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Abstract – The classical bearings-only tracking problem (BOT)
for a single object belongs to the class of non linear filtering
problems. Recently, algorithms based on sequential Monte Car-
lo methods (particle filtering) have been proposed in the modified
polar coordinate (MP) framework. This latter has been shown to
be fundamentally relevant in this context as regards observability
and initialization problems. In this paper, we here address a more
general class of problems: the non linear filtering problems with
unknown variance state. In this context, only a weak prior infor-
mation is assumed on the temporal evolution of the target which
is an important issue in practice. Our original contribution is an
algorithm which is able to estimate the variance-to-range ratio.
As a by product, it is shown that this ratio is always observable.

Keywords: bearings-only tracking, covariance estimation, ini-
tialization, sequential Monte Carlo methods, modified polar co-
ordinates.

1 Introduction

The aim of BOT is to determine the trajectory of a target
using noisy bearing measurements from a single observer.
Let us assume that the target motion may be described
by a diffusion model (see [1] for an exhaustive review on
dynamic models). The problem is classically composed
of two stochastic equations. The first one represents
the temporal evolution of the target state (position and
velocity) and is called state equation. The second one
links the bearing measurement to the state of the target
at time t (measurement equation). Non-linearity of the
measurement equation is a main difficulty. Particle filtering
[2, 3, 4] is now the method of reference.

An original extension of the BOT problem named ”σ-
BOT” is studied where the state covariance σ which repre-
sents the maneuverability of the target is unknown. This is
an important issue in practice. We generally do not know if
the target goes straight line (σ is null) or maneuvers. Con-
sequently this parameter is unknown and must be learned.
However the problem belongs to the class of non linear fil-
tering problems with unknown variance state. Furthermore
Mehra in [5] has shown in the linear case that the process
noise covariance can be estimated using the innovation se-
quence. Then the question is can we use this idea in the
”σ-BOT” context ?

First of all, the σ-BOT problem is presented in section
2 using the cartesian coordinate framework. Otherwise,
the modified polar (MP) coordinate system introduced by
Aidala and Hammel in [6] is fundamentally relevant in the
classical BOT context in particular for the initialization of
the particle filter [7] and for deriving a closed-form solution
in the deterministic case [8]. We deduce from this frame-
work that σ

r(t) named ”variance-to-range ratio” is the natu-
ral process noise covariance that can be estimated using the
innovation sequence even if the range itself is not observ-
able (i.e. the observer is not maneuvering). More generally,
it appears that one more time, the MP coordinate system is
relevant in the ”σ-BOT” context. Consequently, our origi-
nal contribution is a particle filtering algorithm, especially
designed for the ”σ-BOT” context.

2 The σ−BOT problem
2.1 The σ−BOT in cartesian coordinate system
Historically, BOT is presented in the cartesian coordinate
system. Let us define:

Xt =









X1(t)
X2(t)
X3(t)
X4(t)









=









vx(t)
vy(t)
rx(t)
ry(t)









and σ, (1)

the state of the target at time t composed of relative veloc-
ity and position of the target in the x − y plane and the s-
tate variance named ”σ”. This latter quantity represents the
maneuverability of the target. It is assumed that the target
follows a nearly constant-velocity model. The discretized
state equation 1 is then:

Xt+1 = FXt + HUt + σWt , (2)

where:
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Wt ∼ N (0, Q) ,

F =

(

1 0
δt 1

)

⊗ Id2 ,

H =

(

1
δt

)

⊗ Id2 ,

Q =

(

δt
δ2

t

2
δ2

t

2
δ3

t

3

)

⊗ Id2 ,

(3)

1For a general review of dynamic models for target tracking
see [1].



δt is the elementary time period and Ut is the known differ-
ence between observer velocity at time t+1 and t (observer
maneuvers).

Otherwise, we note Zt the bearing measurement received
at time t. The target state is related to this measurement
through the following equation:

Zt = tan−1

(

rx(t)

ry(t)

)

+ Vt , (4)

where Vt ∼ N (0, σ2
v). The measurement variance σ2

v is
known. The system (2–4) has two components : a linear
state equation (2) and a non linear measurement equation
(4). Particle filter techniques (see [2, 3, 4]) are, thus, quite
relevant.

