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Abstract

We propose an original learning approach for image
classification problems. Recognizing semantic events in
video requires to preliminary learn the different classes of
events. This first stage is crucial since it conditions the fur-
ther classification results. In video content analysis, the task
is especially difficult due to the high intra-class variability
and to noisy measurements. We then represent each class
by the centers of several sub-classes (or clusters) thanks to
a robust partitional clustering algorithm which can be ap-
plied in parallel to a (non-predefined) number of classes.
Our clustering technique overcome three main limitations
of standard K-means methods: sensitivity to initialization,
choice of the number of clusters and influence of outliers.
Moreover, it can process the training data in an incremen-
tal way. Experimental results on sports videos are reported.

1. Introduction

This paper is concerned with the issue of recognizing se-
mantic events in videos and focuses on the learning stage
which is of tremendous importance to be able to achieve se-
mantic video interpretation from numerical video features.
Such a problem arises in numerous applications such as
video summarization, video retrieval or surveillance. In the
context of video interpretation, a major concern is the high
video appearance variability that a given event may exhi-
bit. Therefore, we have to deal with heterogeneous classes
while classes may be not so distant from each other.

Among the various classification techniques, Support
Vector Machines (SVM) have become popular since [2]. It
is an efficient alternative approach to Bayesian classifiers
when no parametric probabilistic distributions are available
to model the classes. It is also of interest when dealing with
numerous and correlated features. SVM methods directly
seek an optimal separating hyperplane in the feature space,
usually on a two-class problem basis. However, in prac-
tice, an appropriate trade-off has to be found between the
fidelity to training data and the non-linearity of the decision
function. This may become a tricky task when dealing with
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Figure 1. Example of 2D data corresponding to two diffe-
rent classes exhibiting a high intra-variability, and candidate
SVM nonlinear decision functions (dashed and solid lines).

a complex class topology as illustrated in Fig. 1. Further-
more, the presence of noise and possibly outliers is inherent
to real data.

As mentioned above, the detection of semantic events in
videos usually involves heterogeneous classes. For a given
class, observations, and consequently computed video fea-
tures, may vary according to the way the scene is filmed
(camera motion, distance to the scene, illumination condi-
tions) and the considered instance of the event of interest.
This is the case for example in sports video analysis where a
class of a given “play” event is actually reflected by several
clusters in the feature space of low-level motion descriptors
(depending on the camera parameters and on the athlets be-
ing filmed). SVM do not take into account this intra-class
variability. Moreover, they are often limited to two-class
classification, since multi-class extension is not so straight-
forward and still an active subject of research [7].

We suggest instead to consider a robust clustering ap-
proach applied in parallel to each predefined class in order
to capture their internal data structure. Such an approach
is intrinsically multi-class. It is flexible (classes can be
handled in any order) and extensible (new classes can be
straightforwardly added). It is also incremental with respect
to training data (new sets of training data can be processed
just by iterating from the current learning state). The train-
ing data consist of a set of vectors collecting the extracted
features on each video sample of the training set. For the
sake of simplicity, all attributes are supposed to be numeri-
cal and continuous.



The learning approach advocated in this paper involves
a novel intra-class clustering algorithm that can be seen as
a robust extension of the standard K-means algorithm. The
algorithm yields an estimated number of clusters for each
class and associated prototypes (actually the centers of the
subclasses), from which different strategies of classification
could be considered.

The reminder of the paper is organized as follows. Sec-
tion 2 describes related work on robust and so-called un-
supervised clustering. In Section 3, we first introduce the
general formulation of K-means-type clustering methods.
Our contribution is then motivated and explained in detail.
Section 4 is devoted to the experimental results, and Section
5 contains concluding remarks.

2. Related work

Clustering techniques are classically divided into two
broad categories: hierarchical and partitional algorithms
[8]. Among the partitional methods, the K-means algorith-
m is perhaps the most widely used. Originally devised as
an online clustering technique, most people refer to it as a
batch algorithm. It provides a “hard” partition of the data
as opposed to its “fuzzy” counterpart called fuzzy C-means.
The common purpose of center-based clustering algorithms
is to summarize multivariate data by a reduced set of central
points. It is very close to vector quantization design which
consists in encoding a signal source with codebook refer-
ence vectors, as in the well-known LBG algorithm [11].
We briefly review hereafter partitional approaches to both
robust clustering in the presence of noisy data and unsuper-
vised clustering when the number of clusters K is unknown.

The general technique to handling the problem of K-
means sensitivity to outliers is to modify the objective func-
tion by considering an additional noise cluster or by incor-
porating concepts from robust statistics. The K-medoids al-
gorithm is one of the earliest solution but most algorithms
have been derived in the framework of fuzzy clustering so
that it can deal with overlapping cluster boundaries [3].
Note also that the notion of robust vector quantization de-
veloped in the context of data encoding and transmission
does not refer to outliers but to channel noise and to ran-
dom elimination of prototypes for codebook reduction [6].

