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Abstract

We present new probabilistic motion models of interest
for the detection of relevant dynamic contents (or events) in
videos. We separately handle the dominant image motion
assumed to be due to the camera motion and the residual
image motion related to scene motion. These two motion
components are then represented by different probabilistic
models which are further recombined for the event detection
task. The motion models associated to pre-identified classes
of meaningful events are learned from a training set of video
samples. The event detection scheme proceeds in two steps
which exploit different kinds of information and allow us
to progressively select the video segments of interest using
Maximum Likelihood (ML) criteria. The efficiency of the
proposed approach is demonstrated on sports videos.

1. Introduction

Approaching the “semantic” content of video documents
while dealing with physical image signals and numerical
measurements is a high challenge in computer vision. The
characteristics of a semantic event have to be expressed in
terms of low-level video primitives which have to be suffi-
ciently discriminant.
Different kinds of video features have already been consid-
ered in several approaches. In [7] statistical models are in-
troduced for components of the video structure to classify
video sequences into different genres. Recently, in [5], a se-
mantic classification method based on SVM (“Support Vec-
tor Machine”) using a motion pattern descriptor has been
described. In [9], the authors use very simple local spatio-
temporal measurements, i.e., histograms of the spatial and
temporal intensity gradients, to cluster temporal dynamic
events. In [8], a principal component representation of ac-
tivity parameters (such as translation, rotation ...) learned
from a set of examples is introduced. The considered ap-
plication was the recognition of particular human motions,
assuming an initial segmentation of the body.

Different approaches have been recently investigated to de-
tect highlights in sports videos. In [2], the authors deal with
soccer videos and mainly exploit dominant colour informa-
tion. In [4], the spectator excitement is modeled and derived
from three variables related to audio-video features in order
to extract the most interesting video segments.
In this paper, we focus on motion information and we pro-
pose new probabilistic image motion models useful for
the detection of dynamic events. The motion information
is captured through low-level motion measurements easily
computable in any video. Our approach consists in sepa-
rately modeling the camera motion (i.e., the dominant im-
age motion) and the scene motion (i.e., the residual image
motion). These two sources of motion bring important and
complementary information.
We apply the designed statistical framework to the detection
of relevant events in a video following a two-step approach.
The first step consists of a pre-selection of candidate video
segments. The second step is a classification stage to rec-
ognize the relevant events (in terms of dynamic content) a-
mong the pre-selected segments. Such a two-step process
allows us to save computation time and to make the overall
detection more robust and efficient.
The paper is organized as follows. Section 2 briefly presents
the motion measurements we used. Sections 3 and 4 de-
scribe the statistical modeling of scene motion and of cam-
era motion respectively. Section 5 is concerned with dy-
namic event detection. Experiments on sports videos are
reported in Section 6. Section 7 contains the conclusion.

2. Motion measurements

A probabilistic modeling of the motion content of a
video enables to derive a parsimonious motion representa-
tion while coping with errors in the motion measurements
and with variability in a given type of motion content. Fur-
thermore, no analytical motion models are available to ac-
count for the variety of dynamic contents to be found in
videos. We have then to specify and learn motion models
from the image data. Let us also note that we aim at rec-



ognizing “broad” event classes and not particular “quantita-
tive” motions. It is possible to characterize the full image
motion as proposed in [3], by computing at each pixel a lo-
cal weighted mean of the normal flow magnitude. However,
the image motion is actually the sum of two motion compo-
nents: the dominant motion (usually due to camera motion)
and the residual motion (related to the scene motion). We
believe that more information can be recovered when deal-
ing with these two motions separately rather than with the
total motion only.
The dominant image motion can be represented by a deter-
ministic 2D affine motion model (which is a usual choice):

wθ(p) = (a1 + a2x + a3y , a4 + a5x + a6y)T
, (1)

where θ = (ai, i = 1, . . . , 6) is the model parameter vector
and p = (x, y) is an image point. This motion model can
handle different camera motions such as panning, zooming,
tracking, (including of course static shots). Different meth-
ods are available to estimate such a motion model. We use
the robust real-time multi-resolution algorithm described in
[6]. Let us point out that the motion model parameters are
directly computed from the spatio-temporal derivatives of
the intensity function. Then, the corresponding motion vec-
tor w

θ̂t
(p) is available at any pixel p and time t.

