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Abstract

This paper presents an unsupervised method to segment multispectral images, involving a

correlated non-Gaussian noise. The efficiency of the Markovian quadtree-based method we

propose will be illustrated on a satellite image segmentation task with multispectral observa-

tions, in order to update nautical charts. The proposed method relies on a hierarchical Mar-

kovian modeling and includes the estimation of all involved parameters. The parameters of the

prior model are automatically calibrated while the estimation of the noise parameters is solved

by identifying generalized distribution mixtures [P. Rostaing, J.-N. Provost, C. Collet, Proc.

International Workshop EMMCVPR�99: Energy Minimisation Methods in Computer Vision

and Pattern Recognition, Springer Verlag, New York, 1999, p. 141], by means of an iterative

conditional estimation (ICE) procedure. Generalized Gaussian (GG) distributions are consid-

ered to model various intensity distributions of the multispectral images. They are indeed well

suited to a large variety of correlated multispectral data. Our segmentation method is applied

to Satellite Pour l�Observation de la Terre (SPOT) remote multispectral images. Within each

segmented region, a bathymetric inversion model is then estimated to recover the water depth

map. Experiments on different real images have demonstrated the efficiency of the whole

process and the accuracy of the obtained results has been assessed using ground truth data.
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The designed segmentation method can be extended to images for which it is required to seg-

ment a region of interest using an unsupervised approach.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is concerned with the unsupervised segmentation of satellite images.

We have developed a complete process from satellite images to nautical charts.

The image segmentation algorithm we propose, is based on a Hierarchical Markov
Modeling [2]. Our motivations for using such a model are to provide fast computa-

tions and efficient structures to process multispectral and multiresolution large im-

ages. Indeed, computer vision community needs tools to interpret large data.

Furthermore, satellites provide more and more multispectral/multiresolution images

every year, so we have chosen an unsupervised approach to process efficiently a large

amount of data. We focus our attention on the robustness of the algorithm.

Bathymetric surveying of shallow water environments by traditional ship-board

sounding techniques is accurate but slow and expensive, particularly in geographic
areas of interest that are difficult to access. Remote sensing, as already demonstrated

in a wide range of earth resource issues, appears as an appealing tool for the problem

under consideration. In this paper, we exploit images from the visible channels sup-

plied by SPOT satellite to reconstruct bathymetric maps around islands or atoll la-

goons (in the Indian ocean or within the atolls of the French Polynesia in the Pacific

ocean). The generation and the updating of such nautical charts are of key interest

for navigation or for detecting changes of coastal environment.

We have developed an original scheme consisting of three main steps. First, a seg-
mentation step, exploiting all the channels of the SPOT image, allows us to separate

the ‘‘sea area’’ from the others (clouds, ground). This first segmentation step will not

be described in the paper: the reader is referred to [3] for details. Second, considering

only segmented ‘‘sea areas,’’ we extract the regions corresponding to similar average

water depths using only two channels of the image (cf. Section 2.2). In this second

segmentation step, noise modeling is handled in a specific way. We consider the class

of generalized Gaussian laws which enables to accommodate a variety of observation

processes within the same framework. The segmentation method is based on a Mar-
kov model in scale on a quadtree. This approach is efficient, robust and can be gen-

eralized to multispectral data [4]. Particularly, it allows us to explicitly take into

account correlation between channels in the case of non-Gaussian marginal distribu-

tions [1,5]. Third, for each segmented region in the ‘‘sea area,’’ the parameters of the

bathymetric model are estimated using a robust technique. This segmentation

scheme is also well suited for unsupervised segmentation of images (monospectral

or multispectral), where the requirement is to focus on a region of interest.
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This paper is organized as follows. Section 2 presents the segmentation frame-

work based on a Markov model defined on a quadtree. Section 3 is concerned with

image noise modeling relying on generalized Gaussian distributions. Section 4 deals

with the reconstruction of water-depth maps and reports experimental results on real

images. These results demonstrate the efficiency of the proposed unsupervised seg-
mentation method on multispectral images.
2. Sea segmentation with a hierarchical Markov model

Image segmentation remains a difficult problem. Statistical approaches have

proved to be fruitful to design robust and efficient segmentation methods [6–9]. In

the context of multispectral images, handling correlated observed data requires a
well-designed modeling framework [1,2,4,8,10,11]. Resorting to a Bayesian scheme

based on Markov models is indeed attractive when dealing with large amount of

multispectral observations. Furthermore, efficient hierarchical Markov models have

been proposed in the last decade [10,12,13]. Our approach relies on Markov models

defined on a quadtree structure [13].

