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Abstract. The aim of this paper is to develop methods for estimating the range 
of a moving target from bearings-only observations and for weakly observable 
scenarios, by including constraints ahout kinematic parameters. It is assumed 
that the target motion is rectilinear and uniform which leads us to restrict to 
batch algorithms. Poor observability is generally resulting from a (very) lim- 
ited amplitude of the observer maneuvers. In these situations, classical meth- 
ods perform very poorly (especially for range estimation) and including con- 
straints is uneasy and not reliable. We consider here methods for determining 
a confidence interval for the range based on the Highest Probability Density 
(HPD) Intervals, by taking into account prior informations about the kinemat- 
ics parameters. Two types of prior constraints will be considered : first the 
kinematics parameters a re  supposed belonging to intervals, without supposing 
a particular distribution, and second the target trajectory i s  supposed staying 
in a known area. The determination of a n  HPD interval requires a Markov 
Chain Monte Carlo (MCMC) sampling. The HPD interval method is illus- 
trated by simulation results. 

INTRODUCTION 

The prohlem of performing target motion analysis (TMA) using noisy hearings- 
only (BOT') measurements derived from a single moving ObSeNer is addressed. 
For BOT TMA. these measurements consist of line-of-sight angles. It is perhaps in 
the passive sonar environment that BOT TMA is most familiar: though it  is a chal- 
lenging problem for other contexts like surface and airhome ASW (Anti Submarine 

'e-mail: f r e d e r i c . b a u e n c o f f , l e a n - m i c h e l . ~ , ~ ~ ~ ~ ~ ~ s ~ ~ ~ l ~ @ ~ . ~ ~ ~ ~ ~ ~ " ~ . ~ ~ ~  
te-mait. lecadrc@irina.fr 
'BOT means exaclly Be~ings-Only Tracking 

0-7803-8608-6/04/$20.00 02004 IEEE 153 

Authorized licensed use limited to: UR Rennes. Downloaded on July 10, 2009 at 11:13 from IEEE Xplore.  Restrictions apply.

mailto:lecadrc@irina.fr


Warfare) (LR. sensors) or passive surveillance via Electronic Support Measurement 
(ESM). TMA is instrumental for many systems like surveillance systems, for evalu- 
ating the threats, for performing data association. correlation processing (e.g. track- 
to-track association), for sensor management, etc. Finally, let us stress that the real 
difficulty of TMA is due to the passive nature of the observation. Particular impor- 
tance is attached to range estimation. Also, with target range at hand, course and 
speed may be estimated by finding position at two distinct times. This clearly moti- 
vates this article whose major objective is range estimation for ”difficult” scenarios. 

The BOT TMA problem is not new and even traces hack to the work of C.F. 
Gauss. Since that time various approaches have been developed. Basically, these 
methods are able to include simple kinematic constraints. However, they are not 
designed for estimating Highest Probability Density (HF’D) Intervals 131 or dealing 
with general constraints or multi-modality which are precisely the objectives of this 
work. This paper is organized as follows. Problem formulation is given in the Sec- 
tion 2; followed by a presentation of the Monte Carlo Markov Chain (MCMC) for 
constrained estimation in Section 3 (Metropolis and Hit-and-Run algorithms). In 
this section. accent is put on the application of these general algorithms to the BOT 
TMA context. Section 4 deals with the HPD estimation. 

PROBLEM FORMULATION 

In the general two-dimensional problem, the angles of arrival are viewed from an 
observer confined to a plane which includes the target. Here, we consider the pmb- 
lem of estimating the parameters of the target trajectory under the assumption of 
rectilinear and uniform (target) motion from a history of noisy passive bearing mea- 
surements viewed by a moving observer. The scenario is depicted in fig l helow : 

t / 

I / 

Figure 1: The BOT TMA scenario 
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The target, whose position is initially defined by its initial range r and initial 
azimuth 0, moves with a constant velocity v holding heading a relating to North, 
defining the state vector x = (r, 8, v, a). 

