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Data Fusion for Visual Tracking with Particles
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INVITED PAPER
    Abstract—The effectiveness of probabilistic tracking of objects
in image sequences has been revolutionized by the development
of particle filtering. Whereas Kalman filters are restricted to
Gaussian distributions, particle filters can propagate more gen-
eral distributions, albeit only approximately. This is of particular
benefit in visual tracking because of the inherent ambiguity of
the visual world that stems from its richness and complexity.

One important advantage of the particle filtering framework is
that it allows the information from different measurement sources
to be fused in a principled manner. Although this fact has been
acknowledged before, it has not been fully exploited within a
visual tracking context. Here we introduce generic importance
sampling mechanisms for data fusion and discuss them for fusing
color with either stereo sound, for tele-conferencing, or with
motion, for surveillance with a still camera. We show how each of
the three cues can be modeled by an appropriate data likelihood
function, and how the intermittent cues (sound or motion) are
best handled by generating proposal distributions from their
likelihood functions. Finally, the effective fusion of the cues by
particle filtering is demonstrated on real tele-conference and
surveillance data.

Index Terms— Visual tracking, data fusion, particle filters,
sound, color, motion

I. I NTRODUCTION

V ISUAL tracking entails the detection and recursive local-
ization of objects, or more generally features, in video

sequences. The tracking of objects has become an ubiquitous
elementary task in both online and offline image based ap-
plications, including visual servoing (e.g., [34]), surveillance
(e.g., [19]), gestural human-machine interfaces and smart
environments (e.g., [38], [11], [33]), video compression (e.g.,
[56]), augmented reality and visual effects (e.g., [35]), motion
capture (e.g., [36]), environmental imaging (e.g.,[12], [37]),
and many more.

Recently Sequential Monte Carlo Methods [15], [18], [20],
[31], otherwise known as Particle Filters, have become popular
tools to solve the tracking problem. Their popularity stems
from their simplicity, flexibility, ease of implementation, and
modeling success over a wide range of challenging applica-
tions. Within a visual tracking context these methods have
been pioneered in the seminal paper by Isard and Blake [20],
in which the term CONDENSATION was coined. This has
subsequently led to a vast body of literature, which we shall
not attempt to review here. See examples in [7], [13], [14],
[26], [28], [41], [43], [45], [46], [48], [49].

One important advantage of the sequential Monte Carlo
framework is that it allows the information from different
measurement sources to be fused in a principled manner.
Although this fact has been acknowledged before, it has not
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been fully exploited within a visual tracking context, where
a host of cues are available to increase the reliability of
the tracking algorithm. Data fusion with particle filters has
been mostly confined to skin color and edge cues inside and
around simple silhouette shapes in the context of face and
hand tracking [21], [50], [58], [59].

In this paper we present a particle filter based visual tracker
that fuses three cues in a novel way: color, motion and sound
(Fig. 1). More specifically, we will introduce color as the
main visual cue and fuse it, depending on the scenario under
consideration, with either sound localization cues or motion
activity cues. The generic objective is to track a specified
object or region of interest in the sequence of images captured
by the camera. We employ weak object models so as not to
be too restrictive about the types of objects the algorithm can
track, and to achieve robustness to large variations in the object
pose, illumination, motion, etc. In this generic context, contour
cues are less appropriate than color cues to characterize the
visual appearance of tracked entities. The use of edge based
cues indeed requires that the class of objects to be tracked is
known a priori and that rather precise silhouette models can
be learned beforehand. Note however that such conditions are
met in a number of tracking applications where shape cues are
routinely used [2], [3], [25], [30], [40], [44], [53].

Color localization cues are obtained by associating some
reference color model with the object of interest. This ref-
erence model is then compared, in some sense, to similar
models extracted from candidate regions in the image, and the
smaller the discrepancy between the candidate and reference
models, the higher the probability that the object is located
in the corresponding image region. The color reference model
can be obtained from some automatic detection module, or
by allowing the user to label the object of interest by hand.
The model can then be defined in parametric form, using for
instance mixtures if Gaussians (e.g., [23], [55], [59]). In this
paper we use instead a histogram based color model inspired
by the powerful deterministic color trackers by Bradski [4]
and Comaniciuet al. [9], [10]. The likelihood is built on the
histogram distance between the empirical color distribution in
the hypothesized region and the reference color model [39].

Along the same lines we also introduce motion cues based
on histogramming successive frame differences. Using a form
similar to the color likelihood, the motion likelihood is de-
signed to favor regions exhibiting a temporal activity larger
than the average temporal activity in the scene. It will prove to
be particularly effective in drawing the attention of the tracker
back to objects moving in front of a still background in cases
where lock has been temporarily lost.

For audio-visual tracking the system setup consists of a
single camera and a stereo microphone pair. The line con-
necting the microphones goes through the optical center of
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Fig. 1. Three types of raw data. We consider color based tracking combined with either motion cues (for surveillance with a static camera) or stereo
sound cues (for speaker face tracking in a tele-conference setup). The corresponding measurements are respectively: (Left) RGB color video frames, (Middle)
absolute luminance differences for pairs of successive frames, and (Right) stereo pairs of sound signal sections.

the camera, and is orthogonal to the camera optical axis.
Sound localization cues are then obtained by measuring the
Time Delay of Arrival (TDOA) between signals arriving at
the two microphones comprising the pair. The TDOA gives
an indication of the bearing of the sound source relative to the
microphone pair. Given the configuration of the system this
bearing can in turn be related to a horizontal position in the
image (Fig.2).

The color cues tend to be remarkably persistent and robust
to changes in pose and illumination. They are, however, more
prone to ambiguity, especially if the scene contains other
objects characterized by a color distribution similar to that
of the object of interest. The motion and sound cues, on the
other hand, tend to be intermittent, but are very discriminant
when they are present,i.e., they allow the object to be located
with low ambiguity.

The localization cues impact the particle filter based tracker
in a number of ways. As is standard practice, we construct
a likelihood model for each of the cues. These models are
assumed to be mutually independent, an assumption that can
be justified in the light that any correlation that may exist
between the color, motion and sound of an object is likely
to be weak. The intermittent and discriminant nature of the
motion and sound cues make them excellent candidates for
the construction of detection modules and efficient proposal
distributions. We will exploit this characteristic extensively.

Finally, the differing nature of the cues and the configuration
of the system allow us to experiment with the order and
manner in which the cues are incorporated. For example,
since the sound cue only gives localization information in the
horizontal direction of the image, we can search this direction
first, and confine the search in the remainder of the state-space
to regions for which the horizontal image component have
been deemed highly likely to contain the object of interest.
This strategy is known as Partitioned Sampling [32], and
allows for a more efficient exploration of the state-space.

The remainder of the paper is organized as follows. Sec-
tion II briefly outlines the Bayesian Sequential Estimation
framework, and shows how a Monte Carlo implementation
thereof leads to the Particle Filter. It also presents some alter-
native particle filter architectures for cases where information
from multiple measurement sources are available. SectionIII
presents and discusses all the ingredients of our proposed
data fusion tracker based on color, motion and sound. This
section is concluded with a summary of the tracking algorithm.
Section IV presents some tracking scenarios, and illustrates

the performance of the tracking algorithm under a variety of
conditions. The usefulness of each localization cue, and their
combined impact are evaluated. Finally, we conclude the paper
in SectionV with a summary and some suggestions for future
research.

II. SEQUENTIAL MONTE CARLO AND DATA FUSION

Sequential Monte Carlo techniques for filtering time series
[15], [18], [20], [31], and their use in the specific context
of visual tracking [22], have been described at length in
the literature. In what follows we give a brief summary of
the framework, and discuss in some detail the architectural
variations that are afforded by the presence of multiple mea-
surement sources.

