q 'AFy, } |

D2 = —E{F{A*Q \(Xi11— AX; — HU)(Xes1 — AX, — HU*Q  Fy,., } |

D7 = B{F},,,Q ' (Xu — AXi — HU)(Xis1 — AX, — HU)*Q ' Fx, ., } (105)
E {F;(HIQ_l(XtH —AX, — HUt)} {0 4 0 O}

0 4 0 0] B{(Xe - AX, - HU)'Q ' Fx,.,} -

_|_

_|_

Now, we are dealing with the calculation of each elementary term of eq.(105) separately.

D}! formula

Let us rewrite D}! as given by eq.(105), we have:

D' = E{F{ A" Q "(Xip1— AX, — HU)(Xy41 — AX, — HU)*Q ' AFx, },
= E{F{, A" Q 'E{(Xi41 — AX; — HU)) (X131 — AXy — HU)*| X, } Q " AFx, } . (106)
=Q

Then using the statistical property of X, given X, i.e. N (AX; + HU;, Q) given by eq.(3), we obtain D}! formula
as given by eq.(101).
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D/? formula

Our aim is now to render explicit D }? given by eq.(105). Let us first use the linear property of F :
=0

DP? = —E{F{ A" Q "(Xip1— AXy — HU) (X441 — AXy — HU)*Q ' Fx,\,—ax,—nu, }

— E{F%,A*Q '(Xi41 — AXy — HU)(Xy41 — AXy — HU)*Q ' Fax,4nu, } - (107)
Using the statistical property of X, i.e X;y; given X, isa N (AX; + HU, Q), we obtain:
D}? = —E{F5 A*"Q 'Fax,} — Fix,A*Q ' Fyu,. (108)

Now remarking that HU,; = EX,,1 — X, and the linearity of operator F*, we obtain D }2 expression given by eq.(101).

D?2 formula

Starting from D??2 given by eq.(105) and using again the linearity of F :
=0

DP = E{Fix,4nv,Q '(Xex1 — AXy — HU)(Xe1 — AXy — HU)* Q™' Fx, - ax,—nu, |

+ E{Fix,+n0,Q '(Xex1 — AXy — HU) (X1 — AXy — HU)* Q™ "Fax,+nmu, } +C (109)
with:

C = E{Fx,,, ax, a0,Q '"(Xty1 — AX; — HU)(X1 11 — AXy, — HU)* Q™ 'Fx,,,—ax,—-nu,} ,
+ E{F;(HlfAthHUtQ_l(XtJrl — AX; — HU;)} (0 4 0 O) )
+ E{(O 40 0) E(Xi41 — AXy — HU)*Q™'Fx,,,—ax, nu,}

(0400)*<0400).

Let us notice that we can show using F' definition given by eq.(34) and the statistical property of X ;1 (i.e. X1
given X, is N (AX; + HUy, Q) distributed) that the C definition given by eq.(110) is equivalent to the C definition

given by eqg.(101). Now, using again the statistical property of X ;, we obtain:

_|_

DP? = E{Fix,4n0,Q '(Xey1 — AXy — HU) (X1 — AXy — HU)*Q " Fax,+nu, } +C . (110)

To end the proof, the linearity of the operator F' and the equality HU ; = EX;,1 — X, allow us to infer eq.(101) from
€q.(110).
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Appendix E1: Proof of proposition 6.1

The proof of proposition 6.1 is based on the properties of F'x, and G'x, investigated in Appendix C. Developing I" }!
given by eq.(36) and using the linearity of operator F', we obtain

E{ (*‘AthlJFHUt—l A*Q 1AFAXt 1+HU;: 1) }
Fll Qll { (AXt-1+HU;—1) A*Q TAG (AXt-1+HU;—1) }
E{ (ax, s mv, A QT AF A, rU, n}
E{G?Axf 1+HU 1) A Q7'AG (AX¢ 1 +HU, - 1)}

where

1
(X:—AX; 1—HU;_1) A Q" AF(Xf AX¢1—HUg—1)

E{ }
ol _ E{ (X~ AXe—HU, A Q7 AG(Xf—AXf_l—HU,_l)}
E{ }

) (111)
G(X, AXy_1—HU;— 1)‘4 Q" AF(Xt AXt1—HU_1)
E{G( 7AXt717HUt—1)A*Q 1AG(Xt7AXt717HUt—1)}
Now remarking that HU,_; = EX; — AEX,_; and using linear property of operator F’, we obtain:
E{Fix, ,A"Q 'AFax,_, }
EJF% A*QYAG ax,_
it =0l+ P X ) +ALL, (112)
E{G;Xt_lA*QflAFAXH}