Classically, the batch BOT TMA problem is solved by a Maximum Likelihood 
Estimator (MLE) which consists in finding the state vector which maximizes the 
likelihood given the observed bearings, i.e. : 

(2) =awnax  ~~g,,~~,...,e,)(x) = argmax f (x ) (&,&, . . .  , 8 ~ )  (1) 
x x 

where . . , 8 ~ )  are N (noisy) bearing observations at time periods TI,. . , TN. 
The hearing measurements 8; are the exact hearings corrupted by a sequence of 
indrpendent and identically (normally) distributed (i.i.d.) noises. Thus, the mean' 
of 9; is Oi. while its variance is a'. 

The likelihood of a state vector given the observed hearings is just the density 
function of the given observed hearings seen as a function of the state vector e.g. 
the density of the measured observations under the hypothesis that (c; 8, U ,  a )  is the 
true state vector. 

Since there does not exist an explicit method for solving eq. (I), iterative solu- 
tions are generally used for solving this non-linear regression problem. Best known 
methods are Gradient [2] and Modified Instrumental Variable [2],[11 (MIV) ones. 
So, a vast literature has been devoted to this subject. The aim of this article is to 
replace the search for the maximum of the likelihood functional by the search furan 
interval. The main idea developed here consists in incorporating prior informations 
e.g. the parameters we want to estimate belong to given intervals. The (T, 8, U ;  a )  
parametrization is panicularly well adapted for including Operaliondl constraints 
and will be in use throughout this paper. Prior information has to he used in  a 
Bayesian context. Given observations, the posterior distribution of [he state vector 
is related to prior information and likelihood function via the Bayes's relation. For 
determining an interval including the "greatest" v?lues of r.  it is necessary to ac- 
cess to the marginal posterior distribution T(T I (81,02,. . ,ON)) of the posterior 
density state vectorT((r,8,u,a) I (8 , ,82  ,... ,8,v)). The whole difficulty lies in  
the fact that the marginal posterior density n(r I (81, 82,. . . >ON)) is defined by the 
integral of the posterior density n((r,  0, U ,  a )  1 (81,8z, . . . , B N ) )  with regard to 0, 
v and CI and not under closed-fnrm. 
We propose a method of providing an interval for r based on Highesf Prubabiliry 
Derisig (HPD) interval. For a given prohability content, say 1 -a, the HPD method 
allows to obtain a confidence interval for the range r with a prohability content of 1- 
a by using a sample from the marginal posterior density T (r  1 (&,&, 
This sample is obtained by generating a Mar-kov Cliain Monte Carlo (MCMC) sam- 
ple from the marginal posterior distribution, sample that is itself obtained by gener- 
ating a MCMC sample from the posterior distribution T (r ,  9, U ,  a )  1 (81, . . . , 8 ~ )  

'Note thar the 81, 8Zr.. . , i~.} is not identically disuibured since its mean is time~varying. 

. ^  

( 
I "  - 

155 

Authorized licensed use limited to: UR Rennes. Downloaded on July 10, 2009 at 11:13 from IEEE Xplore.  Restrictions apply.



THE MCMC METROPOLIS-HASTINGS AND MCMC HIT-AND-RUN AL- 
GORITHMS 

The aim of this section will be to provide a particular setting for the application of 
the Markov Chain Monte Carlo (MCMC) methods [5] for constrained estimation 
[SI. In this article, two types of constraints will be considered. First. we con- 
sider that each of the state variables (r,O,v,a) belongs to a given interval, with- 
out assuming a particular distribution in these intervals. These constraints will be 
taken into account in the Merropolis-Hastings Algorithm. Second, we consider that 
all the target trajectory belongs to a known area (implying complex constraints on 
(r;  8, U ;  a)  ). This second type of consuaints will be used throughout the Hir-and- 
Run Monte Carlo sampling. For both type of constraints, MCMC method will be 
the common workhorse. 