2.2 The σ−BOT in MP coordinate system

However, as shown in [9] a problem of observability is hid-
den in the cartesian formulation. As a matter of fact, no
information on range exists as long as the observer is not
maneuvering. So, the idea consists in using a coordinate
system for which the unobservable component (range) is
not coupled with the observable components. This is the
motivation of Aidala and Hammel [6] for defining MP sys-
tem. We add a fifth component, namely the variance-to-
range ratio ρt to the classical MP components. We denote:

Yt =









Y1(t)
Y2(t)
Y3(t)
Y4(t)









=











β̇(t)
ṙ(t)
r(t)

β(t)
1

r(t)











and ρt =
σ

r(t)
, (5)

the target state at time t in MP coordinate system where
β(t) and r(t) are the relative bearing and the target range,
respectively. β̇(t) and ṙ(t) are the time derivative of β(t)
and r(t). The aim of this section consists in showing that
this is the most natural parameterization of the σ−BOT in
MP coordinate system.

First let us remark that the stochastic system (2–4) be-
comes:

Yt+1 = fmp
c

[

Ff c
mp(Yt) + HUt + σWt

]

, (6)

Zt = H(f c
mp(Yt)) + Vt, (7)

where fmp
c and f c

mp are cartesian-to-MP and MP-to-
cartesian state mapping functions such that:

X(t) = f c
mp(Y (t)) (8)

=
1

Y4(t)









Y2(t) sin(Y3(t)) + Y1(t) cos(Y3(t))
Y2(t) cos(Y3(t)) − Y1(t) sin(Y3(t))

sin(Y3(t))
cos(Y3(t))









,

and

Y (t) = fmp
c (X(t)) (9)

=















X1(t)X4(t)−X2(t)X3(t)
X2

3 (t)+X2
4 (t)

X1(t)X3(t)+X2(t)X4(t)
X2

3 (t)+X2
4 (t)

tan−1
(

X3(t)
X4(t)

)

1√
X2

3 (t)+X2
4 (t)















.

Now we are going to pay more attention to the stochastic
system (6–9) using Aidala and Hammel’s formulation of
the problem. Expliciting fmp

c and f c
mp, Eqs.(6–9) can be

rewritten:





Y1(t + 1)
Y2(t + 1)
Y3(t + 1)



 =









S1(t)S4(t)−S2(t)S3(t)
S2

3(t)+S2
4(t)

S1(t)S3(t)+S2(t)S4(t)
S2

3(t)+S2
4(t)

Y3(t) + tan−1
(

S3(t)
S4(t)

)









,(10)

Y4(t + 1) =
Y4(t)

√

S2
3(t) + S2

4(t)
, (11)

ρt+1 =
ρt

√

S2
3(t) + S2

4(t)
, (12)

Zt = Y3(t) + Vt , (13)

where:








S1(t)
S2(t)
S3(t)
S4(t)









=









Y1(t)
Y2(t)

δtY1(t)
1 + δtY2(t)









(14)

+ Y4(t)

[(

1
δt

)

⊗ PY3(t)Ut

]

+ ρtWt ,

and

PY3(t) =

(

cos(Y3(t)) − sin(Y3(t))
sin(Y3(t)) cos(Y3(t))

)

. (15)

Eqs. (10,11) are proved in [6]. Eq. (12) is easily obtain
using Eq. (11) and the definition of the state variance-to-
range ratio. Finally, if we note:

Y r
t =





Y1(t)
Y2(t)
Y3(t)



 =







β̇(t)
ṙ(t)
r(t)

β(t)






, (16)

then we can write Eqs. (10–15) according to the last nota-
tions:

Y r
t+1 = F1( Y r

t , Y4(t)Ut , ρt Wt ) , (17)

Y4(t + 1) = Y4(t)F2( Y r
t , ρt Wt ) , (18)

ρt+1 = ρtF2( Y r
t , ρt Wt ) , (19)

Zt = Y3(t) + Vt . (20)

As in the cartesian framework, the stochastic system (17–
20) is a non linear filtering problem with unknown state co-
variance. The only difference is that the state covariance
ρt depends on time in the MP formulation. Moreover one
can see that in the case of a non-maneuvering observer (Ut

is a zero vector), Y4(t) is unobservable because it does not
appear in Eqs. (17,19,20). However ρt, for its own, is (s-
tochastically) observable as it will be shown in the next sec-
tion.

