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Abstract— During the last decades, satellites have acquired
incessantly high resolution images of many Earth observation
sites. New products have arisen from this intensive acquisition
process : high resolution Satellite Image Time-Series (SITS). They
represent a large data volume with a rich information content
and may open a broad range of new applications. This article
presents an information mining concept which enables a user
to learn and retrieve spatio-temporal structures in SITS. The
concept is based on a hierarchical Bayesian modeling of SITS
information content which enables us to link the interest of a user
to specific spatio-temporal structures. The hierarchy is composed
of two inference steps : an unsupervised modeling of dynamic
clusters resulting in a graph of trajectories, and an interactive
learning procedure based on graphs which leads to the semantic
labeling of spatio-temporal structures. Experiments performed on
a SPOT image time-series demonstrate the concept capabilities.

Index Terms— Spatio-temporal learning, information mining,
Bayesian modeling, dynamic cluster trajectories, semantic label-
ing.

I. INTRODUCTION

A. Satellite image time-series

NOWADAYS, huge quantities of satellite images are
available from many different Earth observation sites.

Moreover, thanks to a growing number of satellite sensors,
the acquisition frequency of a same scene is permanently
increasing. Furthermore, the high spatial resolution of the
sensors gives access to detailed image structures. Thus,
opportunities to compose high resolution SITS are growing
and the observation of precise spatio-temporal structures in
dynamic scenes is getting more and more accessible.
Experiments presented in this paper were performed using
a SITS, partially visible in figure 1. The SITS is composed
of SPOT multispectral images containing 2000x3000 pixels.
The spatial resolution is 20 meters. The acquired scene is a
rural area located in the East of Bucharest (Romania). The
acquisition campaign was driven in order to provide remote
sensing data for the Data Assimilation for Agro-Modeling
(ADAM) project. The SITS was obtained by daily acquisition
and by filtering out images presenting a cloud or a snow
cover above the project test sites. This selection procedure
resulted in 38 images irregularly sampled in time, which were
acquired over a period of 286 days. Figure 2 displays the
irregular sampling of the SITS. The images were then made
superposable and a radiative transfer model was applied to
produce reflectance measurements. The ADAM project SITS
is available on-line [1].

SITS are complex objects possessing a rich information
content. They contain numerous and various spatio-temporal

Fig. 1. SITS contain many spatio-temporal structures. The yellow arrow
points out a ploughing phenomenon occurring in the ADAM SITS. We can
also see a plane occlusion in the image acquired 32 days after the first
acquisition (14 novembre 2001), as well as the smooth evolution of the forest
cover.

Fig. 2. Acquisition dates of cloud free images in the ADAM database. The
horizontal axis represents time which is irregularly sampled while the vertical
axis represents the time difference between consecutive acquisition dates.
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Fig. 3. Phenomenon process changes which occur in a dynamic scene
have different time-scales. For example, plane occlusions are evanescent
objects over short time-periods whereas buildings are stationary objects over
long time-periods. Phenomena process which are changes relevant to crop
evolutions, such as the growth of crops or their harvests, possess various
time-scales. Spatio-temporal objects with time-periods below the blue dashed
line, might possess higher frequencies in their spectrum than the sampling
limit frequency.

structures. For example in rural scenes, one can observe the
growth and the maturation of cultures, their harvests, evolu-
tions of ploughland, river floods, etc. Near urban areas, car
and plane occlusions are frequent but there are also evolving
constructions, pollution phenomenon, etc. Some examples of
spatio-temporal structures are pointed out in figure 1.
The analysis of spatio-temporal structures are useful to un-
derstand complex evolutions which concern various domains
such as agriculture, forest monitoring, ecology, hydrology,
urbanization, etc. But our capacity to store these large volumes
of data has exceeded our ability to access the broad variety
of information contained in it. Indeed, limited tools exist to
exploit this huge potential of information. Change detection,
monitoring and validation of physical models by data as-
similation constitute the most used analysis for information
extraction in SITS. The methods developed in these fields are
complicated and dedicated to specific applications. Although
these techniques are efficient, together they represent a limited
range of applications. Nevertheless, one may be interested
in finding a specific forest cover evolution or in detecting
wheat harvests occurring during a given period. Until now,
only few methods have been developed. They mainly focus
on low resolution images regularly sampled in time such as
meteorological data [2] [3] [4]. Thus, in order to adapt to a
broader range of application and to have access to the variety
of information contained in SITS, collaborative and generic
methods are needed.

B. Information mining

Large volumes of data are important resources. But to be
relevant, users must be able to interpret the data information
content. Understanding this huge quantity of data, which may
be complex and multidimensional, can represent laborious
work for users. Images are particularly complex objects
possessing rich information contents. A manual analysis
of associations and relations among images is not feasible.
Furthermore, the usefulness of such an analysis may be
restricted to a particular application. But there is a broad
diversity of application domains and it is not possible to

produce a specific analysis for each one of them. Generic
analysis methods are needed to respond specifically to the
needs of each application domain.
In summary, in many fields, there is a real need to
transform growing databases into knowledge. The objective
of information mining is to solve this problem, by adapting
the data information content to the users’ needs. Information
mining can be defined as the non-trivial process of analyzing
data in the perspective of discovering implicit but potentially
useful information. The discovered information can be for
instance patterns, association rules, causal effects, changes,
anomalies, etc. An information mining perspective enables
content based retrieval, knowledge discovery and data
understanding.
The information mining problematic can be understood as
a communication channel problem with : on one hand the
database representing the information source and, on the
other a user representing the receptor. Along the channel,
the data is hierarchically processed, inducing a signal
representation followed by a semantic representation. The
signal representation is obtained by extracting information
from the data by stochastic modeling of the signal. In such
a case, extracted information is described with a particular
model vocabulary, which is unmeaningful for users. The
semantic representation is obtained by modeling the users’
semantics. In such a case, information is described with a
vocabulary and a syntax natural to users.
The goal of information mining is to bridge the semantic gap,
that is to say, to minimize the loss of information between
information available through the semantic representation,
and information obtained by a direct data inspection.

