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ABSTRACT

In domains like confocal microscopy, the imaging process
is based on detection of photons. It is established the addi-
tive Gaussian noise model is a poor description of the actu-
al photon-limited image recording, compared with that of a
Poisson process. This motivates the use of restoration meth-
ods optimized for Poisson noise distorted images. In this
paper, we propose a novel restoration approach for Pois-
son noise reduction and discontinuities preservation in im-
ages. The method is based on a locally piecewise constant
modeling of the image with an adaptive choice of a win-
dow around each pixel. The restoration technique associates
with each pixel the weighted sum of data points within the
window. It is worth noting the proposed technique applied
to confocal microscopy is data-driven and does not require
the hand tuning of parameters.

1. INTRODUCTION

Confocal systems offer the chance to image thick biological
tissue in 2D or 3D dimensions. At each point of the im-
age, the emitted fluorescence for the object is focused on the
detector. This light is converted by a photomultiplier tube
(PMT) into a an electrical signal and represented by a dis-
crete value after an A/D conversion [10]. Finally, the PMT
essentially behaves as a photon counter and the distortions
caused by the quantum nature of the photon detection pro-
cess are better described by Poisson statistics. Operations
that invert these distortions of the microscope are then nec-
essary to improve the quantitative analysis of images. Gen-
erally restoration methods yield an estimate of the original
image given an imaging model, a noise model and addition-
al criteria. In previous work [12, 6, 7], the Richardson-Lucy
algorithm, which is a maximum likelihood estimator for the
intensity of a Poisson process, incorporates a non-negativity
constraint in the algorithm. This algorithm is generally ca-
pable of partially reducing the distortions found in confocal
3D images. However, it is sensitive to noise [6] and ad-
ditional methods (Gaussian pre-filtering) are necessary to
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produce better restoration results [7].

In this paper, we also address the adaptive image restora-
tion problem and present a nonparametric estimation method
that smooth homogeneous regions and inhibits smoothing
in the neighborhood of discontinuities. The observed da-
ta are imperfect and in the form of Poisson process. Since
we do not address the image formation of the confocal flu-
orescence microscope, ideally modeled as a convolution of
the object function with the point spread function [10], the
proposed method can be seen also as a sophisticated pre-
filtering method before starting the more complex decon-
volution process using the Lucy-Richardson algorithm [7].
The proposed adaptive window approach is conceptually
very simple being based on the key idea of estimating a
locally regression function with an adaptive choice of the
window size (neighborhood) for which the applied model
fits the data well [11]. At each pixel, we estimate the regres-
sion function by iteratively growing a window and adaptive-
ly weighting input data to achieve an optimal compromise
between the bias and variance [8, 5, 9]. The proposed algo-
rithm complexity is actually controlled by simply restrict-
ing the size of the larger window and setting the window
growing factor. In contrast to most digital diffusion-based
filtering processes for which the input noisy image is “a-
bandoned” after the first iteration [2], the adaptive window
approach recycles at each step the original data.

2. A NONPARAMETRIC APPROACH

In photon-limited imaging, the major source of errors is
Poisson noise due to the discrete nature of photon detection.
Unlike Gaussian noise, Poisson noise is signal dependent,
which makes separating signal from noise a very difficult
task. However, by applying the Anscombe transform [13]
definedasY; = 24/ f; + % the Poisson data f; ~ Poiss(v;)
of intensity v; are transformed to data with a Gaussian dis-
tribution with variance 02 = 1. Such an assertion is asymp-

totically correct as v; — oo. This transformation allows
one to use well-studied methods for Gaussian noise on data



corrupted with the much trickier Poisson noise. Then we
applied a method developed for Gaussian noise. After de-
noising, the inverse Anscombe transform is applied.

2.1. Image model and basicidea

We observe the regression function » with some additive
errors &§: Y; = w(z;) + &, i =1,---,n, werez; €
R?,d = 2,3, represents the spatial coordinates of the dis-
crete image domain S of n pixelsand Y; € R is the observed
intensity at location z; and defined as previously. We sup-
pose the errors &; to be independent identically distributed
zero-mean random variables with unknown variances, i.e.,
var(¢;) = o2. However, to cope with more complex degra-
dations, the noise variance is also an unknown parameter of
the method.

A classical nonparametric estimation approach is based
on the structural assumption that regression function u(x)
is constant in the vicinity of a point 2. An important ques-
tion under such an approach is first how to determine for
each pixel the size and shape of the neighborhood under
concern from image data. The regression function u(z) can
be then estimated from the observations lying in the esti-
mated neighborhood of = by a local maximum likelihood
(ML) method.