The first segmentation step of our overall scheme is completely described in [3].

Three labels or classes are considered: ‘‘land’’ (island, lagoon), ‘‘sea within the la-

goon and open sea’’ and ‘‘clouds.’’ Using a Peano path, the label map to be deter-
mined is modeled as a hidden Markov chain which is estimated from all the

channels of the SPOT image. We now consider the regions labeled as ‘‘sea areas’’

and we aim at further segmenting them into K classes, according to the observed ra-

diometry related to water depth. A quadtree-based approach offers the well-known

advantages of standard hierarchical techniques (improved robustness, ability to deal

with multiresolution data), while allowing for non-iterative inference as in the case of

hidden Markov chains. Besides in our context, ‘‘land’’ and ‘‘cloud’’ areas can be

straightforwardly excluded from tree structure by simply masking the leaves of the
quadtree where the attached observation lies (cf. Fig. 1).

2.1. Hierarchical Markovian modeling on a quadtree

Most of Markov models are non-causal. As a consequence, inference must be

conducted iteratively, which might turn prohibitively expensive when dealing with

large data images, such as multispectral images. One way to circumvent this problem

is to resort to a Markov model on a quadtree where in-scale causality permits non-
iterative inference.

Let G ¼ ðS; LÞ be a graph composed of a set S of nodes and a set L of edges. A tree

is a connected graph with no cycle, where as a consequence, each node apart from

the root r has a unique predecessor, its ‘‘parent,’’ on the path to the root. A quadtree,

as illustrated in Fig. 1, is a special case of tree where each node, apart from the ter-

minal ones, the ‘‘leaves,’’ has four ‘‘children.’’ The set of nodes S can be partitioned

into ‘‘scales,’’ S ¼ S0 [ S1 [ � � � [ SR; according to the path length from each node to

the root. Thus, SR ¼ frg, Sn involves 4R�n sites, and S0 is the finest scale formed by



Fig. 1. Dependency graph corresponding to a quadtree structure. Black circles represent labels and white

circles represent observations. The segmentation algorithm re-estimates iteratively the parameters of a gi-

ven hidden in-scale-Markov model to produce a new model which has a higher probability of generating

the given observation sequence. This re-estimation procedure is continued until no more significant im-

provement in parameters can be obtained. The two-step computation of posterior marginals propagates

available information all over the tree: on one hand, the bottom–up step spreads the influence of data

to other levels up to the root, on the other hand the top–down step computes the posterior marginals tak-

ing into account this information. Thus, this proposed modeling scheme captures, over the quadtree, sig-

nificant statistical dependencies and provides a robust algorithm of segmentation.
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the leaves. We consider a labeling process X which assigns a class label Xs to each

node of G:
2 T
X ¼ fXngRn¼0 with Xn ¼ fXs; s 2 Sng; ð1Þ

where Xs takes its values in the set D ¼ fx1; . . . ;xKg, of the K bathymetric classes. A

number of conditional independence properties are assumed.
First, X is supposed to be Markovian in scale, i.e.,2
P ðxnjxk; k > nÞ ¼ P ðxnjxnþ1Þ: ð2Þ

It is also assumed that the probabilities of inter-scale transitions can be factorized in

the following way [13,14]:
P ðxnjxnþ1Þ ¼
Y
s2Sn

P ðxsjxs�Þ; ð3Þ
where s� designates the father of site s, as illustrated in Fig. 1.