3 Stochastic observability of the
variance-to-range ratio

The aim of this section is to give the intuition that the
variance-to-range ratio is observable. A simple way con-
sists in producing a simple estimator. We restrict here to



the case where the observer is not maneuvering i.e. Ut is
null. Let us first consider a second order expansion of E-
q. (17):

Y r
t+1 = F̃1(Y

r
t ) + ρt Wt(Y

r
t ) , (21)

where Wt(Y
r
t ) ∼ N (0, Q̃Y r

t
). Let us notice that the covari-

ance matrix Q̃Y r
t

depends on the observable components
Y r

t . Now, if we note :

ε2t = (Y r
t+1 − F̃1(Y

r
t ))H Q̃−1

Y r
t
(Y r

t+1 − F̃1(Y
r
t )) , (22)

we have

ε2t
ρ2

t

∼ X 2(3) . (23)

Thus we can see that ρ2
t is the covariance of εt. Conse-

quently, ρt can be estimated if we have an estimate of εt’s
law. Now let ρ̂t be our estimator such that:

ρ̂t = arg max p(ρt|Z0, . . . , Zt). (24)

Then

ρ̂t = arg max

∫

p(ρt|εt)p(εt|Z0, . . . , Zt)dεt. (25)

Otherwise Y r
t is observable at each step of time so

we can have an estimate of p(εt|Z0, . . . , Zt) denoted
p̂(εt|Z0, . . . , Zt) such that:

ρ̂t = arg max

∫

p(ρt|εt)p̂(εt|Z0, . . . , Zt)dεt. (26)

Consequently, an estimate can be computed using Monte
Carlo simulations and based on Eqs. (23,26) . Let us re-
mark that ρt is a covariance term also one can expect a low
convergence speed. Now a definitive approach may be to
compute the posterior Cramér-Rao bound for the variance-
to-range ratio. Otherwise this estimator will not be the pre-
ferred way in practice, essentially because it is based on
a linearization. Another estimate of the variance-to-range
ratio can be obtained directly form the particle filtering al-
gorithm developed in section 4.

Finally we can now define an ”estimability” order for the
target state estimation:

1. Y3(t) is the more estimable component because it is
obtained directly from the measurement.

2. Then comes Y1(t) which is just the time derivative of
Y3(t).

3. Next, Y2(t) which is a function of the first and second
time derivative of Y3(t).

4. Then ρt which can be computed using the noise vari-
ance of the Markov process relying Y r

t+1 to Y r
t .

5. Finally, Y4(t) is only observable when the observer is
maneuvering.

3.1 An extension of the σ-BOT

We assume now that the standard deviation of state equation
may be described by a diffusion model such that:

Xt+1 = AXt + HUt + σtWt , (27)

σt+1 = G(σt, ηt) , (28)

Zt = tan−1

(

rx(t)

ry(t)

)

+ Vt , (29)

where G is a possible non linear function and ηt a noise
process. This formulation can be quite relevant in the de-
tection of maneuvers context. Then this problem can be
wrote using the MP framework:

Y r
t+1 = F1( Y r

t , Y4(t)Ut , ρt Wt ) , (30)

Y4(t + 1) = Y4(t)F2( Y r
t , ρt Wt ) , (31)

ρt+1 = ρtF2( Y r
t , ρt Wt )

G(σt, ηt)

σt
, (32)

Zt = Y3(t) + Vt . (33)

The σ-BOT problem is of course a particular case where
G(σt,ηt)

σt
is equal to 1. Furthermore ρt is still observable in

this general problem. This holds for σt too if G(σt, ηt) is
not proportional to σt. It could be particularly interesting to
investigate the performance analysis using the PCRB.