The traditional method to determining K is to select the
K-means partition that optimizes a certain validity measure
over a range of K values [1]. Nevertheless, the compu-
tational cost is quite high and the choice of appropriate
validity indices evaluating the quality of the partition still
remains a difficult question [5]. One alternative is to per-
form some progressive clustering by starting with an over-
specified number of clusters and then adding a second phase
of merging. “Stepwise” clustering and “dynamic” local
search have also been suggested [9] but all these solutions

need to specify similarity criteria and to set thresholds.
Very few techniques attempt to globally solve the unsu-

pervised robust clustering problem. In [4], the authors pro-
pose a fuzzy clustering algorithm involving a robust “com-
petitive agglomeration” process. A regularized objective
function is put forward with the use of fuzzy memberships
and a robust loss function, while a separate virtual noise
cluster is introduced in [10] to catch the outliers. Even so
the number of clusters can be derived in that way, such a
regularization approach requires in practice several heuris-
tics to tune the parameters of the considered criterion.

3. Intra-class robust clustering

3.1. K-means clustering

Let X = {xn}n=1,...,N be a set of feature vectors (in
our case, they are the training data from a same given event
class). Each data instance contains d real-valued attributes:
xn = [xn1, . . . , xnd]

t ∈
�

d.
K-means clustering consists in finding K clusters such

that a global distortion error is minimized. The standard
objective function is actually a sum of variances within each
group. It involves the K centers of each cluster (often called
prototypes) and the criterion amounts to the minimization of
the sum of distances to the nearest prototypes:

E(YK) =

N
∑

n=1

min
l∈{1,...,K}

D(xn,yl) (1)

where YK = (y1, . . . ,yK) is the unknown K-tuple of pro-
totypes. Conventional K-means algorithm uses the square
Euclidean distance: D(x,y) = ‖x − y‖2 =

∑d

i=1(xi −
yi)

2, but other center-based clustering algorithms can be de-
rived by using different measures of distortion or by assign-
ing a weight to each data point.

Even in the standard case, minimizing the objective func-
tion requires an iterative procedure and getting the global
minimum is not guaranteed. Optimization starts with some
given prototypes, and alternates data allocation to the near-
est prototypes and update of the prototypes. Such iterative
techniques only converge to a local minimum of the objec-
tive function. Moreover, the number K of clusters must be
known a priori.

3.2. Description of our robust clustering method

First of all, we replace the square Euclidean distance tra-
ditionnally used, by a robust distance so that the influence
of outliers on prototype estimation will be brought down.
We have chosen D(x,y) = ρc(‖x − y‖) where ρc is the
hard redescending Tukey’s biweight defined as follows:

ρc(u) =

{

u6/6c4 − u4/2c2 + u2/2 if |u| < c,
c2/6 otherwise.

(2)



This function is quadratic at the origin, increasing for small
positive values and constant after a threshold c. Thus, points
which distance to a prototype is greater than c have no influ-
ence on its determination. They are considered as outliers
for this given cluster. Secondly, we do not fix a priori the
number of clusters K, but only the scale parameter c of the
robust distance. The algorithm starts with a single cluster,
and progressively creates new clusters from the data con-
sidered as outliers with respect to the existing clusters. K
and c are obviously related: the number of estimated clus-
ters will grow if c decreases. It is yet a consistent advantage
not to fix K, since a rough estimate of c can be derived
from statistics computed on the training data and the ob-
tained partition is far less sensitive to a change in c than
in K. Moreover, we can automatically and easily deter-
mine K by choosing the optimal value of c for which the
partition is the most stable (i.e., the number of clusters and
center locations remain unchanged when iterating). Thirdly,
we can set an appropriate initialization of cluster centers by
searching for dense regions in the feature space of the train-
ing set. We extract local density information from statistics
precomputed on data samples, by evaluating the number of
neighbor points of these samples for a given neighborhood
size (determined from the histogram of pairwise distances).

The overall learning scheme consists in partitioning for
each predefined class its associated training set with the ro-
bust clustering algorithm described as follows:

1. normalize the input data (so that each attribute has a
median absolute deviation equal to one and therefore a
similar influence on the distance measure);

2. compute pairwise distances between vectors (for a sub-
set of randomly selected vectors if necessary), let c =
c(1) be the median of pairwise distances and initialize
the first prototype at the center of the most dense re-
gion;

3. iterate the following steps

• allocate each data point to the nearest prototype,

• label the non-allocated data as outliers and pos-
sibly create a new cluster if there exists a suf-
ficiently dense region of outliers (that contains
more than a predetermined number of points),

• reestimate the locations of the prototypes,

until convergence of the prototypes;

4. decrease the value of c (c(q+1) = c(q) − ∆c, index q
being the iteration number) and repeat step 3, the pro-
totypes being initialized with the previously estimated
prototypes;

5. stop when the partition is stable (K(q+1) = K(q) and
∑

l ‖ŷ
(q+1)
l − ŷ

(q)
l ‖2/

∑

l ‖ŷ
(q)
l ‖2 < ε);

6. rescale the prototypes to the initial vector space.