Finally, the likelihood of the observations Y conditionally to X is expressed as

the following product (assuming conditional independence):
o simplify notation, we will denote the discrete probability PðX ¼ xÞ as P ðxÞ.
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P ðyjxÞ ¼
YR
n¼0

P ðynjxnÞ ¼
YR
n¼0

Y
s2Sn

P ðysjxsÞ; ð4Þ
where 8s 2 Sn, 8n 2 f0; . . . ;Rg, P ðysjxs ¼ xiÞ , Pn
i ðysÞ, captures the likelihood of the

data ys. Each site s of scale n can be associated with a label xi.

We suppose now that data are only available at the finest level (n ¼ 0). When no

observation exists (n > 0) or when the site at scale 0 does not belong to an area la-

beled as ‘‘sea,’’ the likelihood Pn
i ðysÞ is set to 1. If, in a specific application, we have

images of the same area at different levels of resolution, the quadtree structure can be

still used and permits to properly consider all the available data. It is a way to con-

duct the segmentation while merging data.

From these assumptions, it can be easily inferred that the joint distribution P ðx; yÞ
follows a Gibbs law whose expression is given by [13]
P ðx; yÞ ¼ P ðxrÞ
Y
s 6¼r

P ðxsjxs�Þ
Y
s2S

P ðysjxsÞ: ð5Þ
One of the interests of this model lies in the possibility of computing exactly the

posterior marginals PðXsjYÞ and P ðXs;X�
s jYÞ at each node s within two passes. These

computed expressions will be first used in the iterative parameter estimation step, as

described in the next section. The segmentation label map x̂x to be determined is
finally given by:
x̂xs ¼ argmax
xi2D

P ðXs ¼ xijY ¼ yÞ: ð6Þ
Eq. (6) shows that we obtain a labeling of each pixel at each level of the quadtree,

even if observations only lie on the finest level. Indeed, the two-step computation of

posterior marginals (described in Table 1) propagates available information all over

the tree. The bottom–up step spreads the influence of data to other levels up to the

root. Then, the top–down step computes the posterior marginals taking into account
this information. Of course, if observations are available for other nodes of the tree,

this algorithm merges all the observations to obtain a more accurate segmentation

result. The root of the quadtree is also a node of the pyramid. Therefore we have

a segmentation result for this node too. This result is obtain (like for each node)

by maximizing posterior marginals (cf. Eq. (6)). Experimental results show that x̂xr
represents the most frequent class of the image.
2.2. Application to water depth maps

As mentioned in the introduction, to illustrate the efficiency of our algorithm, we

apply it to SPOT images. Those satellite images are acquired in three spectral bands:

XS1 channel covering 0.50–0.59 lm (green), XS2 channel covering 0.61–0.68 lm (red),

and XS3 channel covering 0.79–0.89 lm (near infrared). It is generally assumed that

the solar radiation is exponentially attenuated with depth by the water column and

thus the observed radiances follow the same law [15,16]. Channels XS1–XS2 are us-

able for coastal mapping as they penetrate water up to 25–30 meters and 7–9 meters,



Table 1

Two-pass computation of posterior marginals on the quadtree (with notations from Fig. 1)

1. Evaluation of the partial posterior marginalsa at full resolution (n ¼ 0):

PðXs ¼ xijyP sÞ ¼ P ðXs ¼ xijysÞ ¼
PðXs ¼ xiÞP 0

i ðysÞP
j P ðXs ¼ xjÞP 0

j ðysÞ
8s 2 S0;

where PðXs ¼ xiÞ is recursively evaluated through a top–down pass according to
for n ¼ R� 1 . . . 0

PðXs

����� ¼ xiÞ ¼
X
j

ajiP ðXs� ¼ xjÞ 8s 2 Sn

Note that the a priori probability PðXr ¼ xiÞ ¼ pi initializes the procedure (cf. Fig. 1).

2. Bottom-up recursion on partial posterior marginalsb

for n ¼ 1 . . .R

PðXs ¼ xijyP sÞ ¼ 1
Z P ðXs ¼ xiÞ�3Pn

i ðysÞ
Q

t2sþ
P

j aij
PðXs¼xiÞ
PðXt¼xjÞ PðXt ¼ xjjyP tÞ

8s 2 Sn;

�����
where Z is a normalizing factor satisfying the condition

P
i PðXs ¼ xijyP sÞ ¼ 1. At the end of the

recursion, we obtain the a posteriori probability for the root nrðiÞ ¼ P ðXr ¼ xijyÞ, which initializes

the next step.