Denote byxn and yn the hidden state of the object of
interest and the measurements at discrete timen, respec-
tively. For tracking the distribution of interest is the posterior
p(xn|y1:n), also known as the filtering distribution, where
y1:n = (y1 · · ·yn) denotes all the observations up to the
current time step. In Bayesian Sequential Estimation the
filtering distribution can be computed according to the two
step recursion1

prediction step:

p(xn|y1:n−1) =
∫

p(xn|xn−1)p(xn−1|y1:n−1)dxn−1 (1)

filtering step:

p(xn|y1:n) ∝ p(yn|xn)p(xn|y1:n−1), (2)

where the prediction step follows from marginalisation, and
the new filtering distribution is obtained through a direct
application of Bayes’ rule. The recursion requires the spec-
ification of a dynamic model describing the state evolution,
p(xn|xn−1), and a model that gives the likelihood of any state
in the light of the current observation,p(yn|xn), along with
the following conditional independence assumptions:

xn ⊥ y1:n−1|xn−1 andyn ⊥ y1:n−1|xn. (3)

The recursion is initialized with some distribution for the ini-
tial statep(x0). Once the sequence of filtering distributions is
known point estimates of the state can be obtained according to
any appropriate loss function, leading for example to the Max-
imum a Posteriori (MAP) estimate,arg maxxn p(xn|y1:n),

1Notation “∝” means that the conditional distribution on the left is
proportional to the function on the right up to a multiplicative “constant”
that may depend on the conditioning argument.
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and to the Minimum Mean Square Error (MMSE) estimate,∫
xnp(xn|y1:n)dxn.
The tracking recursion yields closed-form expressions in

only a small number of cases. The most well-known of these
is the Kalman filter [1] for linear Gaussian likelihood and
state evolution models. The models encountered in visual
tracking are often non-linear, non-Gaussian, multi-modal, or
any combination of these. One reason for this stems from the
fact that the observation model often specifies which part of
the data is of interest given the state, leading top(yn|xn) being
non-linear and often multi-modal with respect to the statexn.
This renders the tracking recursion analytically intractable, and
approximation techniques are required.

Sequential Monte Carlo methods [15], [18], [20], [31],
otherwise known as Particle Filters, have gained a lot of
popularity in recent years as a numerical approximation to the
tracking recursion for complex models. This is due to their
simplicity, flexibility, ease of implementation, and modeling
success over a wide range of challenging applications.

The basic idea behind particle filters is very simple. Starting
with a weighted set of samples{x(i)

n−1, w
(i)
n−1}Np

i=1 approxi-
mately distributed according top(xn−1|y1:n−1), new samples
are generated from a suitably chosen proposal distribution,
which may depend on the old state and the new measurements,
i.e., x(i)

n ∼ q(xn|x(i)
n−1,yn), i = 1 · · ·Np. To maintain a

consistent sample the new importance weights are set to2

w(i)
n ∝ w

(i)
n−1

p(yn|x(i)
n )p(x(i)

n |x(i)
n−1)

q(x(i)
n |x(i)

n−1,yn)
, with

Np∑

i=1

w(i)
n = 1.

(4)
The new particle set{x(i)

n , w
(i)
n }Np

i=1 is then approximately
distributed according top(xn|y1:n).

Approximations to the desired point estimates can then be
obtained by Monte Carlo techniques. From time to time it
is necessary to resample the particles to avoid degeneracy of
the importance weights, that is the concentration of most of
the weight on a single particle. In absence of resampling, this
phenomenon always occurs in practice, dramatically degrading
the sample based approximation of the filtering distribution,
along with the quality of any point estimate based on it. The
resampling procedure essentially multiplies particles with high
importance weights, and discards those with low importance
weights, while preserving the asymptotic properties of the
sample based approximation of the filtering distribution. This
procedure can be applied at each time step, or be invoked only
when a measure of the “quality” of the weights falls below a
threshold. A full discussion of degeneracy and resampling falls
outside the scope of this paper, but more detail can be found
in [15]. The synopsis of the generic particle filter iteration is
given in Tab.I.

The performance of the particle filter hinges on the qual-
ity of the proposal distribution. The Bootstrap Filter [18],

2 This can be seen by considering sampletrajectoriesx
(i)
1:n [15]. These

are distributed according toq(x1|y1)
Qn

k=2 q(xk|xk−1,yk) instead of true
target distributionp(y1:n)−1p(x1,y1)

Qn
k=2 p(yk|xk)p(xk|xk−1). Ac-

cording to importance sampling theory [16], the discrepancy is compensated
for by associating importance weights proportional to the ratio of the target
distribution to the proposal distribution, which yields in this case the recursion
in (4).

With {x(i)
n−1, w

(i)
n−1}

Np

i=1 the particle set at the previous time step, proceed
as follows at timen:
Proposition: simulatex(i)

n ∼ q(xn|x(i)
n−1,yn).

Update weights:

w
(i)
n ∝ w

(i)
n−1

p(yn|x(i)
n )p(x

(i)
n |x(i)

n−1)

q(x
(i)
n |x(i)

n−1,yn)
, with

PNp

i=1 w
(i)
n = 1.

If resampling:
simulateai ∼ {w(k)

n }Np

k=1, and replace{x(i)
n , w

(i)
n } ← {x(ai)

n , 1
Np
}.

TABLE I

GENERIC PARTICLE FILTER.

which is the first modern variant of the particle filter, uses
the state evolution modelp(xn|xn−1) as proposal distribu-
tion, so that the new importance weights in (4) become
proportional to the corresponding particle likelihoods. This
leads to a very simple algorithm, requiring only the ability
to simulate from the state evolution model and to evalu-
ate the likelihood. However, it performs poorly for narrow
likelihood functions, especially in higher dimensional spaces.
In [15] it is proved that the optimal choice for the pro-
posal distribution (in terms of minimizing the variance of
the importance weights) is the posteriorp(xn|xn−1,yn) ∝
p(yn|xn)p(xn|xn−1). However, the normalizing constant for
this distribution,

∫
p(yn|xn)p(xn|xn−1)dxn = p(yn|xn−1),

is rarely available in closed form, making direct sampling from
this optimal proposal distribution impossible. The challenge
in particle filtering applications is then to design efficient
proposal distributions that approximate the optimal choice as
closely as possible. We will give careful consideration to this
issue in the design of our tracker in SectionIII .

For multiple measurement sources the general particle filter-
ing framework can still be applied. However, it is possible to
devise strategies to increase the efficiency of the particle filter
by exploiting the relation between the structure of the model
and the information in the various measurement modalities.
In what follows we will suppress the time indexn for
notational compactness. Assume that we haveM measurement
sources, so that the instantaneous measurement vector can be
written asy = (y1 · · ·yM ). We will further assume that the
measurements are conditionally independent given the state,
so that the likelihood can be factorized as

p(y|x) =
M∏

m=1

p(ym|x). (5)

With this setting the generic filter summarized in Tab.I could
be used as is, with the weight update involvingM likelihood
evaluations according to (5). However, the factorized structure
of the likelihood can be better exploited. To this end, we
introduce the following abstract framework: let us assume that
the state evolution and proposal distributions decompose as

p(x|x′) =
∫

pM (x|xM−1) · · · p1(x1|x′)dx1 · · · dxM−1 (6)

q(x|x′,y) =
∫

qM (x|xM−1,yM ) · · · q1(x1|x′,y1)dx1 · · · dxM−1,

(7)
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With {x(i)
n−1, w

(i)
n−1}

Np

i=1 the particle set at the previous time step, proceed
as follows at timen:
Initialize : {x0(i), w0(i)}Np

i=1 = {x(i)
n−1, w

(i)
n−1}

Np

i=1
Layered sampling: for m = 1 · · ·M
• Proposition: simulatexm(i) ∼ qm(xm|xm−1(i),ym

n ).
• Update weights:

wm(i) ∝ wm−1(i) p(ym
n |xm(i))pm(xm(i)|xm−1(i))

qm(xm(i)|xm−1(i),ym
n )

, with
PNp

i=1 wm(i) = 1.