Before going into the kernel of this paper which is the
description of a SITS information mining concept, let us
motivate our approach by pointing out some difficulties for
SITS modeling.
The analysis of spatio-temporal structures in SITS is particular.
Indeed, structures are characterized by heterogeneous temporal
and spatial scales. Figure 3 illustrates the variety of temporal
scales attached to structures. Spatial scales of structures are
also very different. Thus, SITS modeling methods should cap-
ture information at various scales. However, a pixel-localized
time-series analysis is generally not appropriate to characterize
high resolution SITS structures. For the ADAM database in
particular, the superposability difficulties, the irregular sam-
pling, and the sampling limit frequency, prevent a pixel-
localized stochastic modeling. The dashed vertical line in
figure 3 illustrates this limit. It discriminates objects which
possess higher frequencies in their spectrum than the sampling
limit frequency. To fight against these constraints, analysis at
an object level may be more robust against noise and super-
posability errors. Moreover, it may enable an investigation
below the frequency limit by using contextual information.
For instance, the behavior of the smoke of a factory, which
is an object evolving in space according to the wind effects
and in time according to the factory activities, can be modeled
in a more efficient way using its spatial context rather than a
space localized time-series analysis.
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Fig. 4. Hierarchical modeling of SITS information content. The hierarchy enables users to link spatio-temporal structures to their specific interests. First,
primitive SITS features

�
are extracted from the data � . Two complementary representation are induced by using the TL feature spaces and the MT feature

space. Next, dimension reduction techniques are applied and result in projected features � . Then, the feature distributions are learned and clusters � and
classes are discriminated. The unsupervised learning procedure is finally achieved by inferring graphs ��� and dynamic classifications, which code the data
structures. By interactive learning, the user interests �	� are linked to the graphs and semantic labels are assigned to spatio-temporal structures.
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To respond to the problematic of information mining in
SITS, we presents in the following section a Bayesian hierar-
chical modeling of SITS information content. The different in-
ference steps of the hierarchy are hereby detailed : we present
in section III an unsupervised learning procedure which results
in a graph of dynamic cluster trajectories, and in section IV
we detail an interactive learning procedure which results in a
semantic labeling of spatio-temporal structures. The graph of
trajectories and the semantic labels constitute the signal and
the semantic representations of the SITS information content.
In section V, experiments performed on the ADAM dataset
are presented and finally, in the last section, conclusions are
drawn.

II. BAYESIAN HIERARCHICAL MODELING OF SITS
INFORMATION CONTENT

In order to build an information mining system for dynamic
scene understanding which is free from the application speci-
ficity and which enables its open use in almost any scenario,
we use a Bayesian hierarchical model made up of 6 different
levels (Fig. 4). The model links the information source � ,
which represents a SITS comprising spatio-temporal struc-
tures, to the different users’ semantics ��� . The hierarchy is
defined by the relation between the random variables�����	��
��������������

(1)

where � , � , � , � , ��� and ��� are the random variables
realizations which are associated to more and more refined
levels of information representation. As it is a Bayesian hier-
archical model, the inference of a higher level in the hierarchy
depends on the adjacent lower level and, conditionally to the
latter, is independent of all other lower levels. Thus, given
some data, we infer the most likely model by maximizing the
joint distribution

��� �! "�$# ��� �� %�&# �'� �� %�(# �'� �) "�*�+# �'� �*�( ,���-# ��� ���-#/. (2)

Hence, the levels of the hierarchy are learned independently by
applying Bayesian inferences or inferences based on entropic
measurements on families of stochastic models. Moreover, for
each learning step, we can incorporate prior knowledge by
using Bayes rule. We decompose the hierarchy into two parts
: 0

unsupervised learning
���� �

: for a particular SITS re-
alization � , we infer a collection of graphs �1� represent-
ing dynamic cluster trajectories coding spatio-temporal
structures;0
interactive learning

���2�3���
: the collection of graphs� � are linked to a collection of users’ semantics � � ;

thus we induce a semantic labeling of spatio-temporal
structures of SITS.

The graph inference, which requires a significant
computational cost, is an application-free learning procedure.
Based on this objective representation, the semantic labeling,
which is interactive, learns user-specific interests using
positive and negative examples.

Before detailing the levels of the hierarchy, let us introduce
several spaces for the SITS representation. Image time-series
are stochastic processes which are usually represented in
a multidimensional space comprising two spatial axes 4 , a
time axis 5 , and several feature components 6 (radiometric
values, texture parameters,...). Since the features are assumed
independent, the analysis of the multidimensional space is
done independently on the different types of features. In such
a multidimensional space, the signal denoted by 7 � 4,.859.:6;# is
represented by a cloud of points. This is the natural space
for the SITS representation. But, SITS possess several other
representations which lead to various interpretations. We
hereby introduce as follows, several spaces for the SITS
representation which are used in the proposed information
mining concept.
The space formed by the feature components 6 and the time
axis 5 is called the dynamic feature space. In this space, SITS
is represented by a histogram of features evolving in time.
As the evolving features depend on their spatial location, we
note as 7=< � 59.86;# this evolving histogram.
Considering > time samples, we denote by ?@6%ACBED the > feature
components localized at different times ?@58F8G+H�IKJML;.ONPNQNP.8>"RSD . We
can form > different Time Localized (TL) feature spaces with
the > different time localized feature components 6%ACB . In them,
we represent SITS by a succession of histograms of features.
As each feature is linked to a spatial location, we note these
signals as ?T7-< � 6UACB:#/GOIVJML;.ONPNQNP.8>"RWD . These spaces constitute the
different states of the dynamic feature space. If we group
features by similarity, we obtain > different collections
of clusters ? �YXACB GWZ\[]L;.ONPNQNP.8^ A B:D . In the image space, we
represent the > spatial classifications ? �_XA B � 4%#9GWZ`[aL".@NQNPNP.8^bACB8D
associated to the collections of TL clusters.
The MultiTemporal (MT) feature space is a multidimensional
space composed of the > TL feature components?@6 A BcG8H\[ L;.ONPNQNP.8>dD . In this space we represent SITS by
a multidimensional histogram of features. As this histogram
depends on spatial locations, we note it as 7 < � 6 ASe .ONPNQNP.:6 Agf # .
If we group features by similarity, we obtain a collection of
clusters ? �hXi&j GWZk[lL".@NQNPNP.8^ imj D . In the image space, we
represent the spatial classification ? � Ximj � 4%#9GnZm[oL".@NQNPNQ.E^ imj D
associated to the collection of MT clusters. By projecting
the MT clusters in the different TL feature spaces, we
can decompose the MT representation and reconstruct the
different states of the dynamic feature space. We denote by�YXimjTp B , an MT cluster projected in the TL feature space at
time 5qF .