The proposed procedure is iterative and mostly realizes
this idea. First, suppose we are given a local window Wi(o)
containing the point of estimation z;. We can calculate an
initial ML estimate u( ) at point z; (and its variance 19( ))

by averaging observations over a small neighborhood Wz.(o)
of z; as
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where 52 is the unknown estimate of the nonse varlance and
|Wz.(0 | denotes the number of points z; € Wi . At the nex-

t iteration, a larger neighborhood Wi(l) with Wi(o) C Wi(l)
centered at x; is considered, and every point z; from Wl.(l)
gets a weight w(l) which is defined by comparing the esti-
mates u( ) and u(o) obtained at the first iteration. Then we
recalculate the estimate u( ) as the weighted average of da-
ta points lying in the neighborhood Wz.(l). We continue this
way, increasing with & the considered neighborhood Wi(k);

for each £ > 1, the ML estimate ag“ and its variance are
given by
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where weights w( ) are continuous variables 0 < w(]k) <

1), computed by comparison of the preceding estimates % A(k b
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anda u; . Inthe next section, statistical arguments for cal-

culatlng weights wg.“) are given. We also add a pointwise
control step for selecting the optimal window size for each
pixel, by comparing the new estimate « A( ) with the estimate
ugk U obtained at the preceding |terat|on [11]. In Equation
(2), the weight function wg?) does not directly depend on

input data but are only calculated from neighboring local
estimates, which contributes to the regularization effect.

2.2. Adaptiveweights

In our approach, we may decide on the basis of the estimates
ﬂgk_l) and @'Y whether points z; and Tj € Wz.(k) arein
the same region or not and then prevent from significant dis-
continuities oversmoothing [11]. In the local Gaussian case,

significance is measured using a contrast |A(k 2 Ag.k_l)|

If this contrast is high compared to \/19('“ b , then z; should
not participate to the estimation of u A(k) and w(k) — 0.
Hence, motivated by the robustness and smoothlng proper-
ties of the Huber M-estimator in the probabilistic approach

of image denoising [1], we introduce the following relat-
ed weight function (but other weight functions are possible

[2D):
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Here 34/ 35"_1) is related to the spatially varying fraction of

contamlnation of the Gaussian distribution (“‘rule of 3 sig-
a” for Gaussian distributions.): for the majority of points
z; € Wi, the differences @{*~" — a*=" can be approx-
imatively modeled as belng constant (zero) with random
Gaussian noise. Large differences are assumed to be out-
liers which should not have a large effect on the estimator.

2.3. Optimal window selection

The classical measure of the closeness of the estimator @
obtained in the window W; to its target value u is the mean
squared error (MSE) which is decomposed into the sum of
the squared bias and variance. As explained before, we
should choose a window that achieves an optimal compro-
mise between the squared bias and variance. Accordingly,
we make the reasonable assumption that the squared bias
is an increasing function of the neighborhood size and the
variance is a decreasing function of the neighborhood size.



Then, in order to minimize the pointwise MSE we search
for the window where the square bias and the variance of
the estimate are equal for each point ;.

Now, let us introduce a finite set of k£, windows
U ... . U*Y centered at z;, with W ¥ ¢ w1,
starting with a small UZ.(O) and the corresponding estimates

ag‘” of the true image u(z;). Denote by Ui('“) the ideal win-
dow size corresponding to the minimum value of the MSE.

Then the optimal window UZ-(E") can be obtained according
to the following statistical rule [5, 8, 9]:

Ei:max{k VE <k ‘A““’ ;(k’)\ <8’l9(k)} (4)

In other words, as long as successive estimates u A( ) stay
close to each other, we decide that the bias is small and the
size of the estimation window can be increased to improve
the estimation of the constant model (and to decrease the
variance of the estimate u( )) If an estimated point u(k)
appears far from the previous ones, we interpret this as the
dominance of the bias over the variance term. For each pix-
el, the detection of this transition enables to determine the
critical window size that balances bias and variance.

2.4. Convergence

In this section, we propose a stopping rule to save computa-
tion time if two successive solutions are very close and pre-
vents from an useless setting of the larger window size. In
our approach, we adopt the so-called Csiszar’s I-divergence
[3, 7] to detect global convergence defined as:
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A(k) +a(k+1) (5)
In practice, the I-divergence is normalized with its maximal
occurring value at iteration & = 0. When I(a@(®,a(++1)
sinks under a threshold (of the order 102 for typical im-
ages) that sufficiently accounts for convergence, the algo-
rithm is stopped at the final iteration k. = &k, with k. < kas,
where kj is the maximal value for k set by the user. Final-
ly, the window size increases at each iteration & if the glob-
al convergence criterion is not met (or & < kjs) without

changing the estimate u A( ) if the pointwise rule (4) has al-

ready been violated at x;, i.e. a§’“> = 175'“) if Ei < k. If the
rule (4) has not been violated at z;, we have k; = k where
k is the current iteration of the algorithm.