• If resampling: simulate ai ∼ {wm(k)}Np

k=1, and replace
{xm(i), wm(i)} ← {xm(ai), 1

Np
}.

Terminate: {x(i)
n , w

(i)
n }Np

i=1 = {xM(i), wM(i)}Np

i=1.

TABLE II

GENERIC LAYERED SAMPLING PARTICLE FILTER TO FUSEM

OBSERVATION MODALITIES.

wherex1 · · ·xM−1 are “auxiliary” state vectors. Eq. (6) sim-
ply amounts to a splitting of the original evolution model
into M successive intermediary steps. This can, for example,
be done when the state isM -dimensional and corresponding
component-wise evolution models are independent, and/or
when the evolution model is linear and Gaussian, and can
thus be easily fragmented intoM successive steps with lower
variances.

If we make the approximation that the likelihood for them-
th measurement modalityp(ym|x) can be incorporated after
applying them-th state evolution modelpm(xm|xm−1), we
can set up a recursion to compute the new target distribution
that takes the form

πm(xm) ∝
∫

wm(xm,xm−1)qm(xm|xm−1,ym)

· πm−1(xm−1)dxm−1, m = 1 · · ·M
(8)

with wm(xm,xm−1) =
p(ym|xm)pm(xm|xm−1)

qm(xm|xm−1,ym)
, (9)

where π0 and πM are respectively the previous and the
new filtering distributions,x0 = x′, and xM = x. This
recursion can be approximated with a layered sampling
strategy, where at them-th stage new samples are simu-
lated from a Monte Carlo approximation of the distribution
qm(xm|xm−1,ym)πm−1(xm−1), with an associated impor-
tance weight proportional towm(xm,xm−1) to yield a prop-
erly weighted sample. The synopsis of this generic layered
sampling strategy for data fusion is given in Tab.II .

As it stands the layered sampling approach provides no
obvious advantage over the standard particle filtering frame-
work. Its true benefit arises in cases where the measurement
modalities differ in the level of information they provide about
the state. If the measurement modalities are then ordered from
coarse to fine, the layered sampling approach will effectively
guide the search in the state-space, with each stage refining
the result from the previous stage.

In some special applications the likelihood and state evolu-
tion models are independent over a component-wise partition-

ing of the state-space,i.e.,

p(y|x) =
M∏

m=1

p(ym|xm) (10)

p(x|x′) =
M∏

m=1

p(xm|x′m), (11)

with x = (x1 · · ·xM ). For models of this nature the layered
sampling procedure, with

pm(xm|xm−1) = p(xm
m|xm−1

m )
∏

k 6=m

δxm−1
k

(xm
k ) (12)

in (6) and (9), is exact, and known as Partitioned Sampling
[32]. It effectively replaces the search in the full state-space
by a succession ofM easier search problems, each in a lower
dimensional space. We will make use of these strategies when
designing our tracking algorithm in SectionIII .

III. D ATA FUSION V ISUAL TRACKER

In this section we describe in detail all the ingredients of
our tracking algorithm based on color, motion and sound. We
first present the system configuration and the object model,
and then proceed to discuss the localization cues and their
impact on the tracking algorithm in more detail. The section
is concluded with a summary of the tracking algorithm.

A. Audio-Visual System Setup

The setup of the tracking system is depicted in Fig.2. It
consists of a single camera and a stereo microphone pair.
The line connecting the microphones goes through the optical
center of the camera, and is orthogonal to the camera optical
axis. Note, however, that in our experiments the object of
interest will not always be a talking head in front of the
camera. In such cases sound measurements will generally be
absent, and we will only rely on the visual cues.

The system requires only a small number of calibration
parameters: the microphone separationd, the camera focal
length f , the width of the camera image plane in the real
world W̃ , and the width in pixels of the digital imageW .
These parameters are normally easy to obtain. Nevertheless,
the tracking algorithm we develop is robust to reasonable in-
accuracies in the system setup and variations in the calibration
parameters. Since it is probabilistic in nature, these errors are
easily accommodated by explicitly modeling the measurement
uncertainty in the corresponding likelihood models.

Our objective is to track a specified object or region of
interest in the sequence of images captured by the camera. To
this end the raw measurements available are the images them-
selves, and the audio signals captured at the two microphones
comprising the pair. Since the tracking is performed in the
video sequence the discrete time indexn corresponds to the
video frame number. As opposed to the video sequence that
is naturally discretized, the audio samples arrive continuously,
and there is no notion of natural audio frames. For the purposes
of the tracking algorithm, however, we define then-th audio
frame as a window ofNs audio samples centered around
the sample corresponding to then-th video frame. If Tv
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Fig. 2. Setup for audio-visual tracking. The system calibration parameters are the microphone separationd, the camera focal lengthf , the width of the
image plane in the real worldfW , and the width in pixels of the digital imageW .

and Ts denote the sampling period for video frames and
audio samples, respectively, the center of the audio frame
corresponding to then-th video frame can be computed as

ns = [(n− 1)Tv/Ts + 1], (13)

where [·] denotes the rounding operation. The number of
samples in the audio frameNs is normally taken such that
the duration of the audio frame is roughly 50ms.

The raw image and audio frames are very high dimensional,
and contain lots of information that is redundant with regard
to object tracking. We thus pass the raw data through a
signal processing front-end with the purpose of extracting
features important for the tracking process. More specifically,
we extract color and motion features from the image data, and
Time Delay Of Arrival (TDOA) features from the audio data.
With color being the most persistent feature of the object we
will use it as the main visual cue and fuse it with the more
intermittent motion and sound cues. In what follows we will
denote the combined color, motion and sound measurements
at timen by yn = (yC

n ,yM
n ,yS

n). We will suppress the time
index n in cases where there is no danger of ambiguities
arising. The measurement procedures for each of the cues are
described in detail in the relevant sections that follow.

B. Object Model

Our objective is to track a specified object or region of
interest in the image sequence. We will aim to use models
that make only weak assumptions about the precise object
configuration, so as not to be too restrictive about the types
of objects that can be tracked, and to achieve robustness to
large variations in the object pose, illumination, motion, etc.
In the approach adopted here the shape of the reference region,
denoted byB?, is fixed a priori. It can be an ellipse or
rectangular box as in [4], [6], [9], but our modeling framework
places no restrictions on the class of shapes that can be
accommodated. More complex hand-drawn or learned shapes
can be used if relevant.

Tracking then amounts to recursively estimating the pa-
rameters of the transformation to apply toB? so that the
implied region in each frame best matches the original ref-
erence region. Affinity or similitude transforms are popular
choices. Since the color model we will describe in Section
III-C is global with respect to the region of interest, we
consider only translation and scaling of the reference region.
This means that the reference region can be parameterized

as B? = (x?, y?, w?, h?), where (x?, y?) is the center of
the reference region bounding box, andw? and h? are its
width and height, respectively. We define the hidden state
as xn = (xn, yn, αn) ∈ X , with X denoting the state-
space, so that the corresponding candidate region becomes
Bxn

= (xn, yn, αnw?, αnh?). The variables(xn, yn) thus
form the center of the candidate region, andαn acts as a
scale factor.