Equipped with these SITS representations, we present the
different levels of the hierarchy.

r The lowest level represents the data � , which is con-
stituted by spatio-temporal structures defined in time
windows and spatial masks.r First, by using different signal models, features � are
extracted from the data at a pixel level for the different
time locations ?@5 F D;G+Hs[tL".ONPNPNQ.E> . We then induce two
complementary representations by placing them in the
TL feature spaces and in the MT feature space.
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r Next, to fight against the “curse of dimensionality”, we
employ dimension reduction techniques to extract, from
the MT feature space, interesting projections containing
linear and non-linear structures. The projected features� are represented in a space composed of the extracted
components.r Then, the distribution of the MT projected features and
the TL features are learned using a Gaussian mixture
model of unknown complexity. The modeling procedure
discriminates MT and TL clusters � possessing Gaussian
shapes. MT and TL classifications are then produced, by
mapping these clusters in the image space.r The unsupervised learning procedure is finally achieved
by inferring graphs �1� coding the data structure of SITS.
They model the dynamic feature space by formalizing
trajectories of MT clusters through TL clusters. Addition-
ally, a spatial constraint is introduced into the inference
by using the MT and TL classes.r By interactive learning, the users’ interests � � are linked
to the graphs which represent spatio-temporal structures.
To complete this semantic labeling, parameters of a graph
similarity model are interactively estimated by updating
probabilities of a Bayesian network. This update is per-
formed using a Dirichlet model with positive and negative
examples provided by a user.

III. UNSUPERVISED INFERENCE OF A GRAPH OF DYNAMIC

CLUSTER TRAJECTORIES

A. Feature extraction

Dynamic scene understanding relies on the ability and
robustness of information extraction from the observed data.
We apply appropriate stochastic models ����� to capture
spatial, spectral, or geometric structures in each image of
the time-series at a pixel level. These models are given
as parametric data models �'� �  �� .������1# and assign a
likelihood to a given realization of the data � for a particular
value of the parameter vector � . Examples of these image
models are Gibbs-Markov random field models for textural
features or the intensities of the multi-spectral images for
spectral features [5]. Of course, for the latter, no sophisticated
modeling is involved.
The extracted features are represented in the MT feature
spaces by the signal 7-< � 6UA e .ONPNQNP.:6UA f # . Together with the implicit
spatial index 4 , this signal carries the global information on
the time-series. But, these extracted features can also form,
in the TL feature spaces, a collection of signals ?@7$< � 6UACBq#9D
with H'[oL".ONPNPNQ.E> .

In the next two sections, we detail the analysis of the
extracted features represented first in the MT feature space
and then in the TL feature spaces. Finally, we use these two
types of representation to model the dynamic feature space.

B. Modeling a multitemporal feature space

1) Dimension reduction: The MT feature space represents
a space of high dimensionality since it results from the
union of all the TL feature spaces. A direct application of a

nonparametric procedure is severely restricted in this case,
by the limitation called the “curse of dimensionality” [6].
However, the information contained in a feature space of
high dimensionality can often be represented with fewer
dimensions. In remotely sensed images in particular, the
spectral bands usually present redundancies. Furthermore, the
phenomenon is likely to be accentuated when considering an
MT feature space. Dimension reduction techniques, exploit
this property to reduce the space dimension by extracting
interesting projections.
Dimension reduction techniques study statistical methods like
principal component analysis (PCA) or projection pursuit
(PP), which are to some extend, equivalent to methods based
on discriminant analysis [7]. Indeed, PCA is suited for
linear analysis while PP can exploit the extra compression
associated with non-linear relationships. Furthermore, the
application of these statistical methods, enables us to release
from the singularity problems which often occur in high
dimensional spaces. Resulting projections are then modeled
using a Gaussian mixture assumption (c.f. section III-B.2) in
which multimodal patterns are discriminated.
Assuming a model ���	� for the 
 dimensional distribution
associated with � feature realizations � [ ?T6�U.ONPNPNQ.86���D ,
the quality of the � dimensional projected features� [ ?����,.ONPNQNP.����-D can be evaluated by the likelihood��� �  �2.����	� # . Gaussian distributions for PCA or just
non-Gaussian distributions for PP are examples of these
models.

Principal Component Analysis is a linear projection of a

 dimensional space into a space in which the axes of the
projections called principal component axes are decorrelated.
Moreover, the principal components are ordered according to
a variance criterion. In other words, the Z A�� eigenvector of
the data covariance matrix corresponding to its Z A�� biggest
eigenvalue defines the Z A�� principal component axis. This
eigenvalue decomposition is more convenient than the max-
imization of the projection likelihood. The analysis relies on
the assumption that the data has a normal distribution in the
feature space.
From another perspective, PCA searches for an orthogonal
base which minimizes the quadratic distance between the
vectors ?T6 F G:H [ L".ONPNPNQ.�� D of the 
 dimensional data and
their orthogonal projection on this base. This is equivalent
to maximizing the inertia of the projection defined by:

� [ L
�

��
F�� �

  � F   "! i (3)

The index � here outlines the fact that the data has been
normalized by an appropriate matrix M and transformed in
order to have a mean equal to zero. In order to perform a
dimension reduction, only � principal components with �$#%

should be selected. To evaluate the loss of information, we
use the signal energy & [('*)F�� �,+ F where the + F represent
the eigenvalues of the features � autocorrelation matrix. Thus,
selecting the � first principal components corresponds to a
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percentage � of restitution of the signal energy equal to

�K[ ' � F � � + F&
� L ��� N (4)

Projection Pursuit groups dimension reduction techniques
that extract linear projections which contain non-linear
structures from a multidimensional space. Furthermore,
under certain assumptions, the extracted components are
independent from the others. The extracted components are
ordered according to a criterion of non-Gaussianity evaluated
by a projection index. This approach is equivalent to the
maximization of the projection likelihood [8]. The analysis
rely on the very general assumption that the data possesses
a non-Gaussian distribution, which is in most cases, a valid
hypothesis. After selecting a sufficiently large percentage of
the signal energy with PCA, we apply PP on the reduced
signal in order to exploit the extra compression associated
with non-linear relationships.
The higher the dimensionality of the extracted projections,
the richer their information contents. For example, structures
in a plan can not always be detected in one-dimensional
projections. We perform our analysis using a bi-dimensional
projection index based on the chi-square distance. The
relevance of this distance for the approximation of Kullback-
Leibler divergence has been shown in [9]. In order to reveal
all the maxima of the projection index, we employ an efficient
stochastic optimization procedure proposed by Posse [10]
combined with the structure removal technique proposed by
Friedman [11].
To perform a dimension reduction, the � first independent
components with ��� 
 are selected. � -values are employed
in order to decide whether the components are the effect
of noise or are really independent. Indeed, � -values are
useful to determine limits which correspond to probabilities
of projection independence [9]. Thus, for a given index limit
called quantile, � independent dimensions are extracted and
dimension reduction is achieved.

