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Abstract. We present a spatio-temporal filtering method for signifi-
cantly increasing the signal-to-noise ratio (SNR) in noisy fluorescence
microscopic image sequences where small particles have to be tracked
from frame to frame. Image sequence restoration is achieved using a
statistical approach involving an appropriate on-line window geometry
specification. We have applied this method to noisy synthetic and real
microscopic image sequences where a large number of small fluorescently
labeled vesicles are moving in regions close to the Golgi apparatus. The
SNR is shown to be drastically improved and the enhanced vesicles can
be segmented. This novel approach can be further exploited for biolog-
ical studies where the dynamics of small objects of interest have to be
analyzed in molecular and sub-cellular bio-imaging.

1 Introduction

Time-lapse confocal microscopy is now a popular technology in biomedicine and
biophysics for analysis of dynamics at sub-cellular or molecular levels. Several
applications in biology are concerned with the acquisition of sequences of 2D im-
ages or 3D volumes representing small fluorescently-tagged particles with highly
variable velocities. In order to analyze these moving objects, the acquisition time
is reduced and consequently the signal-to-noise ratio becomes low. As a con-
sequence, motion estimation and trajectography of such small objects remain
difficult tasks.

Several algorithms have been developed for 3D image sequences restoration.
Traditionally, these 4D data sets are processed, volume by volume, using 3D
spatial filters, in order to save computation time, even if spatio-temporal filter-
ing would appear more appropriate. In contrast, spatio-temporal filtering has
been largely investigated in video processing, and usually relies on a motion-
compensated approach [1]. Most of these spatio-temporal filters can neverthe-
less be considered as an extension of well-known principles developed for 2D
image restoration or smoothing. To our knowledge, non-linear anisotropic diffu-
sion [2, 3], recent PDE-based methods [4], Wiener filters [5], and wavelet shrink-
age [6], have been used for processing 2D image sequences. Finally, 3D image
sequence smoothing algorithms have been specifically developed for ultrasound
imaging [7, 8].

In this paper we address the problem of 3D image sequence restoration by
significatively extending the framework described for smoothing 2D still images
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in [9, 10, 11]. Unlike robust anisotropic diffusion [12] and non-linear Gaussian fil-
tering [13], this local adaptive estimation approach provides a scale selection for
each pixel by locally estimating the appropriate spatial filtering window [9]. Ad-
ditionally, a confidence level (i.e. variance) attached to the each pixel is provided.
Furthermore, the Total Variation (TV) minimization method [14], commonly-
used for 2D image restoration, cannot be easily extended to a space-time domain.

The novel method introduced in this paper is able to jointly estimate the
spatial and temporal discontinuities in 3D image sequences. Also, the proposed
algorithm is non-iterative and relatively fast since its complexity can be bounded
by the user, which is necessary for processing large 4D data sets. Finally, the
theoretical properties of such an estimator are well known in non-parametric
statistics for adaptive smoothing [15, 11, 10].

While being general, the described method has been designed for analyzing1

the role of fluorescence-tagged proteins moving around the Golgi apparatus and
participating to the intra-cellular traffic. These proteins are embedded into vesi-
cles whose movement is supposed to be dependent on a microtubules network.
These vesicles propelled by motor proteins follow these polarized “cables”. This
mechanism explains the observed high velocities which could not be accounted
for a simple diffusion. Let us point out that the method is data-driven and re-
quires no motion estimation, which is known to be problematic when images are
heavily corrupted by noise.

2 Proposed Approach

We consider the following statistical image model: Yi = u(xi)+ ξi, where xi ∈ Ω
represents the pixel location in the image domain Ω ⊂ IRd (d = 3 for 2D
and d = 4 for 3D image sequences). The image function ui = u(xi) has to be
recovered from observations Yi. The errors ξi are assumed to be independent
zero-mean Gaussian variables with unknown variances τ2

i .
We need minimal prior assumptions on the structure of the image for recov-

ering u. In what follows, we assume that u(xi) is a locally piecewise constant
function in the neighborhood of the pixel xi. However, the size and shape of these
neighborhoods is not constant over the image sequence and must be estimated
too. Once such a neighborhood has been determined, the regression function u
can be estimated by optimizing a local maximum likelihood (ML) criterion. The
proposed method addresses these two issues as described below.