Most objects move in a fairly predictable way. It is thus
good practice in general to design the state evolution model
p(xn|xn−1) to capture the salient features of the object
motion. However, we desire our algorithm to be applicable
to any object that may be of interest, including people, faces,
motor vehicles, etc. Within such a large population of objects
the variability in the characteristics of the object motion is
likely to be high. Furthermore, we are interested in tracking in
the image sequence, and not in the real world. The mapping
of the motion from the three dimensional world to the two
dimensional image representation is dependent on the system
configuration and the direction of the motion, and is unknown
in practice. We acknowledge these uncertainties by adopting a
very weak model for the state evolution. More specifically, we
assume that state components evolve according to mutually
independent Gaussian Random Walk models. We augment
these models with a small uniform component to capture the
(rare) event where erratic motion in the real world is perceived
as jumps in the image sequence. It also aids the algorithm in
recovery of lock after a period of partial or complete occlusion.
Thus the complete state evolution model can be written as

p(xn|xn−1) = (1− βu)N(xn|xn−1,Λ) + βuUX (xn), (14)

whereN(.|µ,Σ) denotes the Gaussian distribution with mean
µ and covarianceΣ, UA(·) denotes the uniform distribution
over the setA, 0 ≤ βu ≤ 1 is the weight of the uniform com-
ponent, andΛ = diag(σ2

x, σ2
y, σ2

α) is the diagonal matrix with
the variances for the random walk models on the components
of the object state. The weight of the uniform component is
typically set to be small. The object model is completed by
the specification of the distribution for the initial state, and
here we assume it to be uniform over the state-space,i.e.,
p(x0) = UX (x0).

C. Color Cues

When a specific class of objects with distinctive shape is
considered and a complete model of this shape can be learned
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offline, contour cues are very powerful to capture the visual
appearance of tracked entities [2], [3], [25], [30], [40], [44],
[53]. They can, however, be dramatically contaminated by
clutter edges, even when detailed silhouette models are used
[52]. Also, they are not adapted to scenarios where there is no
predefined class of objects to be tracked, or where the class of
objects of interest does not exhibit very distinctive silhouettes.
The two tracking scenarios we consider here fall respectively
in these two categories.

When shape modeling is not appropriate, color information
is a powerful alternative to characterize the appearance of
tracked objects. As demonstrated for example in [4], [9], [10],
[39], robust tracking can be achieved using only a simple
color model constructed in the first frame, even in presence
of dramatic changes of shape and pose. Hence, the color
features of an object or a region of interest often form a
very persistent localization cue. In the two tracking scenarios
we are interested in, color information is naturally chosen as
the primary ingredient. In this section we derive the color
likelihood model that we use.

If color cues are powerful for tracking, their simplicity
sometimes results in a lack of discriminative power when it
comes to (re)initialize the tracker. In SectionsIII-D andIII-E
we show how motion or sound cues can be combined with
color cues to resolve ambiguities and increase the robustness
of the tracker in two distinct scenarios. In particular, the good
detectionproperties offered by these two auxiliary modalities
will be fully exploited in the design of good proposal densities.

Color localization cues are obtained by associating a refer-
ence color model with the object or region of interest. This
reference model can be obtained by hand-labeling, or from
some automatic detection module. To assess whether a given
candidate region contains the object of interest or not, a color
model of the same form as the reference model is computed
within the region, and compared to the reference model. The
smaller the discrepancy between the candidate and reference
models, the higher the probability that the object is located
inside the candidate region.

For the color modeling we use independent normalized
histograms in the three channels of the RGB color space.
We denote theB-bin reference histogram model in channel
c ∈ {R,G, B} by hc

ref = (hc
1,ref · · ·hc

B,ref ). Recall from
SectionIII-B that the region in the image corresponding to
any statex is given byBx. Within this region an estimate for
the histogram color model, denoted byhc

x = (hc
1,x · · ·hc

B,x),
can be obtained as

hc
i,x = cH

∑

u∈Bx

δi(bc
u), i = 1 · · ·B, (15)

where bc
u ∈ {1 · · ·B} denotes the histogram bin index as-

sociated with the intensity at pixel locationu = (x, y) in
channelc of the color imageyC , δa denotes the Kronecker
delta function ata, andcH is a normalizing constant such that∑B

i=1 hc
i,x = 1.

The color likelihood model must be defined in such a way
so as to favor candidate color histograms close to the reference
histogram. To this end we need to define a distance metric on
histogram models. As is the case in [9] we base this distance

on the Bhattacharyya similarity coefficient, defining it as

D(h1,h2) =
(
1−

B∑

i=1

√
hi,1hi,2

)1/2

. (16)

In contrast to the Kullback-Leibler divergence this distance is a
proper metric, it is bounded within[0, 1], and empty histogram
bins are not singular. Based on this distance we finally define
the color likelihood model as

p(yC |x) ∝ exp
(
−

∑

c∈{R,G,B}
D2(hc

x,hc
ref )/2σ2

C

)
. (17)

The assumption that the squared distance is exponentially
distributed is based on empirical evidence gathered over a
number of successful tracking runs. The histogram based
definition of the color likelihood is summarized in Fig.3.

If the object of interest is comprised of patches of distinct
color, such as the face and clothes of a person, the histogram
based color model will still successfully capture the color
information. However, all the information about the relative
spatial arrangement of these different patches will be lost.
Keeping track of the coarse spatial layout of the distinct color
regions may benefit the performance of the tracking algorithm.
Such a goal is easily achieved within our modeling framework
by splitting the region of interest into subregions, each with
its own reference color model. More formally, we consider
the partition Bx = ∪NR

j=1Bj,x, associated with the set of
reference color histograms{hc

j,ref : c ∈ {R,G, B}, j =
1 · · ·NR}. The subregions are rigidly linked. It is, however,
possible to introduce additional state variables to model the
relative movement and scaling of the subregions, should this
be necessary. By assuming conditional independence of the
color measurements within the different subregions defined
by the statex the multi-region color likelihood becomes

p(yC |x) ∝ exp
(
−

∑

c∈{R,G,B}

NR∑

j=1

D2(hc
j,x,hc

j,ref )/2σ2
C

)
,

(18)
where the histogramhj,x is collected in the regionBj,x.

This color likelihood model is in contrast with the
foreground-background models developed in [23], [55]. For
any hypothesized state the latter models evaluate the pixels
(or grid nodes) covered by the object under some reference
foreground model, and the remaining pixels (or grid nodes)
under location dependent background models. The likelihood
for the scene is obtained by multiplying the individual pixel
(or grid node) likelihoods under the independence assumption.
Even though this type of likelihood is more principled, it
suffers from numerical instabilities, and in our experience the
histogram based color model proposed here is a more powerful
tracking cue.

The histogram based color measurements can also be used
to construct an efficient proposal for the particle filter, guiding
it towards regions in the state-space that are characterized by
a color distribution similar to the object of interest [21], [39].
In our setting such a distribution will be of the same form
as the one for the motion measurements described in Section
III-D . However, due to the ambiguity inherent in the color
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{hB
ref ,hG

ref ,hR
ref} Bx, yC hx = {hB

x ,hG
x ,hR

x } p(yC |(x, y, 1))

Fig. 3. From color histograms to color likelihood. (Left) A three-fold reference color histogramhref = {hR
ref ,hG

ref ,hB
ref} is either gathered in an

initial frame (within a region picked manually or automatically) or learned offline (e.g., skin color). (Middle) Later in the sequence, and for a hypothesized
statex, the candidate color histogramhx is gathered within the regionBx and compared to the reference histogram using the Bhattacharyya similarity
measure. (Right) The exponentiated similarity yields the color likelihood, plotted here on a subsampled grid as a function of the location only (scale factor
fixed to α = 1). Note the ambiguity: strong responses arise over both faces and a section of the door.

measurements for the two tracking scenarios considered here,
we prefer to use the more intermittent, but less ambiguous,
motion and sound measurements to construct proposal distri-
butions.

D. Motion Cues

Beside color, instantaneous motion activity captures other
important aspects of the sequence content, and has been
extensively studied from various perspectives. In particular,
the problem of motion detection,i.e., the detection of objects
moving relative to the camera, is covered by an abundant
literature, which we shall not attempt to review here (see
the review in [29]). In the case of a static camera, the basic
ingredient at the heart of such an analysis is the absolute frame
difference computed on successive pairs of images. This is this
cue we consider here.