Dimension reduction techniques such as PCA and PP are
able to condense the information contained in the MT feature
space into a sub-space of lower dimensionality. They provide
an efficient solution for parameter and model inference in
multidimensional spaces with limited sample sizes.

2) Mixture modeling:
Gaussian mixture models. Stochastic models are appropriate
tools to learn about this multidimensional signal. A Gaussian
mixture model is able to approximate efficiently, any dis-
tribution for which no prior knowledge is available and in
particular multimodal distributions. Thus, a Gaussian mixture
assumption is well suited to model the distribution of the
� dimensional realizations ��[ ?�� �T.@NQNPNP.�� �$D of the random
variable



, which are assumed independent and identically

distributed. A mixture modeling procedure can infer similar-
ities that can then be used for clustering the feature space.
Components of the mixture are constituted by the grouping of
similar feature points and thus, will define clusters � .
For ^ components weighted by ?	� � D and possessing mean

vectors noted as ? � � D and covariance matrices noted as ?�
 � D ,
the � dimensional distribution of a Gaussian mixture model
�� i is defined by

��� � F  � .��� i #�[
��� � �
� � �'� � F  � � .�
 � # ,

��� � �
� � [oL". (5)

where

��� � F  �� � .�
 � # [
 
�� ��  ��� !��� � # � � ! ����� ? � L� � � F � � � # j 
 � �� � � F � � � #cD N (6)

In order to perform the modeling procedure without any
constraints either on the number of Gaussians present in
the mixture or on their parameters, a criterion is needed
to select the best model among all the possible Gaussian
mixture configurations. In order to infer among a collection
of models, the minimum description length (MDL) principle
is applied.

Model selection by the MDL principle. For the � real-
izations � [)?�� �U.ONPNPNQ.�� �-D , we choose out of a finite set of
possible models ? � � .ONPNQNP.�� i D , a model hypothesis � X of
distribution ��� �l � X # for � . We consider also the code
length function (measured in bits) ��� � � � # needed for the
description of � under the model hypothesis �)F . A bijection
appears between the probability distribution ��� �  � X # , and
the code length function ��� � � �&# . Indeed, !��

�"� � � �m#*[#� �%$'& ! ��� �� � X #/N (7)

Minimizing this code length, called by Rissanen, “stochastic
information complexity”, over � X selects the model maxi-
mizing the Bayesian evidence. But the computational cost of
this quantity is often prohibitive. A first order approximation
is achieved by the so called “2-part MDL code” [12]. For
parametric model families, this code length function noted
as � !�( � �&# is composed of two terms : the code length
necessary to encode the model and its estimated parameter)*

, and the code length necessary to encode the data keeping
in mind the model and its estimated parameters. The first
description length part is induced by the model and parameter
encoding using non-informative prior distributions. It is noted
as �,+ �$H.- � $,>0/ � � X # . The second description length part is
related to the model maximum likelihood ��� �  )* .�� X # . Thus,
the 2-part MDL code is defined by

� !�( � �m#�[1� �2$'& ! ��� �  )* .�� X #3�4+ �$H.- � $,>0/ � � X #9N (8)

The MDL principle states that the best model among a
collection of tentatively suggested ones, is the one that
encodes the data with the smallest code length. To estimate
the code length, we can use the stochastic information
complexity or its first order approximation, the 2-part MDL
code. The computation of this approximation requires a less
intensive calculation procedure and is particularly convenient
for mixture modeling.

MDL principle for Gaussian mixture modeling. On the
basis of the 2-part MDL code, we derived the description
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length of the data for the family of Gaussian mixture models.
A simplified model, neglecting the influence of surrounding
Gaussian components and assuming constant variances for the
Gaussians, was previously developed in [13]. A 2-part descrip-
tion length, derived from modeling a mixture of uncorrelated
Gaussians, has been proposed by Wallace and Dowe [14]. In
this paper, we extend this algorithm to the correlated Gaussian
mixture model. This algorithm is to some extend, equivalent
to the Bayesian Autoclass algorithm [15]. We assume the
hypothesis of non-interfering Gaussians. The 2-part MDL
code length for encoding the data � [!? � �U.ONPNPNQ.�� �-D using
a Gaussian mixture model of ^ Gaussians of dimensionality
� , is defined by the expression

� !�( � �m# [ �%$'& ! � ^ )�� � # � ^ �2$'& ! � � # (9)� ��� � �
� � � � � LT#

� �%$'& ! � � � � #�� � � � �%$'& ! � �
� �� B����	��
 �! �%$'& !

 
 � ��  
� � � �

A � � F � � � # 
 � �� � � F � � � #
��� �2� # ��

where ^ )�� � denotes a maximum number of Gaussians in
the mixture and � � denotes the � A�� Gaussian of the mixture.
Appendix I details how this 2-part description length is
derived.

Optimization. The goal is to estimate ^ , ? � � � .�
 � #9D and?	� � D , by minimizing � !�( � �m# . Enumerating all configurations
and evaluating the 2-part MDL code is not feasible. Instead,
an optimization algorithm which evaluates the changes of the
code length between two configurations rather than the code
length itself is used.
Before introducing the general algorithm, one can prove that
the change of the code length induced by the removal of a
given Gaussian � ��� is defined by the expression� � � � � � !�( � �&#8#�[ (10)

� �%$'& ! � � # � � � � � LT#
� �%$'& ! � � � � � # � � � � � �2$'& ! � � �

�
��

X � ��� X��� � � � 

� � X � � X � � #��%$'& ! � � X � � X � � #3� � X �%$'& ! � X �

� �� B ��� � � �2$'& !
� � � � � Fn#� � � � � � � FW# �

��
X � ��� X��� � �

�� B ��� � �%$'& !
� X � � FW#� X � � � � Fn#

where � X and � X � � are the maximum likelihood (ML)
estimates of the weight of clusters Z before and after removal
of � ��� , and where � X � N # and � X ��� � N # are respectively the
ML estimated probability distribution of � X before and after
removal of � � � . � � � � � � � FW# is the ML estimated distribution
of the most probable Gaussian which is assigned to � F
after removal of � � � . Appendix II provides a proof for
equation (10).