The residual motion measurement vres is defined as the lo-
cal mean of normal residual flow magnitudes |vn| (weighted
by the square of the norm of the spatial intensity gradient):

vres(p, t) =

∑

q∈F(p) ‖∇I(q, t)‖
2
.|vn(q, t)|

max
(

η2,
∑

q∈F(p) ‖∇I(q, t)‖2
) , (2)

with vn(q, t) =
I(q,t)−I(q+w

θ̂t
(q),t+1)

‖∇I(q,t)‖ . F(p) is a local spa-
tial window centered in pixel p. ∇I is the spatial intensity
gradient. η2 is a constant related to the noise level.
Figure 1 displays two images of an athletics TV program
with the maps of the estimated dominant motion vectors and
the maps of residual motion measurements vres.

3. Probabilistic model of scene motion

We describe now the probabilistic model of scene motion
derived from statistics on the local residual motion mea-
surements expressed by relation (2). The 1D histograms
of these measurements computed over different video seg-
ments show two degrees of freedom. In fact, they present
usually a prominent peak at zero and a continuous compo-
nent part which can be modeled by a distribution of the ex-
ponential family. We have opted here for the exponential
distribution to represent the continuous part. Therefore, we
model the distribution of the local residual motion measure-
ments within a video segment by a specific mixture model
with density:

f(z) = αδ0(z) + (1 − α)φβ(z), (3)

where z holds for vres(p, t), α is the mixture weight, δ0 de-
notes the Dirac function at 0 and φβ(z) = βe−βz for z > 0.
α and β are estimated using the ML criterion.
In order to capture not only the instantaneous motion infor-
mation but also its temporal evolution over the video seg-
ment, the temporal contrasts ∆vres of the local residual mo-
tion measurements are also considered:

∆vres(p, t) = vres(p, t + 1) − vres(p, t). (4)

They are modeled by a mixture g(z′) of a Dirac function
at 0 and a zero-mean Gaussian distribution, where z ′ holds
for ∆vres(p, t). The mixture weight and the variance of the
Gaussian distribution are still evaluated using the ML cri-
terion. The density of the full probabilistic residual motion
model is then simply defined as:

hres(z, z′) = f(z).g(z′). (5)

The probabilistic residual motion model is completely spec-
ified by four parameters which can be easily estimated. It
accounts for global statistics accumulated over both the im-
age grid and time (i.e., over all the frames of the video seg-
ment). It can be considered as a global occurrence model.

4. Probabilistic model of camera motion

We have to design a probabilistic model of the camer-
a motion to combine it with the probabilistic model of the
residual motion in the recognition process. We first inves-
tigated to characterize the camera motion directly by the
parameter vector θ defined in Section 2 and to represent it-
s distribution over the sequence by a probabilistic model.
However, it was difficult to design a convenient probabilis-
tic model. We propose instead to consider an equivalent
representation by the 2D motion vectors wθt

(p), and to ex-
ploit them as a 2D histogram. More precisely, at each time

Figure 1. Two images at different time instants (involving
an upward-tilt camera motion and a left panning one) of the
Athletics video (provided by INA) and their corresponding
maps of the estimated dominant motion fields and of resid-
ual motion measurements vres (zero-value in black).



t, the motion parameters θt of the camera motion model
(1) are estimated and the vectors w

θ̂t
(p) are computed for

each point p of the image support. The values of the hor-
izontal and vertical components of w

θ̂t
(p) are then finely

quantized, and we form the empirical 2D histogram of their
distribution over the considered video segment. Finally, this
histogram is represented by a mixture γcam of 2D Gaussian
distributions. The number of components of the mixture is
determined with the Integrated Completed Likelihood crite-
rion (ICL, [1]) and their parameters are estimated using the
Expectation-Maximization algorithm (EM).

5. Event detection algorithm
We suppose that the videos to be processed are segment-

ed into homogeneous temporal units. This preliminary step
is out of the scope of this paper. To segment the video,
we can use either a shot change detection technique or a
motion-based video segmentation method.
The first step of the event detection algorithm permits to
sort the video segments in two groups, the first group con-
tains the segments likely to contain the relevant events, the
second one is formed by the video segments to be defini-
tively discarded. Typically, if we consider sports videos,
we try to first distinguish between “play” and “no play”
segments. This step is based only on the residual motion
which accounts for the scene motion, therefore only 1D
models are used which saves computation. To this end, a
set of residual motion models (due to the content diversity)
is learned off-line for each group of segments in an unsu-
pervised way using an ascendant hierarchical classification
technique. Then, the sorting consists in assigning the label
“play” or “no play” to each segment of the processed video
using the ML criterion.
The second step of the proposed scheme consists in retriev-
ing several specific events among the previously selected
segments. Contrary to the first step, the two kinds of mo-
tion information (residual and camera motion) are required
since the combination allows us to characterize more pre-
cisely a specific event. An off-line training step is again
required. A residual motion model with density hres

j and
a camera motion model with density γcam

j have to be esti-
mated, from a training set of video samples, for each type j

of event to detect (thanks to the initial sorting step, we can
now restrict these modeling and learning steps to the event
classes of interest only). Let {s0, . . . , sN} be the previously
selected video segments. The video segments retained after
the first step are labeled with one of the J learned models of
dynamic events according to the ML criterion. Let Lj(si)
be the likelihood of the segment si related to the learned
models for the event j:

Lj(si) =
∏

(p,t)∈si

hres
j (z(p,t), z

′
(p,t)).

∏

(p,t)∈si

γcam
j (w

θ̂t
(p))

(6)

Figure 2. Image samples extracted from the skating video
(top) and from the tennis video (bottom). (Videos provided
by INA).

Athletics Skating Tennis
Training set 15000 34500 63000

Test set 10500 13500 18000

Table 1. Number of images in the training set and in the
test set of the processed videos (for the first step).

Thus, the label ξi of the segment si is defined as:

ξi = arg max
j=1,...,J

Lj(si) (7)

6. Experimental results

6.1. Pre-selecting video segments

The first processed video is an athletics TV program.
The “play” segments are formed by jump events and track
race shots and the “no play” segments contain interview
shots and large views of the stadium. The second video is a
figure skating (dance) TV program. We want here to distin-
guish between “play” segments which correspond to skating
(simple skating motion, artistic effects, dance movements)
and “no play” segments involving low-level activity (views
of the audience, static shots involving skaters waving at the
audience or skaters waiting for the scores). The last video
is a tennis TV program. The “play” segments involve the
two tennis players in action and the “no play” segments in-
clude views of the audience, referee shots or shots of the
players resting. Figure 1 and 2 display image samples of
these videos and Table 1 gives the number of images which
form the training set and the test set for each video. Let us

Video genre Athletics Skating Tennis
P 0.95 0.95 0.86
R 0.95 0.93 0.89

Table 2. Results of the first step of the event detection
method for the three processed videos. P : Precision for the
play group. R: recall for the play group.
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Figure 3. Tennis video: Histograms of the local residual
motion measurements (top) and 2D histograms of the dom-
inant motion flow vectors (bottom). Left: close-up of serve,
right: wide shot of change of side

point out that the training set is formed by the first part of
the video while the test set is formed by the last part. For the
three considered videos, each group (“play”, “no play”) is
represented by several residual motion models. As shown in
Table 2, quite satisfactory results are obtained for the three
processed videos.

6.2. Detecting relevant events

The aim is now to detect the relevant events among the
segments selected as “play” segments. Due to page limita-
tion, we will focus on the tennis example. For this second
step, we introduce the probabilistic camera motion model.
The three events we try to detect are the following: Ral-
ly, Serve and Change of side. In practice, we consider t-
wo sub-classes for the Serve class, which are wide-shot of
serve and close-up of serve. Two sub-classes are consid-
ered for the Change-of-side class too. As a consequence,
five residual motion models and five camera motion models
have to be learnt. Figure 3 displays 1D histograms of the lo-
cal residual motion measurements and 2D histograms of the
dominant motion flow vectors for two classes. The obtained
results of the event detection method are reported in Table
3. Good results are obtained, especially for the rally class.
The precision for the serve class is lower than the others.
In fact, for the serve class, errors come from the selection
step (i.e., some serve segments are wrongly put in the “no

Rally Serve Change of side
P 0.91 0.56 0.84
R 0.90 0.69 0.70

Table 3. Tennis video: Results of the event detection
method (P : precision, R: recall).

play” group, and then, are lost). It appears that a few serve
segments are difficult to distinguish from some “no play”
segments when using only motion information.

7. Conclusion

We have introduced new probabilistic motion models
which can be easily learned and computed from the video
data. They can handle a large variety of dynamic video con-
tents. We explicitly take into account the information relat-
ed to the scene motion and to the camera motion respec-
tively. These motion models were proven to be efficient
and appropriate for event detection in videos. The proposed
method induces a low computation time, and accurate re-
sults on sport videos have been reported.
In the same time, due to the designed statistical framework,
it is flexible enough to properly introduce prior on the class-
es if available, or to incorporate other useful information
such as colour (e.g., the dominant colour to recognize the
presence of the play field or the tennis court), or audio fea-
tures. Such developments are indeed in progress for a video
summarization application.
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