One important feature of our approach is to define a sequence of increasing
nested spatio-temporal neighborhoods (Wi,n)n∈[0:N ] at each point xi, i.e. Wi,n ⊂
Wi,n+1 with N indicating the largest window. At the initialization, we choose
the 26 nearest neighbors in the 3D space domain as the pilot (starting) window
Wi,0 at point xi, ∀xi ∈ Ω. Then, we can compute an initial estimate ûi,0 of u(xi)
and its associated variance σ̂2

i,0 as:

1 The authors would like to thank the ACI-IMPBio for its support and the Curie
Institute for the image sequence data-base.
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ûi,0 =
1

|Wi,0|
∑

xj∈Wi,0

Yj and σ̂2
i,0 =

1
|Wi,0|2

∑

xj∈Wi,0

τ̂2
j (1)

where |Wi,0| denotes the number of pixels in Wi,0 and τ̂2
j is an empirical estimate

of the local noise variance τ2
j as described in Section 3. This initialization step

provides the first estimates of the two sequences (ûi,n)n∈[0:N ] and (σ̂2
i,n)n∈[0:N ].

The next step consists in considering a larger window Wi,1 such that Wi,0 ⊂ Wi,1
and calculating new estimates ûi,1 and σ̂2

i,1 over Wi,1. At iteration n we define
the estimator as:

ûi,n =
∑

xj∈Wi,n

ωijYj and σ̂2
i,n =

∑

xj∈Wi,n

ω2
ij τ̂

2
j , (2)

where the weights ωij are defined as a function of the contrast between the
estimate ûi,n−1 at point xi and the estimates ûj,n−1 at points xj belonging
to the neighborhood Wi,n. The weights ωij and the geometry and size of the
windows Wi,n will be formally defined in the next Sections.

2.1 Adaptive Weights

At iteration n ≥ 1, the weights are calculated as follows:

ωij =
f(δij)∑

xj∈Wi,n

f(δij)
and δij =

ûi,n−1 − ûj,n−1

λσ̂i,n−1
(3)

where f is a function of the normalized contrast δij . Considering its robustness
and smoothing properties, we have chosen the influence function of the Huber
M-estimator defined as:

f(x) =
{

1 if |x| ≤ 1
1
|x| otherwise (4)

but other influence functions are possible [12]. Therefore, the weights decide
which points xj in the spatio-temporal neighborhood Wi,n should contribute
to the estimation of u(xi). This decision is made under the hypothesis that the
contrast is Gaussian distributed. Hence, the parameter λ controls the probability
of false alarm (satisfy the test when it should not) to include a point xj in
Wi,n. In our experiments, we set λ = 3 which corresponds to a commonly-used
probability of error of type I of 0.036.

2.2 On-Line Window Geometry Specification

One of the main contributions of this work is the on-line adaptation of the neigh-
borhood sequence (Wi,n)n∈[0:N ]. It is worth noting that points xj ∈ Wi,n that
contribute to the estimation of u(xi) are thus selected by weights in a quite flex-
ible and efficient way unlike usual methods which exploit geometry-based design
of the neighborhood. This allows us to use a simple hyper-cubic spatio-temporal
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(a) (b)

Fig. 1. (a) Spatio-temporal neighborhood: colors correspond to iterations plotted in
(b); (b) confidence intervals: circles represent estimates ûi,n obtained at each iteration
n. The grey rectangles represent the intersection between the current confidence interval
and the previous one. As long as the estimate belongs to this intersection, the estimation
process is updated.

volume for the window shape. Nevertheless, we separate the space dimension
from the time dimension and parametrize the spatio-temporal volume by intro-
ducing two extents. Figure 1 shows the considered neighborhood sequence and
how neighborhoods are enlarged along with the iterations. It is worth stress-
ing that this figure only represents a particular case and that the sequence of
neighborhoods is not defined a priori but locally estimated simultaneously to the
image filtering procedure. Thus, each point is assigned an adapted smoothing
support. This support is estimated according to the stopping rules described in
the next section.