The optimization algorithm is composed of the following
steps :

1- Initialization : A initial Gaussian mixture is produced.
It is composed of a high number ^������ of Gaussian,

with parameters noted as ? � � ������ .�
 ������ #cD and ?'� ������ D . The
initialization is done by randomly spreading the clusters
according to a Gaussian distribution of mean and variance
learned from each data feature component.

2- Adaptation : At iteration ��� # , we consider ^��! "� Gaus-
sians in the mixture. An Expectation Maximization (EM)
algorithm [16] is used to perform a ML estimation of the
Gaussian mixture parameters ? ��#� �$ %�� . )
 �$ "�� #9D and ? )� �$ %�� D .

3- Selection : For the same iteration �&� # , we remove the
Gaussian � � � which induces the biggest decrease in the
description length

� �! "�� � � � � !�( � �(' #:# . Then we increment��� # and go back to step 2. If no decrease is observed, that
is to say if !)� � � . � �$ "�� � � � � !�( � �(' #:#�# � , then we do not
remove any Gaussians and go to step 4.

4- Convergence : if at iteration ��� /�� > # , no other decrease
in the description length is observed, then the algorithm
stops iterating step 2 and 3. We then obtain the estimated
number of Gaussians

)^ [ ^*�! + �-,�� with the ML
estimates of the parameters of the mixture model? #� �$ + �-,��� . )
 �$ + �-,��� . )� �! + �-,��� D .

The MT feature space is modeled according to a Gaussian
mixture distribution. Thus, we learn the parameters ^ imj ,? � � � .�
 � #cD and ?	� � D related to the Gaussian mixture model.
The modeling procedure infers similarities which are then
used to cluster this multidimensional feature space. Therefore,
each Gaussian � � comprises feature points and defines a
cluster

�YXimj . In parallel, MT spatial classes
�_Xi&j � 4%# of the

image time-series are generated.

C. Time-localized representations

Our interest is focused on understanding the dynamic of
image structures in different time locations. To achieve this
goal, there are two different approaches to decompose the
signal in time.

1) Projecting the multitemporal feature space: From
an initial perspective, the signal representation in the MT
feature space 7 < � 6 ASe .ONPNPNQ.86 A f # can be projected to enable
TL representations. Consequently, each MT cluster

� Ximj
with Z I JQL".E^ imj R can be projected into > different TL
feature spaces. We obtain projected MT clusters denoted by? �YXimjUp B G85qF IKJML;.8>"RSD . The projected clusters are representative
of global behaviors decomposed in time. Furthermore, they
are specific of the MT feature space modeling. Consequently,
they contain information about the time evolution of the
feature distribution.

2) Modeling the time-localized feature space: New
modeling procedures can be performed directly for each of
the TL representations 7-< � 6UACB:# , independently from the MT
feature space modeling. This procedure produces > sets of
TL clusters ? �hXA B G:5 F I JQL".E>%RWD with Z`I JQL".E^ A BWR , where ^ A B is
the number of estimated clusters at time 5 F . In parallel, spatial
classes

�hXACB � 4%# are obtained. In this case, the TL clusters are
defined for given time locations which are specific to the



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. X, NO. XX, MONTH YEAR 8

TL feature space modeling. Consequently, they contain TL
information on the feature distribution.
To perform these > TL clusterings, we use the MDL based
Gaussian mixture modeling algorithm defined in section III-
B.2.

3) Complementarity of the representations: The MT feature
space contains global information including the TL infor-
mation. Moreover, for TL clustering, the separability of the
different clusters is not as clear as for the MT case.
However, TL analysis in contrast to the analysis of the
highly dimensional MT feature space, allows a more detailed
information extraction.
Consequently, as the interest is a time decomposition of the
signal, one should associate these 2 different TL representa-
tions for a complete understanding of dynamic clusters.

D. Modeling the dynamic feature space

Our interest is now focused on modeling the signal 7$< � 59.:6;#
represented in the dynamic feature space.
Each MT cluster has a particular behavior when observing
its evolution into successive TL representations. For example,
some MT clusters may share the same cluster at a given time
and split or/and merge with other MT classes at another time.
The problem is to quantify, at a given time, the similarity
of these projected MT clusters with the goal of inferring
spatio-temporal relations. Since our interest is particularly
time locations and according to the previous remarks on
the complementarity of both TL representations, we propose
the following model of trajectories : the trajectories of
the projected MT clusters

� �imj p B at the different times?@5 F G8H [ L".@NQNPNP.8>dD are formalized using collections of TL
clusters

�YXACB .
1) Inference of dynamic cluster trajectories:
Based on these considerations, we define a model, noted

as �4� , for the dynamic cluster trajectories. This model is
a probabilistic distribution on the MT cluster collection �
conditioned by a graph of trajectories � constituted with TL
clusters. Thus, we define the likelihood �'� �  �� .�� � # of a
given a graph of trajectories.
To express this distribution, we hereby introduce a few no-
tations. We decompose the graph in a set of ^ i&j graphs of
trajectories � [�? � � .ONPNQNP. � ����� D formed by TL clusters, where
each graph

� �
is associated to an MT cluster

� �imj I�� .
In order to decompose this joint probability distribution, we
assume that the constitution of the trajectories associated to the
different MT clusters are independent and that the association
of an MT cluster with a given TL cluster is independent of
associations with other TL clusters (localized at the same time
but also at other times). Therefore, for a given MT cluster set� , we derived a likelihood of a graph of trajectories

�
with

the double product

��� �) %� .����#*[
������� � �

�

� F � X � ��� �p B ��� �
�'� �YXACB  � �i&jUp B #/N (11)

To apply this model, we need to define the probabilities��� �YXA B  � �imjUp B # . We use the Kullback-Leibler divergence [17]

noted as
� � � �i&j p B . �YXACB # , which is an entropic measurement

able to compare the two different TL distributions and learn
about their similarity. Because of the relative interest for each
of the MT class separately, a spatial constraint is introduced
: this divergence measurement is weighted by the number of
data points belonging to both of the corresponding MT and TL
spatial classes. Let us denote by 	�
 4,> � N # an operator taking as
an argument a spatial map and returning its population. Thus,
we define the probabilities

��� �YXACB  � �imj #*[ L� 	�
 4U> � � �imj � 4%#� �YXACB � 4,#8#� � � �imjUp B . �YXACB # (12)

where
�

is a normalization constant. Note that the clusters
are characterized by multivariate Gaussian distributions and
thus, the divergence calculation is performed analytically. The
maximum of the likelihood probability (c.f. Eq. 11) can be
obtained by using graphs

� �
comprising all the TL clusters�YXA B . But as the objective is to infer only the most likely

associations of MT clusters with TL clusters, we limit the
graphs complexity by removing associations with TL clusters
which possess a probability �'� �hXACB  � �imj # below a given
threshold � . Thus, the graphs

�$�
maximizing the likelihood��� �! =��.��4�*# are simply those constituted with TL clusters

for which probabilities �'� �hXACB  � �imj # are higher than � .