We propose to embed the frame difference information in
a likelihood model similar to the one developed for the color
measurements. It unifies the description and implementation,
and ensures a similar order of magnitude for the two visual
cues. Alternative models can easily be accommodated.

We will denote by yM
n the absolute difference of the

luminances at timesn and n − 1. As was the case for the
color model, a measurement histogramhM

x = (hM
1,x · · ·hM

B,x)
is associated with the region implied by the statex. The
region Bx within which the color information is collected
will often lie inside the object of interest. In contrast, a large
part of the motion activity generated by a moving object is
concentrated along the silhouette of the object. To ensure that
the silhouette is included we consider a larger region for the
motion measurements,i.e., B̃x = (x, y, α(w?+η), α(h?+η)),
with η set to a few pixel units (5 in our experiments). The
construction or learning of a reference histogram model for
the motion measurements is not a straightforward task. The
amplitude of these measurements depend on both the appear-
ance of the object (its contours) and its current motion. If the
examined region contains no movement, all the measurements
will fall in the lower bin of the histogram. When movement
commences the measurements usually fall in all bins, with
no definitive pattern: uniform regions produce low absolute
frame difference values, whereas higher values characterize the
contours (both the silhouette and the photometric edges). To
accommodate these variations we chose the reference motion

histogramhM
ref to be uniform,i.e.,

hM
i,ref =

1
B

, i = 1 · · ·B. (19)

Similar to the color likelihood in (17), we define the motion
likelihood as

p(yM |x) ∝ exp(−D2(hM
x ,hM

ref )/2σ2
M ). (20)

The construction of this likelihood is illustrated in Fig.4.
Motion Proposal: In the majority of cases the perceived

motion of the object of interest in the image sequence will
satisfy some minimum smoothness constraints. In these cases a
proposal distribution that mimics the characteristics of the state
evolution model should be sufficient for successful tracking.
However, it often happens that lock is lost due to short
periods of partial or total occlusion, and it is then necessary
to reinitialize the tracker. In another setting such as tele-
surveillance, the objects of interest might be moving entities.
In both cases it is useful to design a more sophisticated
proposal distribution that exploits the motion measurements to
allow jumps in the state-space to regions of significant motion
activity.

We build such a proposal distribution by evaluating the
histogram similarity measure on a subset of locations over
the image, keeping the scale factor fixed toα = 1. These
locations are taken as the nodes of a regular grid for which
the step size depends on the affordable computational load.
Typically we used a step size of 10 pixel units. Using simple
thresholding, locations that satisfyD2(hM

(x,y,1),h
M
ref ) > τ are

retained. Based on these locations of high motion activity,
denoted bypi = (xi, yi), i = 1 · · ·NM , we define a mixture
proposal for the object location(x, y) as

qM (xn,yn|xn−1, yn−1,yM
n ) =

βRWN((xn, yn)|(xn−1, yn−1), (σ2
x, σ2

y))

+
(1− βRW )

NM

NM∑

i=1

N((xn, yn)|pi, (σ2
x, σ2

y)).

(21)

The first component is the same Gaussian random walk used
for the(x, y) location in the state evolution model in (14), and
ensures the smoothness of the motion trajectories. The second
component is a mixture centered on the detected locations of
high motion activity. When no such location is found (NM =
0), the weight of the random walk component is set to one.
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hM
ref

eBx, yM hM
x p(yM |(x, y, 1))

Fig. 4. From frame difference histograms to motion likelihood. (Left) Uniform reference histogram. (Middle) At a given instant of the sequence, and
for a hypothesized statex, the candidate motion histogramhM

x is gathered within the extended regioneBx, and compared to the reference histogram using
the Bhattacharyya similarity measure. (Right) The exponentiated similarity yields the motion likelihood, plotted here on a subsampled grid as a function of
the location only (scale factor fixed toα = 1).

yM 1−D2(hM
(x,y,1),h

M
ref ), {pi}NM

i=1

PNM
i=1 N((x, y)|pi, (σ

2
x, σ2

y))

Fig. 5. From frame difference histograms to motion proposal. (Left) Absolute luminance frame difference at a given instant. (Middle) Similarity measure
between the candidate histogram and the uniform reference histogram, plotted on a subsampled grid as a function of the location only (scale factor fixed to
α = 1). Locations of high motion activity are detected by thresholding this function (τ = 0.9), and indicated with crosses. (Right) Mixture of Gaussians
around the high motion activity locations, forming the motion based proposal distribution.

Fig. 5 illustrates the construction of this motion based proposal
distribution.

E. Sound Cues

This section describes the sound localization cues, following
[54]. As is the case for the motion cues, the sound cues
are intermittent, but can be very discriminating when present.
The sound localization cues are obtained by measuring the
Time Delay of Arrival (TDOA) between the audio signals
arriving at the two microphones comprising the pair. Due to
the configuration of the system the TDOA gives an indication
of the bearing of the sound source relative to the microphone
pair, which can in turn be related to a horizontal position
in the image. In what follows we first describe the TDOA
measurement procedure. We then derive a likelihood model
for the TDOA measurements. Finally, we develop an efficient
TDOA based proposal for the particle filter, based on an
inversion of the likelihood model. This proposal is especially
useful for initialization and recovering of lock in cases where
track is lost during brief periods of partial or total occlusion. It
can also be used to shift the focus between different speakers
as they take turns in a conversation.

1) TDOA Measurement Process:Numerous strategies are
available to measure the TDOA between the audio signals
arriving at spatially separated microphones. For our tracking
application the TDOA estimation strategy is required to be
computationally efficient, and should not make strong as-
sumptions about the number of audio sources and the exact
characteristics of the audio signals. One popular strategy that
satisfies these requirements involves the maximization of the
Generalized Cross-Correlation Function (GCCF) [5], [27].

This strategy, with various modifications, has been applied
with success in a number of sound source localization systems,
e.g., [42], [47], [51], [57]. We subsequently adopt it to obtain
TDOA estimates for our tracking algorithm. Computation of
the GCCF is described at length in [5], [27], and we will omit
the detail here.

The GCCF is essentially the correlation function between
pre-whitened versions of the signals arriving at the micro-
phones. The positions of the peaks in the GCCF can then be
taken as estimates of the TDOAs for the sound sources within
the acoustic environment of the microphones. Apart from the
true audio sources, “ghost sources” due to reverberation also
contribute to the peaks in the GCCF. Rather than attempting
to remove these by further signal processing, we retain all
the peaks above a predefined threshold as candidates for
the true TDOA. More specifically, for any frame the sound
measurement vector can be denoted asyS = (D1 · · ·DNS ),
with Di ∈ D = [−Dmax, Dmax], i = 1 · · ·NS . The maximum
TDOA that can be measured is easily obtained from the
microphone separationd and the value used for the speed of
soundc (normally 342ms−1) as Dmax = d/c. Note that the
number of TDOA measurements varies with time, and quite
frequently no TDOA measurements will be available. To cope
with the ambiguity due to the presence of multiple candidates
for the true TDOA we develop a multi-hypothesis likelihood
model, which is described next.

2) TDOA Likelihood Model: In this section we develop
a multi-hypothesis likelihood model for the TDOA measure-
ments. Similar likelihood models have been developed before
for radar based tracking in clutter [17], and tracking single
[20] and multiple [32] objects in video sequences.
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The TDOA measurements depend only on thex position
in the image, i.e., p(yS |x) = p(yS |x). Furthermore, for
any hypothesis of the objectx position in the image, a
deterministic hypothesis for the TDOA can be computed as

Dx = g(x) = g3 ◦ g2 ◦ g1(x), (22)

with
x̃ = g1(x) = W̃ (x/W − 0.5)
θ = g2(x̃) = arctan(f/x̃)
Dx = g3(θ) = Dmax cos θ.