4 Particle filtering algorithm for the σ-BOT
problem

Particle filtering algorithms are generally composed of
three stages at each step of time. First, a particle set
representing different possible states of the target is
propagated using the state equation. Second, the weights
of the particles are updated according Bayes’s formula
using the measurement equation. The state distribution is
a finite weighted sum of Dirac laws centered around the
particles. The third stage is a resampling step in order to
avoid degeneracy of the particle set. It may be mentioned
in passing that many ways have been developed to improve
particle filtering algorithms: the use of kernel filter has
been studied in [10] as well as the resampling frequency in
[11].

The aim of this section is the initialization of particle fil-
tering which is one of the main difficulty, as well as the
estimation and the resampling steps of the particle filtering
algorithm which are not classical.

4.1 Initialization of the particle filtering
algorithm

This method proposed in [7] consists in determining the
batch duration sufficient for ensuring a good initialization
of the particle filtering algorithm. The three first compo-
nents of the particles are then initialized by sampling uni-
formly in a confidence area. Moreover, the fourth com-
ponent and ρt are sampling uniformly using a weak prior
information.



4.1.1 Initialization of the set of particles

Assuming that the target motion is deterministic, the sto-
chastic system (17–19) becomes:

Zt = Y3(k) + tan−1

(

(t − k)δtY1(k)

1 + (t − k)δtY2(k)

)

+ Vt ,

∀t ≥ 0 , (34)

which is a non linear regression problem. Let us denote
Ŷ r

k , the maximum likelihood estimator (MLE) of the ob-
servable components of the state at time k using the 2k + 1
first bearing measurements. It is computed by means of a
Gauss-Newton algorithm since eq.(34) is non-linear. More-
over, using classical convergence results, we can define a
confidence area noted CA(Ŷ r

k ) for the MLE. Then the three
first components of the particles can be initialized by sam-
pling uniformly in CA(Ŷ r

k ) such that:

CA(Ŷ r
k ) (35)

=

{

Y r
k

∣

∣

∣

∣

∥

∥

∥Ŷ r
k − Y r

k

∥

∥

∥

2

J(Ŷ r
k

)−1
≤ X 2

3 (1 − α)

2k + 1

}

,

where J(Y r
k ) is the Fisher information matrix. It is worth

stressing that CA(Ŷ r
k ) is an hyperellipsoid. Then the ini-

tialization of the observable components of the state of the
particles can be done using the algorithm proposed by Dez-
ert and Musso in [12].

It remains finally to fix Y4(k) and Y5(k) the fourth and
the fifth component of each of the particles. Let us remark
that Y4(k) is the inverse of the range at time k. If we assume
that:

rmin ≤ r(t) ≤ rmax , (36)

then an intuitive idea consists in giving to each particle a
range value uniformly sampled between a minimum and
a maximum relative target range noted Rmin and Rmax.
Moreover, if we assume that:

σmin ≤ σ ≤ σmax , (37)

then the fifth component can be uniformly sampled between
σmin

Rmax
and σmax

Rmin
.

4.1.2 Estimation of the batch duration

It remains now to determine the batch duration, sufficient
for ensuring a good initialization of the particle filtering al-
gorithm. Intuitively, the volume of CA(Ŷ r

k ) decreases with
the time k. If we associate to each of the particles a neigh-
borhood such that the true state of the target is lying in (at
least) one of these neighborhoods, then the problem of the
choice of k reverts to determining the batch duration which
ensures that N particles are sufficient to fill the confidence
area.

For a given particle (i), this neighborhood represents the
capacity of the particle filter to tend toward the true state.
This latter can be defined using a linearization of the dif-
fusion model. Let us denote V(B(Y

(i)
k )) the volume of the

neighborhood of the particle (i) in MP coordinate system.
Moreover we define the confidence area for Ŷk using both

CA(Ŷ r
k ) and the prior information relative to Y4(k). Prac-

tically, this means that the particle filter can be initialized
as soon as the following condition holds:

V(CA(Ŷk))) ≤
N
∑

i=1

V(B(Y
(i)
k )) . (38)

One can show that

V(B(Y
(i)
k )) (39)

≤ (πX 2
4 (1 − α))2(Y

(i)
4 (k − 1))5

√

det(σ2
maxQ)

Γ(3)
,

where Γ(.) is the classical gamma function and det(.) the
determinant function. Finally,

V(CA(Ŷk)) (40)

≈ (
1

Rmin
− 1

Rmax
)

(πX 2
4 (1 − α))3/2

Γ(5/2)
√

det(J(Ŷ r
k ))

.