Hence, using MT clusters, we infer graphs of trajectories
of dynamic clusters which are composed of TL clusters
and where the complexity of the graphs depends on a
threshold parameter � . These graphs constitute a model for
the signal representation 7�< � 59.:6;# in the dynamic feature space.

2) A graph of dynamic cluster trajectories:
The image time-series 7 � 4,.:59.86;# has been previously sub-

mitted to several processing levels. They result in a specific
representation 7 < � 59.:6;# which is a graph modeling the trajec-
tories of dynamic clusters. The chronology of the time-series
and the irregular sampling information are stored in the graph.
The trajectories information is condensed in the nodes and
branches of the graph. Figure 5 summarizes the description of
the graph characterizing the dynamic clusters.r A node represents a TL cluster

�_XACB defining the Z A��
component of the Gaussian mixture at a given time 58F and
is related to a collection of MT clusters by a set of proba-
bility measurements. The complete Gaussian mixture at a
given time 5qF is described by the entire set of TL clusters.
Each MT cluster

� �imj associated to the node
�_XA B is

characterized by a pixel weight 	�
 4,> � � �imj p B � 4%#� �YXACB � 4%#8# ,
a divergence measurement and TL Gaussian parameters.
Moreover, each node regroups a set of indexed points in
time and space represented in a TL class

� XACB � 4%# .r The branches of the graph represent the MT cluster
evolutions between two image samples. A branch, linking
two consecutive TL clusters

�hXACB and
� �ACB�� e which is

related to a given MT cluster ? � �i&j D , is characterized
by a time sampling interval

� 5 F , a pixel flow and TL and
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Fig. 5. Description of the graph of dynamic cluster trajectories.

MT Gaussian parameter evolutions. The flow of feature
points exchanged between the TL cluster

�_XA B and
� �A B � e

is the number of pixels shared by the two TL spatial
classes

�YXA B � 4%# and
� �A B�� e � 4%# . Furthermore, because of the

restriction to a given MT class, the flow is determined
by the number of pixels shared by the previous TL
spatial classes and the MT spatial class

� �imj � 4,# . The
quantization of flow of feature points enables us to
evaluate the merging and the splitting of the dynamic
clusters in time and in each feature dimension. These
phenomena are simply related to the number of in going
and out going branches associated to the nodes.
The internal MT cluster changes between two consecutive
times 5qF � � and 5qF can be quantified by mutual information.
By using the projections of an MT cluster in two con-
secutive times 5qF � � and 5qF , mutual information between
the two Gaussian projections can be measured using an
analytical computation. Appendix III details the mutual
information analytical calculation.

The graph characterizing the dynamic clusters 7 < � 59.86;# is
a representation of the signal where the spatial variable 4
is hidden. However, spatial indexes related to each point in
this feature space representation are accessible. Exploiting
them permits us to generate representations in the image
space. Indeed, we can associate to the ^ imj different
MT cluster trajectories, ^ imj different representations
in the spatio-temporal space. This space is formed by
the spatial and temporal components 4 and 5 . We call
these representations dynamic classifications. At each time5qF I JQL".E>%R , each dynamic classification is composed of a
particular combination of TL classes

�_XA B � 4%# . The TL classes
of the dynamic classification related to the � A�� MT class� �imj � 4%# , are those which correspond to TL clusters in the
associated graph of trajectories

�$�
.

These dynamic classifications constitute the signal 7 � � 4,.85:#
which contains spatio-temporal information missing in the
dynamic feature space representation 7 < � 59.:6;# . Together, these
representations describe objectively the feature evolution and

the spatial evolution of the image time-series 7 � 4,.:59.:6 # .
IV. USER-SPECIFIC SEMANTIC LABELING BY

INTERACTIVE LEARNING

In this section we focus on a very important step in
providing content-based query techniques: the interaction
with the user and the flexible incorporation of user-specific
interests. It constitutes the last level of the hierarchical
information modeling. The semantic modeling detailed in
this section was previously presented in [18]. The learning
framework presents similarities with the one adopted by
Schroder et al. [5].

Spatio-temporal processes, present at a given time and in a
spatial window, can possess subjective user-specific semantics
denoted by

� �
. A user may be interested in retrieving similar

events and thus, may want to know when and where similar
spatio-temporal patterns occurred. Moreover, the inference of
the graph

�
is a robust and unsupervised coding of SITS.

And, as sub-graphs
� �

contained in
�

are stochastic models
for these spatio-temporal patterns, they can also possess
user semantics1. Therefore, based on this objective signal
characterization, we are interested in learning semantics
from users in order to achieve a semantic labeling of sub-
graphs representing spatio-temporal patterns. Such a learning
procedure could enable the recognition and the probabilistic
retrieval of similar events.
In this perspective, we schematize in figure 6 the interactions
between a user and a graph-based learning system : the user
transmits to the system time-windows and spatial masks
corresponding to spatio-temporal patterns of interest or
non-interest; based on the graph representations associated
to these positive and negative examples, the system learns
interactively user-specific interests and retrieves a collection
of spatio-temporal structures with similar semantics occurring
in defined time-windows and spatial masks.

In order to define a model for user-specific semantics, a
parametric similarity measure

��� � � � . �-� # between two sub-
graphs

� � and
���

is employed [18]. This measure is an
extension of the inexact matching algorithm proposed in [19].
The parameter vector

*
weights the contribution of each type

of sub-graph features. A given parameter vector corresponds to
a particular user-specific similarity and formalize a particular
semantic.
By defining interactively a similarity, it is possible to link the
subjective elements

� �
representing the user semantics to the

objective sub-graph features
� �

by learning the likelihood

��� ���  ��� .����d#�[
���� � )� � . � � #� A
	qA . (13)

where
)*

is an estimated parameter vector,
)� � is an estimated

reference sub-graph, and
� A
	:A is a normalization constant en-

abling to map the similarity function values into probabilities.