The MCMC Metropolis-Hastings algorithm 

Due to operational considerations, it is natural to assume minimal and maximal 
hounds about range r (namely rmin and rmax). In order to reguce the search width 
around 8, we shall suppose that the first hearing measured is not too far from 
the right bearing O1. So, the state variable 8 will be supposed to be in the interval 
[01 - ma, O1 + ma where a is the standard deviation of the measurements. Typ- 

ically, we choose m = 5. Indeed, the first measured hearing O1 allows to give a 
good idea of the true bearing since the interval [el - 5a, 6,  + 501 contains the 
true value 81 with a probability of 99.9999%. In the absence of any strong prior 
about target parameters, uniform priors are the more convenient: 

- 1  

r ( r )  - U[r,in;.rm,l , * ( o )  - U [el - m a , &  + m a  , 1 (2) c T ( V )  - U[VIni.,V,,l , .(a) - U[-?i,+7rI . 

Then, we consider the following distribution of the state vector: 

?T(r,O,v,a) = * ( T ) x T ( 8 ) X 7 r ( U ) x 7 r ( a ) ,  (3) 
= c qr,"m"a] (7) x %L,;dmaxI (8)  x q " m h , T , m a * l  (U) > 

4 m ?i U (rm, - rmin)  (U" - %in) ' 
1 

whereC = 

while 1 is the indicator function. The following step is to define the transition 
kernel to move from a state ( r ,  B;u, a)"' to a state (r',  O', U', a'). so as to ease the 
simulation process. To that aim. we consider the following transition kernel: 

q ( ( r ~ , e ~ , U ~ , a o  1 ( r , o , v , a ) ( t ) )  = q ( r c ~ r ( ~ ) )  x . . . x q ( p i ~ a ( t ) )  . (4) 

In order to check the symmetry condition (i.e. q(ylx) = q(x1y) ), conditional dis- 
tributions are chosen uniform. A factor IC (e.g. 20) is introduced, so as to reduce the 
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interval length, thus avoiding that new values (T ' ,  O', U', a') be drawn out of the pos- 
terior distribution support and be rejected. Which lead us to consider the following 
densities: 

q (7.' 1 d t ) )  
9 (Of 1 @I)  U [OW - g('1 + ""1 
* (.' 1 U"') N U [&) - (?"in) , U @ )  + ("  J L y m i n ) ]  (5 )  

*(a' 1 &) w U [a(') - ?,a@) + . 

- U [ d t )  - (T) ,& + (Y)] 
% >  )i 

Let D be the set of observed bearings ; i.e. D 'Zf (81, $2, .. . ,eA,). Now the 
next step is the computation of p ((r, 8, U ,  a)") , (r', O',v', a')  which needs the 
computation of the ratio of the posterior densities: 

T ( ( T ' , ~ ' : U ' , Q ' )  ID) - L[D)(r' ,O' ,d,d)  X X ( T ' , ~ ' , W ' ~ ~ ' )  

?r((r,",~,a)"'  ID) L(~)(r,8,7>,a)(~) x r ( r , 8 , t J , a ) ( t )  ' 

) 

- 

itself requiring the calculation of the measurement likelihood. Assuming that bear- 
ing measurements at vaious time-periods are independent, we have: 

N 
L(8 ,,..., & ) ( T > 0 , U I 4  = ~ L & ( r ; B , 2 1 , 4  . (7) 

;=I 

Le1 Oi 1 (r ,O,u,a)  be the exact bearing at the time period i, conditionally to the 
state vector (T ,  0, U ;  U ) ;  elementary geometrical considerations yield3: 

where Az; and AX are the relative positions of the target and the observer. As- 
suming that the observations are normally distributed; i.e. 0; = 0; + E; with 
E; - A7 (0, U"), we have: 

(U') 

'Note thal the usud expression is 0; [ (r,8,v, e) = arctan (s)~ eq. 8 is used Io avoid ambigu- 
ities of b e  arctan function. 
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At present, we have seen the way to generate a MCMC sample from the posterior 
distribution ?I (r,O,w,o) 1 ,#N)) by taking into account constraints 
given by intervals, where priors are uniformly distributed. In the following para- 
graph. we shall consider again MCMC sampling but, this time, with much more 
general constraints. 