The initialization method is sum up in Fig.1.

• k=3

• While V(CA(Ŷk)) >
∑N

i=1 V(B(Y
(i)
k ))

1. Estimate Ŷ r
k using a Gauss-Newton iterative

algorithm.

2. Compute V(CA(Ŷk)) using Eq.(40).

3. Compute V(B(Y
(i)
k )) for i = 1, . . . , N using

Eq.(39).

4. k = k + 1 .

• Initialization of the particles, for i = 1, . . . , N







Y
(i)
1 (k)

Y
(i)
2 (k)

Y
(i)
3 (k)






∼ U(CA(Ŷ r

k )) , (41)

Y
(i)
4 (k) ∼ 1

U([Rmin, Rmax])
, (42)

ρ
(i)
k ∼ U([

σmin

Rmax
,
σmax

Rmin
]) . (43)

Fig. 1: Initialization of particle filtering algorithm in MP
coordinates.

4.2 Estimation and resampling in the particle
filtering algorithm

The important point is that as long as the observer is not
maneuvering, the fourth component of the state is not cou-
pled with the other components of the state. Consequently
until the observer maneuvers, we estimate the target state
such as:



Ê(Yk(t)) =
N
∑

i=1

q
(i)
t Y

(i)
k (t) , (44)

for k = {1, 2, 3},

Ê(Y4(t)) =
1

N

N
∑

i=1

Y
(i)
4 (t) , (45)

Ê(ρt) =

N
∑

i=1

q
(i)
t ρ

(i)
t , (46)

where {qt(1), . . . , qt(N)} is the set of normalized weights
obtained by particle filtering. One can remark that the esti-
mate of Y4(t) is the same at each step of time.

Otherwise, all the components of the state except the
fourth component are resampled to ensure the indepen-
dence property between Y4(t) and the other components in
the resampling step. For i = 1, . . . , N :

Y
(i)
k (t) ∼

N
∑

j=1

q
(j)
t 11

Y
(j)
k

(t)
, (47)

for k = {1, 2, 3},

ρ
(i)
t ∼

N
∑

j=1

q
(j)
t 11

ρ
(j)
t

. (48)

Finally, as soon as the observer is maneuvering, the fourth
component is now coupled to the other components of the
state. Then, we use the classical method to estimate and
resample Y4(t):

Ê(Y4(t)) =

N
∑

i=1

q
(i)
t Y

(i)
4 (t), (49)

Y
(i)
4 (t) ∼

N
∑

j=1

q
(j)
t 11

Y
(j)
4 (t)

. (50)

The particle filtering algorithm is sum up in Fig. 2. It
must be noticed here that the particle filtering algorithm
must use the modified polar coordinate system before the
observer maneuvers.

5 Simulation results

Let us now illustrate the performance of particle filtering
algorithm described in Fig. 2. This latter has been pro-
grammed in Matlab. The parameters involved in the algo-
rithm are put together in Tab.1.

Two different scenarios have been studied. As for
the computation cost, Tab. 2 contains the cost for one
iteration of the initialization algorithm and the time
spend on a particle filtering algorithm iteration on a
2.6 Ghz Pentium IV .

• Initialization (see Fig. 1),

• While observer is not maneuvering (Ut = 0):

1. Diffusion of the particles using Eqs. (10-12)

2. Weighting: for i = 1, . . . , N

q
(i)
t ∝ q

(i)
t−1e

(Zt−Y3(t)(i) )2

2σ2
w (51)

3. Estimation using Eqs. (44–46)

4. if 1
�

N
i=1 q

(i)
t

< Nthreshold

resample using Eqs. (47,48)

5. t=t+1

• When observer has already maneuvered:

1. Diffusion of the particles using Eqs. (10–12)

2. Weight the particles using Eq. (51)

3. Estimation using Eqs. (44,49,46)

4. if 1
�

N
i=1 q

(i)
t

< Nthreshold

resample using Eqs. (47,50,48)

5. t=t+1

Fig. 2: Particle filtering algorithm in MP coordinates.