Note that we begin by a preliminary normalization of
the different features. As a consequence, we can use an
isotropic distance metric ρc(‖x − y‖) with a single scale
parameter c. It must also be mentioned that center updating
corresponds to a nonconvex minimization procedure that we
solve by using iteratively reweighted least squares (IRLS)
together with a continuation method similar to the “Gra-
duate Non Convexity” algorithm.

An incremental version of our algorithm can easily be
implemented to take into account supplementary data: start
with the current prototypes and include the new data of the
given class to reestimate their locations and perhaps create
one or several new cluster(s) in each class.

4. Experimental results

4.1. Description of data sets

We have used in our experiments two distinct datasets
extracted from two groups of videos, one related to ama-
teur basket-ball games and the other to tennis TV programs.
We are interested in detection and classification of video
events based on the analysis of the dynamic content. We
use thereby motion descriptors extracted from the normal
flow magnitudes of each video sequence and their temporal
contrasts, and corresponding to the empirical parameters of
a Dirac-Gaussian mixture modeling their histograms [12].

The first set, Basket-ball, is composed of only 2D fea-
ture vectors so as to easily illustrate the behavior of our ro-
bust clustering algorithm (the two parameters of the Dirac-
Gaussian mixture representing the 1D histogram of the tem-
poral contrasts only). All of the sequences are short videos
of one or two basket-ball players filmed by an amateur with
a static camera. They involve different players and variable
shooting conditions (Fig. 2). We have defined 3 classes of
semantic events named Middle shot, Lay-up and One-on-
one. We report in the next section the clustering results ob-
tained on the training set. The second dataset, called Tennis,
consists of the entire 4D motion descriptors characterizing
video segments of a tennis TV program and the goal is to
recognize 4 categories of events in the video (Rally, Serve,
Change of side and No play segments). In subsection 4.3,
we also evaluate our approach in terms of classification re-
sults. For that purpose, each dataset is divided in a training
set and a test set.

4.2. Learning results

Fig. 3 displays the clustering results obtained on the
Basket-ball training dataset composed of 189 feature vec-
tors unequally divided into the 3 classes. For each class,
our unsupervised algorithm selects a different number of
clusters which correctly structure the processed data.



Figure 2. Three image samples extracted from the Basket-
ball video dataset and corresponding to the 3 different types
of actions: “middle shot”, “lay-up” and “one-on-one”.

Figure 3. Basket-ball dataset: the training points are rep-
resented by different symbols according to their class (‘o’
for “middle shot”, ‘+’ for “lay-up” and ‘∆’ for “one-on-
one”). We have obtained partitions of respectively three,
two and one clusters. The corresponding centers are marked
with dark squares, pentagrams and a diamond respectively.

We have also applied our learning algorithm on the 4-
class Tennis training dataset with 300 data points. We ob-
tain two clusters for Rally, four clusters for Serve, three for
Change of side and two for No play. Associated parameter
c? varies between 0.4 and 2.2 depending on the dispersion
of the data in each class.

4.3. Classification results

Our learning method handles each class separately but,
for classification purpose, we need to specify a proper deci-
sion rule based on the computed prototypes of each class.
The most simple one is probably the minimum distance
classifier. Our intra-class clustering algorithm allows us to
determine several prototypes per class that can be further
used to classify data. Here we resort to the nearest prototype
rule. This basic classifier gives a better classification rate on
the Basket-ball test set compared to the “one-against-one”
LIBSVM classifier [7] with a Gaussian kernel and hyper-
parameters tuned by cross-validation (87% against 80% out
of 123 examples). The results are equivalent on the Ten-
nis dataset (67% of good classifications out of 339 test seg-
ments), while our learning method presents significant ad-
vantages: it is straightforwardly extensible to new classes,

it is incremental by construction if new training data are
available, and it does not require any parameter selection
beforehand.

5. Conclusion

We have presented a novel partitional robust clustering
algorithm for learning the structure of each class in video
content analysis. Our approach is flexible, parallel and un-
supervised. It can determine the appropriate number of pro-
totypes in a well formalized and simple way. It is also incre-
mental and robust to outliers, contrary to Gaussian mixture
model clustering for instance. Experimental results show
the capacity of our method to parsimoniously and usefully
representing classes of video events. Future work will deal
with the design of a prototype-based classifier that could
improve the simple nearest neighbor strategy.
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