2.3 Window Estimation

Two pointwise rules are used to drive the window estimation process. The first
one is designed to estimate the optimal window at xi and is based on the measure
of the closeness of the estimator û to the unknown function u given by the local
L2 risk. This measure of performance can be decomposed in two terms, that
is the squared bias and the variance as E [ûi,n − ui]

2 = [bias (ûi,n)]2 + σ̂2
i,n,

where E(.) denotes the mathematical expectation. In what follows, we reason-
ably assume the squared bias is an increasing function of the window size and
the variance is a decreasing function of the window size [9, 15, 11, 10]. Then, the
selected window will be the window which achieves an optimal compromise be-
tween these two terms, i.e. the squared bias and variance terms must be of the
same order: bias(ûi,n) � σ̂i,n. A closed-form optimal solution is not available for
our non-linear estimator and we arbitrarily define, as usually done, the optimal
window as the window for which the squared bias and the variance are nearly
the same. Now let us consider the sequence of increasing windows (Wi,n)n∈[0:N ]
and the sequence of estimates (ûi,n)n∈[0:N ] of variance (σ̂2

i,n)n∈[0:N ]. A practical
rule bases on pairewise comparaison of successives estimates can be derived to
detect the optimal window. We define the largest window satisfying the following
pointwise statistical rule [9, 15, 11]:
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|ûi,n − ûi,n′ | < η σ̂i,n′ , ∀n′ < n, (5)
as the optimal window since Wi,n′ ⊂ Wi,n at xi. Strictly speaking, while the
estimates (ûi,n′)n′≤n are sufficiently close to each other, then we decide to con-
tinue the estimation process. The factor η can be easily chosen in the range
[2, 4] in order to adapt the decision rule as justified in [9, 11, 10]. As shown
in Figure 1, this rule amounts to continue the pointwise estimation process,
while new estimates belong to the intersection of estimated confidence intervals
[ûi,n − ησ̂i,n, ûi,n + ησ̂i,n]. This representation brings to the fore that we don’t
have to store all the previous estimates (ûi,n′)n′≤n but only the intersection of
confidence intervals, the previous estimate and its variance for each point. We
also introduce a second rule which consists in locally stopping the pointwise esti-
mation if the confidence intervals is small enough: when the output ûi,N is stored
in an integer format, it is useless to continue to improve the estimation when
the confidence associated to the estimate is below the unit. This second rule
enables to autonomously stop the estimation process and makes the algorithm
more data-driven.

3 Algorithm Implementation

As noticed in Section 2, an estimation of the noise variance is required. Here,
we assume that the noise variance is constant over the whole 3D image se-
quence. It can be robustly estimated by calculating pseudo-residuals εi as de-
scribed in [16]. If we choose a 4D 8-neighborhood, pseudo-residuals are com-
pactly represented by εi = (8Yi − ∆Yi) /

√
72 where ∆Yi is the discrete Lapla-

cian at xi and the constant
√

72 is introduced to insure that E[ε2
i ] = τ2.

Given the residuals εi, we can then robustly estimate the noise variance τ2

by: τ = 1.4826 medi (| εi − medj |εj | |). A local estimation of the noise variance
is proposed in [9] and can also be used when the noise model proposed in Section
2 is not appropriate to descibe the spatio-temporal inhomogeneity of the image
sequence. Moreover, for Poisson distributed noises, the Anscombe transform can
be applied [17]. We have also seen in Sections 2.1 and 2.2 that λ and η can
be well calibrated using statistical arguments. In our experiments, λ is set to 3
and η to 2

√
2. During the estimation, we alternate the increasing of the spatial

and temporal extents of the 4D spatio-temporal neighborhoods. Furthermore,
the algorithm can be easily parallelized. Actually, estimation steps use only lo-
cal information and have been distributed over several CPUs. Finally, another
possibility to speed up the algorithm is to use a dyadic scheme when increasing
the extent of the neighborhood.