(23)

The functiong1 is a simple linear mapping that relates thex
position in the image to the correspondingx̃ position in the
camera image plane. The width of the imageW is measured
in pixels, whereas the width of the image planẽW is measured
in metric units. Using a pinhole model for the camera, withf
the focal length, the functiong2 then relates thẽx position in
the camera image plane to the sound source bearing. Finally,
the functiong3 makes use of the Fraunhoffer approximation
to relate the sound source bearing to the hypothesized TDOA.
Since the mappingg is entirely deterministic the likelihood
can written asp(yS |x) = p(yS |Dx). We will use this latter
form of the likelihood in the exposition below.

We assume the candidate TDOA measurements to be inde-
pendent, so that the likelihood can be factorized as

p(yS |Dx) =
NS∏

i=1

p(Di|Dx). (24)

In practice, however, clutter measurements due to reverbera-
tion are expected to be at least somewhat coherent with the true
source, thus violating the independence assumption. Accurate
modeling of reverberation requires detailed knowledge about
the composition and acoustic properties of the environment,
which is difficult to obtain in practice, and thus not attempted
here. Nevertheless, the model still performed well, as we will
demonstrate in SectionIV.

Of the TDOA measurements at most one is associated
with the true source, while the remainder is associated with
clutter. To distinguish between the two cases we introduce a
classification labelci, such thatci = T if Di is associated with
the true source, andci = C if Di is associated with clutter.
The likelihood for a measurement from the true source is taken
to be

p(Di|Dx, ci = T ) = cxN(Di|Dx, σ2
D)ID(Di), (25)

whereIA(·) denotes the indicator function for the setA, and
the normalizing constantcx is given by

cx = 2
(

erf
(Dmax −Dx√

2σD

)
− erf

(−Dmax −Dx√
2σD

))−1

, (26)

with erf(x) = 2√
π

∫ x

0
exp

(−t2
)
dt the Gaussian error func-

tion. Thus within the range of admissible TDOA values the
measurement is assumed to be the true TDOA corrupted by
additive Gaussian observation noise of varianceσ2

D. Empirical
studies proved this to be a reasonable assumption, as the results
in Fig. 6 show.

(30 dB, 0.05 s) (30 dB, 0.30 s) (30 dB, 1.00 s)

(15 dB, 0.05 s) (15 dB, 0.30 s) (15 dB, 1.00 s)

−2 0 2

(0 dB, 0.05 s)

−2 0 2

(0 dB, 0.30 s)

−2 0 2

(0 dB, 1.00 s)

Fig. 6. TDOA measurement statistics. TDOA measurement error his-
tograms and Gaussian approximations for a range of signal-to-noise levels
and reverberation times.

Similar to what was done in [32] for example, the likelihood
for measurements associated with clutter is taken to be

p(Di|ci = C) = UD(Di). (27)

Thus the clutter is assumed to be uniformly distributed within
the admissible interval, independent of the true source TDOA.

For NS measurements there are a total ofNS + 1 possible
hypotheses. Either all the measurements are due to clutter, or
one of the measurements corresponds to the true source, and
the remainder to clutter. More formally,

H0 = {ci = C : i = 1 · · ·NS}
Hi = {ci = T, cj = C : j = 1 · · ·NS , j 6= i}, (28)

with i = 1 · · ·NS . The likelihoods for these hypotheses follow
straightforwardly from (24), and are given by

p(yS |H0) = UDNS (yS)

p(yS |Dx,Hi) = cxN(Di|Dx, σ2
D)ID(Di)UDNS−1(yS

−i),
(29)

whereyS
−i is yS with Di removed.

However, for any set of measurements the correct hypothesis
is not known beforehand, and the final likelihood is obtained
by summing over all the possible hypotheses,i.e.,

p(yS |Dx) =
NS∑

i=0

p(Hi|Dx)p(yS |Dx,Hi), (30)

wherep(Hi|Dx) is the prior probability for thei-th hypothesis.
In what follows we fix the prior probability for the all clutter
hypothesis toPc, and set the prior probabilities for the remain-
ing NS hypotheses to be equal. Under these assumptions the
likelihood for the TDOA measurements finally becomes

p(yS |Dx) ∝ Pc

2Dmax
+

cx(1− Pc)
NS

NS∑

i=1

N(Di|Dx, σ2
D)ID(Di).

(31)
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In the case where no TDOA measurements are available the
likelihood is simply set top(yS |Dx) ∝ 1. The construction of
the TDOA likelihood is illustrated in Fig.7.

3) TDOA Proposal: As was the case for motion, it is
possible to use the sound localization cues to design an
efficient proposal distribution for the particle filter. Such a
proposal would allow the tracker to recover lock after brief
periods of partial or total occlusion. In another setting the
objects of interest might be speakers participating in a video
tele-conference. In this case a sound based proposal can aid
the tracker to switch focus between the speakers as they take
turns in the conversation.

These objectives can be achieved by designing a proposal
distribution for the objectx position that incorporates the
TDOA measurements when they are available. Informally,
the inverse of the mapping in (22) is easy to obtain. Each
TDOA measurement can then be passed through the resulting
inverse mappingg−1 to yield a plausiblex position for the
object. To capture the notion of smooth motion trajectories
and exploiting the information in the TDOA measurements
we define a TDOA based proposal for the objectx position
of the form

qS(xn|xn−1,yS
n) = βRWN(xn|xn−1, σ

2
x)

+
(1− βRW )

NS

∣∣∣dg(xn)
dxn

∣∣∣
NS∑

i=1

N(g(xn)|Di,n, σ2
D).

(32)

The first component is the same Gaussian random walk used
for the x component in the state evolution model in (14),
and ensures the smoothness of the motion trajectories. The
second component is a mixture that incorporates the TDOA
measurements, and is obtained by inverting the non-clutter part
of the likelihood model in (31). All the TDOA measurements
are equally weighted in the mixture. The derivative of the
mapping g is easily obtained by using the chain rule. The
weight of the random walk component is set to one if no
measurements are available, in which case no jumps are
allowed in the objectx position.

Generating samples from the TDOA based proposal is
straightforward. First a mixture component is picked by
sampling from the discrete distribution equal to the mixture
weights. Sampling from the random walk component is trivial.
Sampling from the component for thei-th TDOA measure-
ment can be achieved by first sampling a candidate delay
according toDxn

∼ N(Dxn
|Di,n, σ2

D), and then passing the
resulting delay through the inverse of the mapping in (22), i.e.,
xn = g−1(Dxn).

F. Tracker Architecture

We conclude this section by summarizing the composition
of our tracking algorithm. We consider two main scenarios.
The first, summarized in Tab.III , is a desktop setting such
as depicted in Fig.2, where we use color as the main cue,
and fuse it with the information in the sound localization cue.
Such a setting forms the basis for video tele-conferencing
applications. The second setting, summarized in Tab.IV,
is representative of surveillance and monitoring applications
involving a static camera. Here sound localization cues will

With {x(i)
n−1, w

(i)
n−1}

Np

i=1 the particle set at the previous time step, proceed
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TABLE III

PARTICLE FILTER FOR VISUAL TRACKING BASED ON COLOR AND SOUND.
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TABLE IV

PARTICLE FILTER FOR VISUAL TRACKING BASED ON COLOR AND MOTION.

NOTATION p STANDS FOR LOCATION(x, y).

generally be absent, and we thus fuse color with the motion
localization cue.