5.1 First scenario

The following scenario is considered. The initial states of
the observer and the target are:

Xobs
0 =









−10 ms−1

2 ms−1

10000 m
0 m









, (52)

Xtarget
0 =









8 ms−1

−3 ms−1

−5000 m
10000 m









. (53)

The relative target state at initial time is then given by
X0 = Xtarget

0 − Xobs
0 . The elementary time period δt is 6

s. The standard deviation of the process noise in the state
equation σ is fixed to 0.04 ms−1 so that target trajectory
strongly departs from a straight line. The standard devia-
tion of the measurement noise σw is 0.05 rad (about 3 deg.).
An example of trajectory is presented in Fig. 3(a), while a
bearing measurement batch is presented in Fig. 3(b).

In Fig. 5 simulation results are presented. At the be-
ginning of the scenario, the estimated components are re-
stricted to the observable ones i.e. {Y1(t), Y2(t), Y3(t)} as
solution of the non-linear regression problem Eq. (34). Of
course, we do not have an estimate for ρt. At time 1128,
the ”initialization condition” Eq. (38) turns to be true which
means that we are able to initialize the particle filtering al-
gorithm at time 564. From this time, the tracking algorithm
estimates the full state of the target. The first (three) compo-
nents of target state are correctly estimated form the begin-
ning thanks to the initialization method. Finally we can see



in (Fig.5, d) that the confidence area related to the variance-
to-range ratio ρt is very high at the beginning but decreases
over the time. This component of the state is accurately
estimated at time 2000.

In this scenario, target state was not difficult to estimate
because the bearing variations were high as we can see in
Fig. 3(b). Now let us study a more difficult scenario.

5.2 Second scenario

In the second scenario, the observer follows the same tra-
jectory as in the first one. The initial state of the target is:

Xtarget
0 =









−8 ms−1

3 ms−1

−5000 m
10000 m









. (54)

An example of trajectory is presented in Fig. 4(a), while a
bearing measurement batch is presented in Fig. 4(b). We
can see in this case that the bearing variations were smaller
than in the first scenario. The simulation results are present-
ed in Fig. 6. Of course the third component βt is correctly
estimated as well as the first component β̇t. Otherwise, we
can notice that bearing variations are too weak for estimat-
ing the second component ṙt

rt
and the variance-to-range ra-

tio ρ. For this scenario, useful information relative to ρ is an
upper bound given by the 2 σ confidence interval; showing
moreover that this is a positive variable.

6 Conclusion

An extension of the BOT problem named σ-BOT have been
studied here. In this case, variance in state equation is as-
sumed unknown which his is an important issue in practice.
An original parameterization has been defined for the prob-
lem composed of the classical polar modified coordinate
system and the variance-to-range ratio. We have shown
that this ratio is observable without information on range.
Then a solution to the σ-BOT have been proposed based on
particle filtering techniques. The algorithm performs quite
satisfactorily. Future developments include the study of the
variance-to-range ratio specially the posterior Cramér-Rao
bound as well as the use of this parameter in multi-target
environment or target classification problem.
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parameter value

Rmin 5000m
Rmax 20000m
σmin 0.01 ms−1

σmax 0.05 ms−1

N 5000
Nthreshold 0.9

Table 1: Parameters for the particle filtering algorithm

Iteration Cost
initialization about 70 ms

particle filtering algorithm about 250 ms

Table 2: Computation cost for one iteration on a
2.6 Ghz Pentium IV
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Fig. 3: Scenario 1: (a) trajectories of the observer (red
dashed line) and the target (blue solid line). (b) Simulat-
ed bearing measurements
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Fig. 4: Scenario 2: (a) trajectories of the observer (red
dashed line) and the target (blue solid line). (b) Simulat-
ed bearing measurements .
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Fig. 5: Scenario 1: estimates for one particular run (red
cross line), 2σ confidence bounds area in green (dotted
lines). The blue line stands for the true values. (a): Y1(t),
(b): Y2(t), (c): Y3(t), (d): ρt.
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Fig. 6: Scenario 2: estimates for one particular run (red
cross line), 2σ confidence bounds area in green (dotted
lines). The blue line stands for the true values. (a): Y1(t),
(b): Y2(t), (c): Y3(t), (d): ρt.