E {G*AXHA*Q—lAGAXt_l}

where A}! is defined by eq.(37). According to Appendix C, Fax, , = Fx, , +6:Gx,_, and Gax, , = Gx,_,,
so that:

=" +wnrt, + A6 (113)
where U is defined by eq.(37). It remains to show that Q' has a more simple formula using the following lemma:

Lemma 4 For X and Y two state vectors, let us define
)
)
(114)
)
)

where operators F' and G are defined by eq.(34). Then

S@E(Ry Ry} + S @B{VE} + 5, @ E{ViRy} + 51 0 E{RY 1y )
o S @E{ViVy} + S @ E{RyVy}
S @E{ViVy}+ S QE{ViRy}
SE{ViW}
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where:

{o 1] {0 0] [o 1] [0 0]
5 = Y, Y. =% S = ¥ . (115)
0 0 10 00 10

Proof of lemma 4 We just have to rewrite eq.(114) using F' and G formulas given by eq.(34). We prove lemma 4
using direct tensor product properties. O

To end the proof, Lemma 4 is applied with:

X=Xy -AXy; 1 - HU;_1,
Y=X;-AX; 1 - HU;_ 1, (116)
Y@ Idoys = A*Q7 1A .

Then, using the statistical property of X; i.e X; given X;_; is N (AX;_1 + HU;_1, Q)-distributed, we obtain:

{ E{R}Ry} = 20&31d2x2 ,E{R}Vy} = QOQICZQXQ 5

(117)
E{ViRy} =2a2ldaxo \E{ViWy} = 2a1ldax>
so that Q! is given by eq.(37).
Appendix E2: Proof of proposition 6.2
Using the same approach as in proposition 6.1 proof, we have:
P2 =02+ w2t —1)+ A2,
where ¥ and A}2, given by eq.(37) and eq.(45) and
E {F(Txt—AXf,_l—HUf,_l)A*QilFA(Xt_AXf,—l—HUf,—l)
* *M)—1
ng _ E {F(thAXt,lfHUt,l)A Q GA(Xt*AthlfHUt—l) (118)

E {lexﬁ,axxt,1 7HUt,1)A*Q_1FA(Xt*AXt—1 —HU; 1)

—

E{ Gl axe srn A"Q Carximax s

Lemma 4 is again the key for simplifying Q'2, and is used with:

X=X, -AX, 1 —HU;_,,
Y =AX, - AXy, 1 — HU,4), (119)
Y ® Idoyo = A*Q_l .

Now, using the statistical property of X, i.e X, given X;_1 is N (AX,_1 + HU;_1, Q)-distributed, we obtain for 212
the simple formula given by eq.(41). O
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Appendix E3: Proof of proposition 6.3

The proof again mimics that of proposition 6.1. Thus, we first obtain:
[P =02+4+UI2, +A72,
where ¥ and AZ2 | given by eq.(37) and eq.(45), and:

E {FZ(Xt—AXt—1—HUt—1)QilFA(Xf’_AXt_l_HUt_l)}

. —1
E{FaxﬁAxt,ﬁHUH)Q 1GA<XtAXHHUH>} (120)
E {G*A(Xt*AXt—1*HUt—1)Q_ FA(Xt*AXt*l*HUt*l)}

E {Gz(Xt—AXt_l—HUt_l)QilGA(Xt_AXt—l—HUt—l)
We prove now that 222 has a more simple formula using lemma 4 with:
X =AX; —AX;_ 1 — HU;_4) ,

Y =AX; - AXy 1 — HU; ), (121)
Y@ Idawo = Q1.

Then, using the statistical property of X, i.e X; given X;_; is N (AX;_1 + HU;_1, Q)-distributed, we obtain for
022 the formula given by eq.(45). O

Appendix F: Initialization

Initialization of T'}!

X = Xo )
We apply lemma 4 with: ¢ v = X,
Y ® Idoyo = A*QilA .

Initialization of I"}?

X = Xo )
We apply lemma 4 with: ¢ YV = AX, ,
Y ® Idoyo = A*Qil .

Initialization of '

X =AXy,
We apply lemma 4 with: ¢ vV = AX, ,

Y@ Idowo =Q 1.
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e Initialization of JO‘1 using the initial error covariance matrix given by eq.(56).
e Initialization of I'}!, T'32, T'22 and I'3? using egs.(38,42,46,54).