1Conversely to notations of section III-D.1, graphs �� are not necessary
associated to an entire MT trajectory, but can also be only parts of the MT
trajectories.
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Fig. 6. Interactions between a user and a graph-based learning system. The user transmits time-windows and a spatial masks to the system. They correspond
to spatio-temporal patterns of interest or non-interest; based on the graph representations of these examples associated to their dynamic classifications, the
system learns interactively user-specific semantics and retrieves, in time and in space, similar spatio-temporal structures.
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The estimation of this parameter vector is made interactively
by updating the probabilities of a Bayesian network with user
examples. More precisely, the probability update is performed
indirectly by adjusting the hyper-parameters vector �s[ ?'� F D
of a Dirichlet model, depending on the users’ examples. For
further details, we refer the reader to [18].
For notation simplification, the conditioning of the likelihood
by a model � � is omitted in the following. Based on the
likelihood, using a Bayesian context enables the estimation of
posterior probabilities ��� � �  � � # and thus, allows a semantic
representation of the SITS content. Indeed, considering that
a user provides positive or negative examples, corresponding
to a positive

� �
or negative �

� �
semantics, two likelihood

probabilities ��� � �  � � # and ��� � �  �� � � # can be derived
for each sub-graph. Moreover, graph priors can be obtained
using the formula ��� ��� #h[ ' � �'� ���  �&� # �'� ��� # , where the
summation is done over the positive and negative semantics.
Thus, assuming a uniform prior on the semantics, the posterior
probability of the positive semantics is inferred using Bayes
rule :

��� � �  � � # [ ��� ���  ��� # �'� ��� #��� � � # (14)

[ ��� � �  � � #��� ���  ��� # � ��� ���  �� ��� # N
By interactive learning, user-specific semantic posterior

probabilities �'� �&�  ��� # are obtained for each sub-graph� �
. Therefore, a semantic labeling of sub-graphs is carried

out which enables spatio-temporal reasoning and probabilistic
retrieval of spatio-temporal structures in SITS.

V. SPATIO-TEMPORAL REASONING

The hierarchical modeling concept for spatio-temporal
reasoning has been applied on the ADAM dataset described
in section I-A. In the experiments carried out, the features
were the 3 spectral reflectances extracted out of a spatial
subset of 200x200 pixels. In the following, we show examples
of query results obtained by the interactive training of several
semantics.

We start with the analysis of ploughing semantics.
We performed this training using examples of spatio-
temporal structures defined in a time window of 4 samples.
Figure 7 presents the retreived spatio-temporal structures
of the highest semantic posterior probabilities together
with their representations in SITS. Almost all other
ploughing phenomena were sucessively retreived. However,
as ploughings can differ slightly according to the crop nature,
and as there were only few examples of such events in the
considered spatial window, the learning induced low posterior
probabilities.

The training of a maturation semantics, specific to a
field, was performed. As this phenomenon occurred over
a long time period, a time window of 12 samples was
selected for training. Contrary to the ploughland semantics,
the interactive learning process, with very few positive and

Fig. 7. Interactive learning of the ploughland semantics : most likely retrieved
spatio-temporal structures ranked, from top to bottom, according to their
posterior probabilities. Each row presents a retrieved spatial mask (left) with
its associated time-period, which is given by time locations in the first and
last images of the row. The images in each row show the spatio-temporal
structure representations in SITS.

Fig. 8. Interactive learning of the field maturation semantics : most likely
retrieved spatio-temporal structures ranked, from top to bottom, according to
their posterior probabilities. Each row presents a retrieved spatial mask (left)
with its associated time-period, which is given by time locations in the first
and last images of the row. The middle images in each row were selected
from SITS in order to represent significantly the spatio-temporal structure
behaviors.
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Fig. 9. Retrieval of Colza crops : most likely retrieved spatio-temporal
structures ranked according to their posterior probabilities. Retrieved spatial
masks (left) are associated to identical time-periods (the full SITS). Thus, the
images displayed were selected from SITS in order to represent significantly
the spatio-temporal structure behaviors.

negative examples, enabled the retrieval of similar events with
high posterior probabilities. The retrieved spatio-temporal
structures are presented in figure 8 together with 3 significant
image time samples. Note that, the crop evolutions of highest
probabilities are maturation phenomena corresponding to the
specific sought culture, whereas retrieved events with lower
probabilities correspond to maturation of similar but slightly
different cultures.

A last training was performed for the retrieval of Colza
crops. We selected a time-window of 38 time samples, that is
to say the longest possible time-period. Results are displayed
in figure 9. Two Colza crops with very high probabilities
were obtained by this search. The other retrieved structures
were similar but the cultures were slightly different and were
associated to lower probabilities.

VI. CONCLUSION

In this paper, we have presented generic methods for mod-
eling hierarchically high resolution SITS information content.
The developed algorithms have been integrated in a novel tool
dedicated to the exploration of SITS archives.
The concept relies on the unsupervised learning of dynamic
cluster trajectories and on the interactive learning of users-
specific interest. The modeling of trajectories in the dynamic
feature space results in graphs coding synthetically spatio-
temporal structures contained in SITS. To infer the graphs,
Bayesian methods and entropic measurements have been ap-
plied on strong families of stochastic models. In the last years,
information theoretical methods showed that entropy measures
enable inference preserving the relevance of the information
in the models. The relationship of these coding methods with
Bayesian inference [12] [20] demonstrate the relevance of the
model selection and parameter estimation approach. Based on
the objective graph representation, the user-specific interest is
interactively learned by positive and negative examples. The
interactive learning procedure results in the semantic labeling
of SITS and enables the probabilistic retrieval of similar
spatio-temporal structures.
The hierarchical modeling procedure has been applied on a
SPOT image time-series. The interactive learning of several
semantics has demonstrated the relevance of the methods.
Based on these experiments, the algorithms appears to be fast

and relevant for the retrieval of user-specific spatio-temporal
patterns.

APPENDIX I
2-PART MDL CODE LENGTH FOR GAUSSIAN MIXTURE

MODELS.