The MCMC Hit-and-Run algorithm 

Actually, operational considerations usually leads us to consider that the target tra- 
jectory lies in a given domain. The Hit-and-Run sampler is a MCMC method for 
generating random samples from an arbitrary continuous density f over its support 
by drawing from a time-reversible Markov chain. The Markov chain transitions are 
defined by choosing a random direction and then moving to a new point whose like- 
lihood depends on f in that direction. The convergence is based on convergence 
in distribution of realizations to their asymptotic distribution f .  The Hit-and-Run 
sampler, which generates a continuous-state Markov chain sample path {xi,i 2 0) 
from S, the support o f f ,  is given below: 

( 

Algorithm: Hit-and-Run sampler 

1. Choose a starting point xoES,  and set i = O  

2. Generate a direction di, from a distribution on the 

3. Find the set S;(di,xi) 5 {A E R I x; + Ad; E S} 

4 .  Generate a signed distance : X i  from density gi(X 1 

surface of the unit sphere. 

d i , x i ) ,  where X i  E Si 

5.. Set y = xi + Aid4 

y with probability ai(y I xi) { xi otherwise. Xi+l  = 

6. Set i + l ,  and go to Step 2. 

It exists various choices for the distribution of di, the densities gi, and the prob- 
abilities a, (61. It is not necessary that the density function f or its support be 
bounded (proved by Chen and Schmeiser). In practice, there are three jump strate- 
gies (i.e. choices of gi(X I di,xi) and a,(y 1 xi)) allowing the resulting Markov 
chain to have a probability transition kemel and to be time reversible with respect 
to f ,  As we consider in this article a target moving in a bounded area, the following 
strategy will be used: 
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(Barker’s method) f (Y) 
a, = f ( X i ) + f ( Y )  { min (1, $$) (Metropolis’s method) 

Directions d; E R“ on the surface of the unit sphere are obtained by drawing D: - 
U[-l,l] for j = 1 . . . n (where U represents the uniform law) and by normalizing 

to 1 so that di = Di/,/-. 
Rectilinear target trajectory. 

Our problem is to draw samples (r,  8, w ,  from the posterior density ?T((r, 8, v ,  a) I 
(el :. . . ,e,v)) by considering the prior information expressed by the constraint that 
the target’s trajectory stands in  a supposed known area and a constraint on the maxi- 
mum target velocity. Under the assumption of a rectilinear and uniform motion, the 
target trajectory (denoted ‘T) can he defined by its two extrema1 points (Pinit and 
Fend), i.e. : 

Let us denote C the area where stand all the target trajectories without constraint 
on the maximal speed and let be : S E R2 x R2 the subset of C representing all the 
target trajectories satisfying both the constraint on the maximum target speed and 
the constraint seen hefore on the target trajectory. S is then defined by the relation: 

where L is the maximal length of a trajectory defined from the total measurement 
duration At and the maximal supposed target speed wmmz;  so that L = vmaz x At. 

In this setup, the Hit-and-Run algorilhm is applied to TMA by associating a point 
z in S to a feasible trajectory 7 in  the set S of the whole feasible trajectories, then 
takjng the following form : 

1. Choose an initial arbitrary trajectory satisfying the constraints. Define 5 as: 

2. Generate 4 uniform variables in [-1,1] : {D1, D2, Ds, D4}  that represent the 
evolutions of directions of the points P,,,;t and Fend and define the normalized 
di vector (Ildill = 1) by: 

dT=(d l ,dz ,d3 ,dq) ( ’ ) .  ( 1 2 )  
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3. Determine the X set : Sj(dj,7;) d&f {A E R I Ti + A ,  di E S}. Then the 
constraints on X stand as follows: 

4. Draw a signed distance X i  fmm the density : 

where m is the (Lehesgue) measure of the segment S,(di, 7;) 

= 7; + X i  . d; and define %+I by: 5. Define the Q vector by 

(13) 
P with probability min 

7; otherwise , 
%+1 = 

where f (P)  and f (Ti) are the posterior distributions of the trajectories '3 and 7; 
respectively. In fact, the ratio of the posterior densities # reduces to the ratio the 
likelihoods since the prior informations are already naturally taken into account in 
the generation of feasible trajectories by the algorithm. So : 

with L(e, ,,,, ,iN) (e) and L(J ,,,,, ,iN) (7;) likelihoods of trajectories '3 and 71. 