In both settings we employ a form of partitioned sampling.
In the first setting the sound likelihood only gives information
about the objectx coordinate in the image. We thus simulate
and resample for this component first, before simulating new
values for the remaining state components (objecty coordinate
and scale factorα) and resampling with respect to the color
likelihood. This implies that we do not search directly in the
three dimensional state-space, but rather partition the inference
into a search in a one dimensional space, followed by another
in a two dimensional space. In general this increases the
efficiency of the particle filter, allowing us to achieve the same
accuracy for a smaller number of particles. We follow a similar
strategy in the second setting where we fuse color and motion
in that we first simulate and resample the location parameters
with respect to the motion likelihood, before simulating the
scale factorα and resampling with respect to the color
likelihood.
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Fig. 7. From sound measurements to TDOA likelihood. (Left) A stereo pair of 4096 sound samples corresponding to the 1/30 seconds of one video
frame. (Middle) GCCF of the two stereo signals, and detected peak. (Right) Associated likelihood as a function of the TDOA, and of the horizontal pixel
coordinate in the image frame, respectively.

IV. D EMONSTRATIONS

In this section we will demonstrate the performance of
our tracking algorithm on a number of challenging video
sequences. We will first consider the behavior of the tracker
when using each of the cues in isolation, and then show
how the shortcomings of such single modality trackers can
be eliminated by fusing the information from multiple cues.
We will use the values in Tab.V for the fixed parameters of the
likelihood, proposal and state evolution. Due to the efficiency
of the motion and sound proposals, and the relatively low
dimensionality of the state-space, good tracking results can
be achieved with a reasonably small number of particles. For
our experiments we useNp = 100 particles.

A. Single Modality Tracking

1) Color Only: Since the color of an object is its most
persistent feature, we use it as the main cue for our tracking
algorithm. As is the case for the deterministic color based
trackers proposed in [4], [6], [9], our probabilistic tracker using
color only is able to robustly track objects undergoing complex
changes of shape and appearance. This is exemplified by the
sequence of the football player in the top row of Fig.8. The
robustness of the tracker to color clutter and large movements
is further increased by its ability to incorporate multi-region
color models, as is illustrated in the home video example in
the bottom row of Fig.8.

The downside of the color persistence is its lack of discrimi-
nating power in certain settings. In cases where the background
contains objects of similar color characteristics to the object
of interest, the likelihood will exhibit a number of modes.
A typical example is given in the office scene in Fig.3,
where the wooden door is close in color space to the faces
of the subjects being tracked. Under these circumstances the
ambiguities might lead to inaccurate tracking, or in the worst
case, a complete loss of lock.

In these scenarios the robustness of the tracking algorithm
can be greatly increased by fusing color cues with other cues
exhibiting complementary properties,i.e., with lower persis-
tence, but being less prone to clutter. As discussed before,
motion and sound are two such cues. The former will prove to
be a valuable addition to color in static camera settings, such as
tele-surveillance and smart environment monitoring, whereas
the latter will combine with color in tele-conferencing applica-
tions, where a calibrated stereo microphone pair can easily be

added to the broadcasting or recording equipment. We will first
demonstrate the power and limitations of motion and sound
as single modality tracking cues, and then investigate the two
fusion scenarios.

2) Motion Only: In this section we illustrate the behavior
of the tracker using the frame difference motion cue only.
With this cue moving objects are tracked with a reasonable
degree of accuracy, as the result for the sequence in Fig.9
indicates. However the motion cue is intermittent, and when
motion ceases there is no more localization information, and
the particles diffuse under their dynamics, as is illustrated in
Fig. 10. We will see in SectionIV-B.1 how the fusion of
motion with color effectively eliminates these shortcomings.

3) Sound Only: In this section we illustrate the behavior
of the sound only tracker,i.e., tracking only the horizontal
position of a speaker in the image, based on the TDOA
measurements obtained from the stereo microphone pair. As
will be evident, this cue not only allows localization in the
x coordinate, but also endows the tracker with the ability
to switch focus between speakers as they take turns in the
conversation.

We consider two sequences, each featuring two subjects
in discussion in front of a camera. In the first sequence the
environment is relatively noise-free, and speech is consistently
detected when present. Fig.11 shows snapshots of the tracking
result for this sequence. It is clear that the sound based
proposal defined in (32) allows the tracker to maintain focus
on the current speaker to a sufficient degree of accuracy. It also
facilitates the switching of focus between the speakers as they
alternate in conversation. Note that the tracking is accurate
even beyond the limit of the image plane, as is evident for the
subject on the right.

This result is even more encouraging in the light that it was
obtained using low cost off-the-shelf equipment. Extreme care
in the placement of the microphones relative to the camera
was not required. The system was only roughly calibrated,
and proved to be robust to the exact values chosen for the
intrinsic parameters of the camera. Furthermore, no explicit
attempts were made to compensate for the reverberation or
background noise.

In the second sequence, for which snapshots are given in
Fig. 12, the signal-to-noise ratio is higher due to a higher level
of air-conditioner noise in the background, and the subjects
being further from the microphones. Due to the higher noise
level speech is often undetected (NS = 0). This is further
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standard deviations of dynamics (σx, σy , σα) = (5, 5, 10−2)
uniform weight in dynamics βu = 0.01
random walk weight in proposals βRW = 0.75
standard deviations of likelihoods (σC , σM , σD) = (2× 10−2, 2× 10−2, 10−5)
clutter probability in sound likelihood Pc = 10−3

speed of sound c = 342ms−1

microphone separation d = 0.2m
focal length f = 0.02m

width of the image plane fW = 0.01m

TABLE V

MODEL PARAMETERS FOR THE TRACKING EXPERIMENTS.

Fig. 8. Color based tracking with single and multi-region reference models. Using a global color reference model generated from a hand-selected region
in the initial frame, a region of interest (player 75 in the top sequence, the child in the bottom sequence) can be tracked robustly despite large motions,
significant motion blur, dramatic shape changes, partial occlusions, and distracting colors in the background (other players in the top sequence, the sand and
the face of the mother in the bottom sequence). In the top sequence a single region was used, whereas two regions, corresponding to the face and shirt of the
child, were used in the bottom sequence. The yellow box in each frame indicates the MMSE estimate.

9 74 227 344

Fig. 9. Tracking moving objects with motion cues only. The uniformly initialized particle filter locks on to the moving vehicle a few frames after it
enters the scene, thanks to the motion based proposal. The tracker maintains lock on the moving vehicle as it drives through the parking lot. The yellow box
represents the MMSE estimate.

513 524 535

Fig. 10. Intermittence of motion cues. When the vehicle tracked in the sequence of Fig.9 eventually stops, the motion cues disappear, and the particles
diffuse under their dynamics. The rectangles indicate the hypothesized regions before resampling, with the yellow rectangles depicting the ten best particles.
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1 64 212 251

274 298 338 398

Fig. 11. Sound based tracking under accurate speech detection. After the first period of silence (frames 1 to 17), where the uniformly initialized particles
keep on diffusing, the sound based tracker consistently tracks the horizontal position of the current speaker. The vertical segments indicate the positions of all
the particles at the current time step, with the yellow segments depicting the ten best particles. Only particles falling inside the image are displayed. Hence
the particle cloud is partly to completely invisible when the tracker correctly follows the speaker on the right exiting and re-entering the field of view of the
camera (e.g., frames 251, 274, 298).

exemplified by the graphs in Fig.13 that show the speech
detections for each speaker in relation to the ground truth.
These detection failures result in a rapid diffusion of the
particles, as is evident from a number of snapshots in Fig.
12.

Since the sound cue lacks persistence, either through detec-
tion failures or the absence of speech, the sound based tracker
is unable to provide consistent tracking in time. In addition,
the sound cue gives no information about the vertical location
y or scale factorα of the object being tracked. We will see in
SectionIV-B.2 how the fusion of sound with color will solve
these problems, while retaining the desirable properties of the
sound localization cue.

B. Multiple Modality Tracking

1) Color and Motion: As we have mentioned in Section
IV-A.1, the greatest weakness of the color localization cue is
the ambiguity that results due to the presence in the scene of
objects or regions with color features similar to those of the
object of interest. An extreme example where tracking based
on color only fails completely is given in Fig.14.