3. THE ALGORITHM

The key ingredient of the proposed algorithm is an increas-
ing sequence of neighborhoods Wz.(k) C Wz.(kﬂ) centered
at each image pixel z;. In what follows, |Wi(k)| denotes

(a) confocal image

(c) denoised image using Gaussian statistics

Fig. 1. Denoising of a confocal image showing an individ-
ual neuronal cell.

the number of points z; in Wz.(k). We arbitrarily choose
[W®| = (2k+1) x (2k+1) pixelswithk = 0, 1,..., kas.
For each point z;, we naturally choose [W(®)| = 1 and cal-
culate initial estimates u(o) and 19( ) using Equation (1) and
set k = 1. Here 52 is the noise variance robustly estimated
from data as it is explained in [4, 2]. The algorithm is then
as follows:

Estimation For all ; in W.(k) we compute weights wz(f)

using Equation (3) and new estimates u A(’“) and 35'“) using
Equation (2).

Pointwisecontrol After the estimate u( ) has been comput-

ed, we compare it to the previous estimates u A( ) at the same
point z; for all ¥ < k. From the rule (4), if there is at least

one index k' < k such that ‘1’;(.’“) — ﬂ(-k’)‘ > 2v/2 (/9

then we do not accept @ A( ) and keep the estimates u A('“ 2

from the preceding |terat|on as the final estimate at Iocatlon
x; [5, 9]. This estimate is unchanged if & > k;.

Convergence We stop the procedure if & = ks or if
I(@®, at+1)) < 10~3, otherwise increase k by 1 and con-
tinue with the estimation step. Here we use k,; to bound
the numerical complexity. This parameter is set to 15 over-
estimates the number of necessary iterations.



4. EXPERIMENTS

We have tested the algorithm (also implemented for pro-
cessing 3D data) on confocal fluorescence microscopy im-
ages that contain complex structures. The potential of the
adaptive window method is first shown on a 2D confocal mi-
croscopy 115 x 512 image (Fig. 1, courtesy of INSERM 413
IFRMP n°23, Rouen, France) depicting a neurite in cultured
cerebellar granule cells. Fig. 1a shows the highly noisy
image where high gray-level values correspond to elevated
calcium concentration. Figures 1b and 1c contain the de-
noised images using the adaptive window method combined
with respectively Poisson statistics and Gaussian statistics;
the image denoised using Poisson statistics contains larger
homogeneous regions. The adaptive window method using
Poisson statistics has been also applied to 3D data: a typi-
cal 2D image taken from a 3D stack of 20 images depicting
membranes of about fifty cultured human cells is shown in
Fig. 2a (courtesy of INRA - UFDNH, Nantes, France). The
image is denoised (Fig. 2b) using the set of parameters used
in the previous experiments. Finally, the performance of the
restoration procedure is demonstrated for a 3D fluorescence
microscopic (179 x 144 x 16) stack. Figure 3a shows a
typical 2D image taken from the 3D stack of 16 images de-
picting moving chromosomes (with dark values) standing
over a spatially varying background, during mitosis (cour-
tesy of Institut Curie, Paris, France). Figure 3b shows the
image denoised using Poisson statistics, where the location
of chromosomes (dark spots) are well preserved. Figure 3c
shows also the locations and sizes of optimal estimation;
we have coded small windows with black and large win-
dows with white. As expected, small windows are in the
neighborhood of chromosomes.

@ (b)

Fig. 2. Denoising of a 3D confocal stack depicting mem-
branes of cultured human cells.

5. CONCLUSION

We have described a novel feature-preserving adaptive al-
gorithm that reduces Poisson noise with a controllable com-
putational complexity. The processing of the 256 x 256
image required typically 3 seconds on a PC (2.6 Ghz, Pen-
tium 1V) using a standard C++ implementation of the al-

(a) original image (b) denoised im- (c) locations/sizes

age of windows

Fig. 3. Denoising of a fluorescence microscopic image
showing human chromosomes (centromeres).

gorithm. The proposed scheme can be seen also as an al-
ternative method to the anisotropic diffusion [2] and energy
minimization methods. An advantage of the method is that
no hidden parameters need to be precisely adjusted as in
many other methods and the algorithm can be parallelized.
Experimental results show its effectiveness and demonstrate
its potential for 2D and 3D confocal microscopy.
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