4 Experiments

The proposed method has been applied to both synthetic and experimental se-
quences of 2D and 3D images obtained by fast 3D deconvolution microscopy
[18]. Since the dynamics of vesicles are unknown, we first simulate a noisy se-
quence of 2D images by adding a realistic white Gaussian noise to a real denoised
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(a) original sequence (b) noisy sequence (c) 2D local adaptive
(22 dB) estimation (32 dB)

(d) PDE smoothing (e) 3D local adaptive (f) 2D + t local adaptive
(33 dB) estimation (33 dB) estimation (35 dB)

Fig. 2. Comparaison with other method on a synthetic sequence. Six 2D image se-
quences are represented as 100 × 100 × 100 volumes. First three quadrants correspond
slice XY , TY and XT . The last one is left empty. (a) original sequence used as the
ground truth ; (b) artificially noisy sequence ; (c) spatial adaptive estimation [9], i.e.
each image of the sequence is processed independently ; (d) 3D anisotropic diffusion [4]
when the sequence is considered as a homogeneous 3D volume ; (e) adaptive estimation
algorithm applied the sequence considered as a 3D volume ; (f) our 2D + t adaptive
estimation (see text).

image sequence (Figs 2(a) – 2(b)). We will also compare our method to other
methods on this simulated sequence.

In Fig. 2(c), some blinking effects or strides are visible on spatio-temporal
slices when each 2D frame of the sequence are processed independently with the
adaptive estimation described in [9]. Anisotropic diffusion [4] has been applied on
the 2D sequence considered as a 3D volume. In Fig.2(d), the sequence is strongly
smoothed and some details are lost. In Fig.2(e), the 3D adaptive estimation
algorithm described in [9] has been applied to the 3D volume. As expected,
considering the temporal dimension as a spatial dimension is not appropriate
to cope with temporal discontinuities. Finally, the results of our method are
shown in Fig.2(f). The peack-signal-to-noise-ratio defined in decibels (dB) as
PSNR = 20log10(255/mse) where mse denotes the mean squared error between
the original sequence and the result of filtering process, is drastically improved
and the dynamics of particles are well preserved. Figure 3(a) shows a detail of
a real 2D image sequence. It is first processed by equally considering the three
space-time dimensions. Undesirable blurring over three successive images of a
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(a) original sequence (b) 3D local adaptive (c) 2D + t local adaptive
estimation estimation

Fig. 3. Detail of a sequence denoised with two versions of the filter: 3D estimator and
the proposed 2D + t estimator. First three quadrants correspond slice XY , TY and
XT . The last one is left empty.

single spot along its track are visible (Fig. 3(b)). In the case of spatio-temporal
filtering (Section 2), these artifacts are removed as shown in Fig. 3(c).

We have also applied our adaptive spatio-temporal filtering method on a
database of video-microscopy sequences in order to facilitate the automatic anal-
ysis of the dynamics of two proteins Rab6a and Rab6a’ involved in particular
steps of membrane trafficking. These proteins are fluorescently-tagged and move
around the Golgi apparatus. The function of this organelle is to package materi-
als for export from the cell. Figures 4(a) and (b) show respectively a real noisy
image extracted from a video-microscopy sequence (360 × 445 × 10 pixels) and
the corresponding restored image for the fifth 2D slice in depth. The algorithm
provides visually satisfying results after ten iterations as demonstrated in Figs. 5
(a) and (b). that illustrate a cropped region of a 3D image. Note that, the point-
wise window extents shown in Figs. 4 (c) and (d) roughly correspond to the size

(a) real noisy image (b) restoration (c) spatial extents (d) temporal extents

Fig. 4. One frame depicting the spot positions at time t = 2s. The dynamics of fluo-
rescent tags has been recorded by fast 3D deconvolution microscopy. The large white
region corresponds to the Golgi apparatus while small spots are vesicles moving with
a high average speed (∼ 10 pixels/frame). (a) real noisy image (2D slice of 3D frame);
(b) denoised image using the spatio-temporal adaptive estimation ; (c) spatial extents
of windows ; (d) time extents of windows (small extents are coded in black and are
located in the vicinity of static or moving spots).
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(a) noisy volume (b) denoised volume