By fusing the color and motion cues the ambiguity can be
greatly reduced if the object of interest is indeed moving. This
is exemplified by the likelihood maps for each of the individual
cues and the combination of the cues in Fig.15. As a
further illustration the combination of color and motion allows
accurate tracking of the vehicle in Fig.16, where color only
tracking failed. During periods of motion the tracker utilizes
mainly the information in the motion cue, while relying on the
color information for the localization when the motion ceases
at the end of the sequence.

The utility of the motion based proposal is illustrated by the
tracking results on the sequence in Fig.17. In this case the
localization information is ambiguous in both the color and
motion cues, when considered individually. Without the event
based motion proposal a uniformly initialized tracker simply

settles on one of the spurious modes of the combined likeli-
hood. With the help of the motion based proposal, however, the
tracker is able to lock on to the target (face) as soon as it enters
the scene. Even though the motion based proposal continues
to generate hypotheses in all the regions of significant motion
activity (face, torso and monitor), those that do not comply
with the color likelihood are eliminated during the resampling
procedure, so that lock is maintained, as is shown in Fig.18.

2) Color and Sound:To demonstrate the fusion of color
and sound we consider again the second sequence presented
in SectionIV-A.3. We now initialize a reference color model
composed of three subregions (for better positioning accuracy)
on the face of the left subject, as depicted in Fig.19. Using
color only the particle filter, after a uniform initialization, locks
on to one of the subjects at random, and maintains lock on
this subject throughout the video sequence, as is shown in Fig.
19.

By incorporating the sound localization cues, the tracker is
able to jump between the subjects as they take turns in the
conversation, as is depicted in Fig.20. During the absence
of sound cues, either through detection failures or periods of
silence, the tracker maintains accurate lock on the last active
speaker due to the information in the color cues.

V. CONCLUSIONS

In this paper we introduced generic mechanisms for data
fusion within particle filtering, and used them to develop a
particle filter based tracker combining color, motion and sound
localization cues in a novel way. Color, being the most per-
sistent, was used as the main cue for tracking. The ambiguity
inherent in color representations was resolved by the more
intermittent, but less ambiguous, motion and stereo sound
cues. We considered two main scenarios. In the first, color
was combined with sound in a desktop setting that forms the
basis for video tele-conferencing applications. In the second,
representative of more general tracking applications such as
surveillance, we fused color with the motion localization cue.
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5 18 47 62 79 191

200 214 219 222 252 284

Fig. 12. Sound based tracking under sporadic speech detection. Due to the low signal-to-noise ratio speech is only occasionally detected (e.g., frames
18, 62, 191, 214, 219, 252). The remainder of the time no localization cues are available, and the particle filter simply diffuses under its dynamics (e.g.,
frames 47, 79, 200, 222, 284).

left person right person

Fig. 13. Speech detection against ground truthfor the two subjects of the sequence in Fig.12. The left (resp. right) graph concerns the subject on the
left (resp. right) in the scene. The lines indicate the speech detections, which all correspond to correct horizontal localization of the speaker in the image.
The shaded area indicates the hand-labeled ground truth.

car that should
be tracked car that should

be tracked 

car that should
be tracked 

car that should
be tracked 

9 74 227 344

Fig. 14. Color tracking under ambiguity . The reference color histogram, generated from a region selected by hand around the moving vehicle in frame
74, leads to a high degree of ambiguity. Soon after a uniform initialization, the tracking algorithm gets stuck on a very strong local minimum of the color
likelihood, corresponding to one of the parked vehicles. The yellow box represents the MMSE estimate.

p(yC |(x, y, 1)) p(yM |(x, y, 1)) p(yC ,yM |(x, y, 1))
Fig. 15. Color and motion compound likelihood. Head movement, as captured by the motion likelihood, helps to reduce the ambiguity inherent in the
color cues, as is exemplified by the three likelihood maps: color likelihood, motion likelihood, and the product of the two likelihoods, plotted as a function
of the location only (scale factor fixed toα = 1).

In both scenarios the combination of cues proved to be more
robust than any of the cues individually.

As is standard practice, we defined independent likelihood
models for each of the localization cues. We also constructed
mixture proposal distributions based on the motion and sound
cues, whenever these were available. These proposals act
as detection and initialization modules for the particle filter.
They also facilitate a more efficient exploration of the state-
space, and aid the recovery of lock following periods of
partial or complete occlusion. Within the context of multi-
object tracking such event based proposals are essential for the
detection of new objects when they appear in the scene. We
also used different stratified sampling procedures to increase

the efficiency of the particle filter. These layered procedures
effectively substitute the difficult estimation problem in the
complete state-space with a sequence of easier estimation
problems, each in a reduced space.

This combination of appropriate conditionally independent
data models, event based proposal densities, and layered
importance sampling could now be extended to other visual
tracking scenarios involving the fusion of other information,
such as shape cues when a predefined class of object has to
be tracked.

Although not considered in this paper, the fusion of multiple
measurement modalities is an essential requirement in adaptive
systems. In such scenarios a high degree of confidence in one
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4 9 74

227 344 535

Fig. 16. Fusing color and motion. As was the case in Fig.14, the reference color model is generated from a region selected by hand around the moving
vehicle in frame 74. The motion based proposal allows the tracker to lock on to the moving vehicle as soon as it enters the scene. Lock is maintained
throughout the period of motion, mostly due to the presence of the motion cues. When motion ceases towards the end of the sequence, the tracker relies on
the color cues to maintain lock, in contrast to the motion only tracking in Fig.10. The yellow box represents the MMSE estimate.

Motion cues

Color cues

Color and motion cues

Color and motion cues, and motion based proposal

8 12 38 59

Fig. 17. Using color and motion cues with the motion based proposal. (Top) In this example of a person traversing the field of view, the motion cues
are very ambiguous due to the activity around the face and torso of the moving person, and around the computer monitor. (Second row) The reference color
model, initialized on the face of the person, leads to additional ambiguities. After a uniform initialization the particles settle on a spurious local mode of
the color likelihood. It is only towards the end of the sequence, when the face approaches this region, that the particles lock on to the desired target. (Third
row) Combining the color and motion modalities, while retaining the smooth proposal, does not alter the behavior of the color only tracker significantly (the
particles move to the face a few frames earlier). (Bottom) In contrast, the combined tracker with the motion based proposal allows the tracker to lock on to
the face as soon as it enters the scene, and to track it throughout. All regions of high motion activity are continually explored (e.g., face, torso and monitor),
but those that do not comply with the color model are discarded during the resampling procedure. The rectangles indicate the hypothesized regions before
resampling, with the yellow rectangles depicting the ten best particles.
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12 38 50 59 70

Fig. 18. Using color and motion cues with the motion based proposal. MMSE result for the tracker that combines the color and motion localization
cues with the motion based proposal on the sequence in Fig.17.

1 2 7

Fig. 19. Two different runs of the color tracker . The reference color model is defined on the three-fold selection on the left in frame 1. After a uniform
initialization the tracker rapidly locks on to one of the subjects at random, and maintains lock on this subject throughout the sequence. The rectangles indicate
the bounding boxes for the particles, with the yellow rectangles depicting the ten best particles.

5 18 47 62 79 191

200 214 219 222 252 284

Fig. 20. Fusing color and sound. The tracking result for the fusion of color and sound cues on the same frames as in Fig.12. The sound based proposal
allows the tracker to jump between the subjects as they alternate in conversation (frames 18, 62, 191, 214, 219, 252). In the absence of sound cues lock is
maintained on the last active speaker due to the information in the color cues. The yellow rectangle in each of the frames depicts the MMSE estimate of the
particle bounding box.

modality facilitates the adaptation of the model parameters as-
sociated with complementary modalities, while simultaneously
minimizing the risk of learning a wrong appearance model,
such as the background [8], [24], [55], [59]. Such adaptive
systems are most useful in multi-object tracking systems where
it may be desirable to individualize a generic model to each
of the objects in the scene.
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