° J;l is calculated using only step 2 and 3 with ¢ = 0.

e Fort=1t0T

1. Calculation of auxiliary matrices I';*, I'}2, I'?2 and T'}3

(2) Calculate A}t,, A}2,, A?2, and A3, using egs.(37,41,45) if observer maneuvers (else these

terms are null).

rt =o' + vt (+A3;11),
) 2 = Q2 40 T2 (+A2)),
1% - 0% w12, (+ A2, ).
I = 0% +0 TH, (+A3,).

Remark : Q1, Q'2, Q22 and Q32 are given by egs.(37,41,45). ¥ and ® are given by eq.(37) and eq.(53).
2. Calculation of D}, D}?, D?2, D}? and D3

() If observer maneuvers, computeY ;2 and Y22 using eq.(39) and eq.(43) (else these terms are null).

Dgl = |:Idny X Ty Ony><3ny:| Ftll ’
(b) D%Q = - |:Idny><ny OnyXSnyi| F%Q ( - T%2 ) ?
DE = |Iduyun, Ouyxan,|TE+C(+ 3.

Remark : C is given by eq.(43) and D7" is given by the relation D' = (D{?)" .
(c) Calculation of D33 using eq.(47) (passive meas.).
(d) Calculation of D33 is given by eq.(51) (active meas. + passive meas.)

Remark : Br7, , is calculated by using eq.(53) and I'3°.

3. Calculate J;;; using Tichavsky’s formula:

_ -1
(Dtgz + D — D (J; '+ D) ! DtlQ) (passive meas.) ,
t+1 = )

(Dt22 + D — D (J;7 '+ Dt“)_1 D}?)  (active meas. + passive meas.)

Figure 4: Closed-form calculation of the PCRB for active measurements scheduling.

[30] M. Shakeri, K.R. Pattipati, and D.L. Kleinman. Optimal Measurements Scheduling for State Estimation. IEEE
Transactions on Aerospace, Electronic and Systems, 31(2):716-729, april 1995.

[31] J.-P. Le Cadre. Scheduling Active and Passive Measurements. In 3th International Conference on Information

Fusion, Paris, France, July 2000.

Irisa



Scenario 1 Scenario 2
duration 6000 s 6000 s
72%%(0) 3,5km 3, 5km
roP%(0) 0 km 0 km
023 (0) 10 ms~1 10 ms~1
093 (0) —2ms~! —2ms~!
¢ (0) 0 km 0 km
rei(0) 3,5 km 3,5 km
vS(0) 6 ms—! 6 ms~!
vs(0) 3ms~! 3ms!
Ot 6s 6s
Omazs 0.05 ms—* 0.05 ms—1!
o3 0.05 rad (about 3 deg.) 0.05 rad (about 3 deg.)
Org 2 km 2 km
Tug Ims™! I ms™!
o 0.05 rad (about 3deg.) 0.05 rad (about 3 deg.)
Table 3: Scenarios Constants
§ os
«r R oAbl
i i o = N WM»MMW«WMM i
o 2 ﬂ.‘:::?_--_n--um 2 .‘!‘”..y: 5 a8 ) IC.I (al) o 1000 2000 :".‘?rl‘];] 4000 5000 6000 (bl)
: 5 _;f
I‘-”‘I"L‘“-— !‘, 4
¥ ' I RIS U LR (a2) 2 (b2)

Figure 5: Scenario 1:(al) example of trajectory of the target (solid line) and the observer (dashed line) (b1) set of
bearings measurements Scenario 2: (a2) example of trajectory of the target (solid line) and the observer (dashed)

(b2) set of bearings measurements

PIn°1701



beta

0.025

0.015

0.005 -

1000

2000

3000

4000

5000

6000

0.04

0.01 -

1000

2000

3000

4000

5000

@

(o] 6000
x 10 % dot(beta)
1 T
0.9 |+ -
o ; ; ; ; ;
(o] 1000 2000 3000 4000 5000 6000
x 10 % dot(r/r
1 T
0.9 |- -
o ; ; ; ; ;
o 1000 2000 3000 4000 5000 6000

(d)

Figure 6: PCRB for (a) 3;, (b) In7,(c) 3:, (d) % with scenario 1: closed-form PCRB (dashed line) versus approxi-
mated PCRB (solid line)
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Figure 8: Closed-form PCRB with range measurements each 80 seconds (solid line) versus closed-form PCRB (dashed

line). (a) B, (b) In7¢,(c) fr, (d) 2
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Figure 9: PCRB for r; with scenario 1: closed-form PCRB (dashed line) versus approximated PCRB (solid line)
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Figure 10: PCRB for scenario 2: closed-form PCRB for r, (dashed line) versus approximated PCRB for r, (solid line)
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Figure 11: Closed-form PCRB with range measurements each 80 seconds for r (solid line) versus closed-form PCRB

for r; (dashed line)
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