Fig. 5. Volume rendering of a cropped region of a 3D image extracted from the sequence
in Fig 4. (a) original real noisy 3D frame; (b) results using our adaptive spatio-temporal
method.

of space-time structures in image sequences. These spatio-temporal features will
be further exploited for analysis of these biological data. The processing time of
a sequence of 50 2D frames (360 × 445) is typically 10 min

5 Conclusion

We have described an original, adaptive and efficient method for 2D and 3D im-
age sequence restoration. Experiments on synthetic and real video-microscopy
image sequences have demonstrated its ability to smooth images while preserv-
ing both spatial and temporal discontinuities. Moreover, the presented method
does not require a fine tunning of the parameters which are well calibrated using
statistical arguments. This approach does not require motion compensation and
can be further used for biological studies where dynamics have to be analyzed in
noisy sequences. In particular, we could exploit spatio-temporal features (win-
dow size) provided by the algorithm, which can be regarded as a preliminary
step for analysis of the lifetime kinetics of specific Rab proteins. Furthermore,
this method is not restricted to biological applications and could be applied for
smoothing three dimensional ultrasound images using an estimator adapted to
the Rayleigh noise model.
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5. Dekeyser, F., Bouthemy, P., Pérez, P.: Spatio-temporal wiener filtering of image
sequences using a parametric motion model. In: ICIP’2000, Vancouver, Canada
(2000)

6. Rajpoot, N., Yao, Z., Wilson, R.: Adaptive wavelet restoration of noisy video
sequences. In: ICIP’2004, Singapore (2004)

7. Angelini, E., Laine, A., Donis, J., Gersony, D., Homma, S.: Quantification of right
and left ventricular function with real time three-dimensional ultrasound. In: Proc.
of the 23rd Annual Int. Conf. of the IEEE Engineering in Medicine and Biology
Society. (2001)

8. Mikula, M., Preusser, T., Rumpf, M.: Morphological image sequence processing.
Computing and Visualization in Science 6 (2004) 197–209

9. Kervrann, C.: An adaptive window approach for image smoothing and structures
preserving. In: Proc. of 8th Eur. Conf. on Computer Vision, ECCV’2004, Prague,
Czech Republic (2004) 132–144

10. Katkovnik, V., Egiazarian, K., , Astola, J.: daptive window size image denoising
based on intersection of confidence intervals (ici) rule. Jour. of Mathematical
Imaging and Vision 16 (2002) 223–235

11. Polzehl, J., Spokoiny, V.: Adaptive weights smoothing with applications to image
restoration. Jour. of the Roy. Stat. Soc.: Series B (Stat. Meth.) 62 (2000) 335–354

12. Black, M., Sapiro, G., Marimont, D., Heeger, D.: Robust anisotropic diffusion.
IEEE Trans. on Image Processing 7 (1998) 421–432

13. Barash, D.: A fundamental relationship between bilateral filtering, adaptive
smoothing, and the nonlinear diffusion equation. IEEE Trans. on PAMI 24 (2002)
844–847

14. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal
algorithms. Phys. D 60 (1992) 259–268

15. Lepski, O.: Asymptotically minimax adaptive estimation 1: upper bounds. SIAM
Jour. Theory of Probability and Application 36 (1991) 654–659

16. Gasser, T., Sroka, L., Jennen Steinmetz, C.: Residual variance and residual pattern
in nonlinear regression. Biometrika (1986) 625–633

17. Starck, J., Murtagh, F., Bijaoui, A.: Image Processing and Data Analysis, the
Multiscale Approach. Cambridge University Press (2000)

18. Sibarita, J.B., Magnin, H., De Mey, J.: Ultra-fast 4D microscopy and high through-
put distributed deconvolution. In: Proc. of IEEE Int. Symp. on Biomedical Imag-
ing, ISBI’2002: Macro to Nano, Washington, (2002) 769–772


	Introduction
	Proposed Approach
	Adaptive Weights
	On-Line Window Geometry Specification
	Window Estimation

	Algorithm Implementation
	Experiments
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