The 2-part MDL code for Gaussian mixture models com-
prises the following description lengths, calculated using Shan-
non coding theorem.r Let � � denote the code length needed to encode the

number ^ of Gaussians of the mixture, within an interval
of integers JML;.8^ )�� � R . Using the Shannon coding theorem
with a uniform prior, we define this code length as

� � [ �2$'& ! � ^ )�� � #9Nr Let � � denote the code length needed to encode the
number of points ?�� � . � I JQL".8^ RSD associated with
the different Gaussians ?�� � . � I JQL".E^�RWD . Employing a
uniform prior on the interval of integers � � I JQL".���R ,
where � denotes the sample size, we obtain

� � [ ^ �%$'& ! � � #9Nr For each Gaussian � � , the number of bits needed to
encode its estimated mean vector and covariance matrix
is calculated using a uniform probability distribution. In
case of continuous distribution,to encode each parameter
of the � dimensional Gaussian � � , we need a precision� � [ L���� � � [12]. Considering the expectation of the
number of points � � [ � � � � associated with the Gaus-
sian � � , in order to encode all the Gaussian parameters
we need a number of bits equal to

� ! [
��� � �

� � � � LU#
� �%$'& ! � � � � #9N

r The code length needed for the encoding of the � data
point assignments to their respective clusters is given by

��� [
��� � �
� � � � �%$'& ! � �

r The second part composing the 2-part MDL code is the
number of bits needed to encode the data points ��[?����T.@NQNPNP.�� �$D knowing the complexity and the parameters
of the mixture. It is given by

��� [
��� � �

�� B ��� �
�
� L� �%$'& !  
 � �

�  
� � �� L

��� �2� # A � � F � � � # 
�� �� � � F � � � #  N
Therefore adding the two parts, we obtain a 2-part MDL code
for the Gaussian mixture model defined by the expression

� !�( � � #*[*�2$'& ! � ^ )�� � # � ^ �%$'& ! � � # (15)� ��� � �
� � � � � LU#

� �%$'& ! � � � � #3� � � � �%$'& ! � �
� �� B ��� � 
 L� �2$'& !  
�� �

�  
� � � �

L
� � ��� # A � � F � � � # 
 � �� � � F � � � # � 
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APPENDIX II
CHANGE OF THE 2-PART MDL CODE LENGTH FOR

GAUSSIAN MIXTURE MODELING OPTIMIZATION.

The notations of section III-B.2 and of appendix I will be
used in the following. According to equation (9), the 2-part
MDL code, encoding � with aGaussian mixture model, is
defined by the expression

� !�( � � # [ �2$'& ! � ^ )�� � # � ^ �%$'& ! � � #� ��� � �
� � � � LT#
� �2$'& ! � � � � # �

��� � �
� � � � �2$'& ! � �

� ��� � �
�� B ��� � �%$'& ! � )� � � � Fn#:#[ � � � � � � � ! � � � � ���"N (16)

Let
� � � � � � � # , � � � � � � ! # , � � � � � � � # and

� � � � � � � # denote
the code length change of � � , � ! , � � and � � induced by the
removal of a given Gaussian � � � in the mixture. Note that � �
is constant. Therefore,� � � � � � !�( � �m#8# [ (17)� � � �O� � � # � � � � �9� � ! # � � � � �/� � �@# � � � � �O� � �U#� � � � � � � # is equal to the code length decrease obtained by
saving the encoding of the number of points � � � :� � � � � � � #*[ � �2$'& ! � � #/N (18)� � � � � � ! # represents the code length decrease induced by
saving the Gaussian parameter encoding� � � �,� � ! #�[ � � � � � LT#� �%$'& ! � � � � � #9N (19)� � � �/� ���T# represents the code length decrease induced by
saving the new assignments of data belonging to the removed
Gaussian. It is defined by

� � � � � ���@# which is equal to the
expression

�
��������

X � ��� X��� � � �
� � X � � X � � #��%$'& ! � � X � � X � � # �

�����	��
X � �

� � X �2$'& ! � X .
where � X � � is the ML weight estimate of � X , after removal of� � � . Thus, this quantity is expressed by� � � � � ���@#*[*� � � � �%$'& ! � � � (20)

�
�����	��

X � ��� X��� � � � 

� � X � � X � � #��%$'& ! � � X � � X � � # � � X �%$'& ! � X � N� � � �,� � �T# represents the code length increase induced by

encoding the assigned data with the new Gaussian mixture dis-
tribution. The reassignments of the data points which belonged
to the removed Gaussian induce a change in the distribution
of the Gaussian mixture. Thus, the code lengths related to the
encoding of all of the data points according to their assigned

new Gaussian distributions have to be reevaluated. Therefore,� � � � � � � #l[ �� B ��� � � �%$'& !
� � � � � F #� � � � � � � Fn# (21)

� ��������
X � ��� X��� � �

�� B ��� � �%$'& !
� X � � FW#� X � � � � Fn# N

where � X � N # and � X � � � N # are respectively the ML estimated
probability distribution of � X before and after removal of � � � .� � � � � � � Fn# is the ML estimated distribution of the most probable
Gaussian which is assigned to �*F after removal of � � � . The
first sum represents the code length change related to the
encoding of the data points belonging to the removed Gaussian
while the second term represents the code length change of
the other data points induced by the change of the Gaussian
mixture distribution. Because of an exagerated computational
cost, the ML estimated Gaussian mixture distribution after
removal of the Gaussian component � � � is estimated by
performing a single iteration of an EM algorithm.
The global code length change is obtained using equation (17),
that is to say by adding these 4 terms. The resulting sum is
given in equation (10).

APPENDIX III
MUTUAL INFORMATION ANALYTICAL CALCULATION.

The change of MT clusters between consecutive times
can be quantized by mutual information measurements. The
mutual information between two continuous random variables


and � is defined as

� � � 
 .��&#�[  ��� 7�.�� # �2$'& �'� 7�.�� #�'� 7�# ��� � # >;7=>���N (22)

According to previous notations, MT cluster
� �imj projections

in consecutive times 5:F , 5qF�� � are denoted by
� �imjUp B and� �imjTp B�� e . These projections are multidimensional Gaussians

which are marginal distributions related to an MT cluster.
The joint distribution, denoted by

� �i&j p B�� p B�� e , is obtained by
projecting the MT cluster in a space composed of the two
TL feature components. Thus, as the marginal and joint dis-
tributions are Gaussian, mutual information can be calculated
analytically as

� � � � �imjUp B . �
�imjTp B�� e #*[ L

� �2$'& !
 
 �ACB  P 
 �ACB�� e  
 
 �ACB�� ACB�� e  (23)

where  
 �ACB  ,  
 �ACB�� e  and  
 �ACBCACB�� e  denote the covariance matrix
determinants attached to the MT cluster Gaussian projections� �imjTp B , �

�imjUp B�� e and
� �imjUp B�� p B�� e [17].
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