HIGHEST PROBABILITY DENSITY (HPD) INTERVALS 

Computing HPD intervals is the main point in this article for providing interval of 
confidence: both under the rectilinear uniform hypothesis and the leg-by-leg one. 

We present here the calculation of the HPD intervals method and their connec- 
tion with MCMC methods. Consider a Bayesian posterior density having the form: 

where D denotes data, Xis one-dimensional, 1p may be a multidimensional vector of 
parameters other than A. The functional LD(X, 9) is a likelihood function given D ,  
r(X, 9) is a prior and c ( D )  is a normalization constant. The major aim of Bayesian 
posterior inference is precisely to investigate posterior marginal densities. Based 
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on the main properties of the HPD interval, Chen and Shao [4] (1999) propose the 
following procedure for calculating an HPD interval for X : 

Chen-Shao HPD Estimation Algorithm 

1. Obtain an MCMC sample {Xi)i=1,2 ,..., ,, from a(X 1 D )  

2. Sort {Xi} i=l ,z , . . . ,n  to obtain the ordered values: 

I 3. Compute the 100(1 -a)% credible intervals: 

= (~~j) ,~[ j+[ [ l -o)7al )~  

for  j = 1,2,  ... ,n - ((1 - a)n] (entire part) 

4. The l O O ( 1  - a)% HPD interval is the one, denoted by 
Rp(n) ,  with the smallest interval. 

RESULTS 

The general scenario is depicted on fig. 2, below (left): 

Figure 2: Left: The scenario parameters. Target parameters: T = 37040 m., u t a  z .10.3 
m/sec.. # = 90. deg.. ry = 0. deg. Right: MCMC samples vs time. 

Firsr, we consider interval constraints for the kinematics parameters (see section 
3). The true target state vector is defined by: r = 37040 m., U 10.3 mfsec. 
(20 knots), 0 = 90. deg., a = 0. deg, (at time 0). The observer speed is 92.6 
m/sec. motion is rectilinear and uniform. Fifty (50) bearings are measured every 
5 sec. The measurement error is modelled by a centered Gaussian noise, with a 1. 
deg. standard deviation. Prior constraints stand as follows: T E [500,200000]m, 
B E [& - 50,& + 581. 2) E [7.716,12.86] and a E [-x, 4. 
The Metropolis algorithm generates a sample vector of dimension 100000. We 
present on fig. 2 (right) the evolution of the MCMC sample for range generated 
from the marginal posterior density, taaking into account the above constraints on 
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state vector. The true range (37040m) is drawn in solid line. It appears that range 
estimations seem to be (only) slightly greater than the true value. However, taking 
into account that the range is (almost) unobservable, this clearly gives us an idea of 
the potential of this method. 

i '  

Figure 3: Left: HPD interval width vs probability of content. Right: 500 iterations of the 
MCMC Hit-and-Run 

Fig. 3 (left) illustrates the HPD intervals for probabilities of content. Actually, 
it is the complementay of this probability which is plotted on the x-axis (i.e. 1 - 
P(pmb. of content)). The second figure (right) concerns the implementation of the 
Hit-and-Run algorithm using constraints about target trajectories (trajectoly domain 
and target speed). The scenario is the same than previously. 

CONCLUSION 
In this paper, we have shown that target motion analysis under demanding opera- 
tional requirements becomes feasible if the target prior is properly taken into ac- 
count. The algoritm we developed is based on MCMC methods. It is both reliable 
and feasible. A definite advantage is also to obtain HF'D for parameter estimation, 
as a by-product. 
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