3. Top–down recursion on posterior marginalsc

for n ¼ R� 1 . . . 0

Wsði; jÞ ¼ PðXs ¼ xj;Xs� ¼ xi=yÞ ¼ ns� ðiÞ PðXs¼xi jyP sÞaijPðXs�¼xiÞ=PðXs¼xjÞP
l
PðXs¼xl jyP sÞailPðXs�¼xiÞ=PðXs¼xlÞ

8s 2 Sn

nsðjÞ ¼ PðXs ¼ xjjyÞ ¼
P

i Wsði; jÞ

������ ð27Þ

a The symbol P s denotes all the descendents of s, s included.
b The symbol sþ stands for the 4 children (level n� 1) of the site s (level n).
c The symbol s� stands for the single parent (level nþ 1) of the site s (level n).
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respectively. Channel XS3 cannot be used since the associated wavelength does not

penetrate into the water beyond few centimeters. Hence, we consider images from

channels XS1 and XS2 whose radiance values are not only dependent on water depth

but may be influenced by the nature of the sea-bottom or the water turbidity as well.

Afterwards, each ‘‘sea’’ observation ys at site s of scale n ¼ 0 is formed by two values

from XS1 and XS2 channels. One contribution of our work is to apply the segmen-

tation algorithm only to some pixels of the original image. This method can be

applied in many other applications to segment a part of an image extracted by a
pre-treatment.

2.3. Parameter estimation step

Segmenting an image into different regions or classes and estimating all the model

parameters are intricate problems. Fixing or estimating correctly model parameters

is crucial in practice to get an accurate and reliable segmentation. Here, we are deal-

ing with an unsupervised labelling problem where parameters U ¼ fUx;Uyg must be
estimated:
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• Uy stands for the parameters involved in the data model. The conditional data

likelihood (i.e., data driven term) is entirely defined by P 0
i ðysÞ ¼ P ðYs ¼

ysjxs ¼ xi; s 2 S0Þ since the only observations available (corresponding to XS1

and XS2 channels) are associated to the leaves of the label tree. In this context,

several models of image noise could be used [1,5]. We have considered the Gener-
alized Gaussian (GG) model as described in Section 3, in order to cope with a

large variety of situations;

• Ux ¼ ððaijÞKi;j¼1; ðpiÞKi¼1Þ is the set of the prior Markov model parameters where

aij , P ðXs ¼ xjjXs� ¼ xiÞ and pi , P ðXr ¼ xiÞ.
We estimate these two sets of parameters using an iterative conditional estimation

(ICE) method [17]. This method requires to find two estimators, namely bUUx ¼ UxðX Þ
and bUUy ¼ UyðX ;YÞ. When X is unobservable (i.e., incomplete data), the iterative

ICE procedure introduces the estimates bUU½kþ1�
x and bUU½kþ1�

y at step k þ 1 defined as
the conditional expectations of Ux and Uy given Y ¼ y, and the current parameter

values bUU ½k�
x and bUU½k�

y :
bUU½kþ1� ¼ E bUU=Y
h

¼ y; bUU½k�
i
: ð7Þ
They are the best approximations of Ux and Uy w.r.t. the mean square error.

When E½bUU=Y ¼ y� is not calculable, but sampling from the posterior distribution

P ðX jY ;UÞ is achievable, one can utilize a stochastic approximation. In our case,

the tree structure enables the exact computation of the posterior marginals. It is thus

possible to determine the exact update of the prior parameter values [13], where bUUx is
the maximum likelihood (ML) estimator:
aij ¼
P

s 6¼r
Wsði;jÞP

s 6¼r
ns� ðiÞ

pi ¼ nrðiÞ

8<: with
nsðiÞ , P Xs ¼ xi=Y ¼ y;U½k�� �

;

Wsði; jÞ ¼
n P Xs ¼ xj; Xs� ¼ xi=Y ¼ y;U½k�� �

:

(
ð8Þ
The complete procedure including the two-pass computation of posterior margi-

nals Ws and ns is presented in Table 1. The ICE algorithm realizes a deterministic es-
timation of the a priori parameters (Eq. (8)), whereas the data-driven parameters Uy

are updated in a stochastic way [7,13] using samples from P ðX jY ¼ y;U½k�Þ. The noise
model is now described in the following section.
3. Noise modeling

As image noise model, we consider the general class of Generalized Gaussian
(GG) distributions G [18] whose expression is given by:
Gðz=l; r2; pÞ ¼ ½2Cð1=pÞ��1gðpÞp exp ½ � ðgðpÞjz� ljÞp�; ð9Þ
where Cð:Þ is the Gamma function, p is a positive shape parameter governing the rate

of decay (p ¼ 1 for Laplacian noise, p ¼ 2 for Gaussian noise, p > 8 for nearly

uniform noise), l is the mean, and



Fig. 2. Plot of generalized Gaussian probability density functions for several values of the shape param-

eter p with r2 ¼ 1, l ¼ 0.
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gðpÞ, Cð3=pÞ
r2Cð1=pÞ

� �1=2
; ð10Þ
where r2 is the variance. Let us note that for small values of p (i.e., p < 2), this
probability density function has heavier tail than Gaussian density (cf. Fig. 2). This

noise model is well adapted to model a large range of physical processes, and has

been recently used in different contexts such as underwater acoustic noise modeling

[19], multiresolution image denoising schemes [20], or watermarking application [21].

3.1. Estimation of the parameters of the GG pdf on complete data

The properties of the maximum likelihood (ML) estimation of the generalized
Gaussian pdf parameters from M independent identically distributed samples

fz1; . . . ; zMg, are investigated in [22]. The estimation of parameters p and r (assuming

that l is known) is straightforward by solving simultaneously the likelihood equa-

tions: ðoGðz=l; r2; pÞÞ=ðor2Þ ¼ 0 and ðoGðz=l; r2; pÞÞ=ðopÞ ¼ 0. For parameter p,
the resulting equation to be numerically solved is:
p þWð1=pÞ þ logðp=MÞ þ logGpð~zzÞ � p
G0

pð~zzÞ
Gpð~zzÞ

¼ 0; ð11Þ
where Wð:Þ is the di-gamma function [23], Gpð~zzÞ is the p-norm3 of the vector
~zz ¼ z� l I (with z ¼ ½z1; . . . ; zM �T and I ¼ ½1 1 � � � 1�T) to the power of p (i.e.,

Gpð~zzÞ ¼ ðk~zzkpÞ
p
), and G0

pð~zzÞ is the derivative of Gpð~zzÞ with respect to p.
he p-norm of the vector ~zz ¼ ½~zz1; . . . ;~zzM �T is defined by k~zzkp ¼ ð
PM

k¼1 j~zzk j
pÞ1=p:
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The solution bpp is then substituted for in the equation ðoGðz=l; r2; pÞÞ=ðor2Þ ¼ 0 to

yield the estimation brr2 of parameter r2:
4 Y

G (XS
brr2 ¼ Cð3=bppÞ
Cð1=bppÞ bpp

M

� �1=p̂p

k~zzkp̂p

" #2
: ð12Þ
The estimation of the mean l is more complex. The Maximum Likelihood estima-

tor of l (assuming p and r known) can be written as [22]:
bll ¼ JT
p z; ð13Þ
where Jp is the generalized lp inverse of I , i.e., the vector for which the p-norm
kIJT

p z� zkp is minimized. For the special case where p ¼ 2, Jp corresponds to the

pseudo-inverse of I (i.e., Jp ¼ I=M).

By solving simultaneously (11) and (13), we obtain the ML estimators of p and l.
Since this procedure is computationally expensive, we prefer to evaluate the param-

eter l by using the empirical mean given by:
bll ¼ 1

M

XM
k¼1

zk: ð14Þ
Let us note that the empirical estimator of the parameter l of the generalized

Gaussian pdf is unbiased and consistent [24].

To conclude, let us summarize the successive steps to estimate the GG pdf param-

eters. First, the mean l is estimated according to relation (14), then the ‘‘shape’’ pa-

rameter p is numerically estimated from Eq. (11), and finally the variance is

estimated using expression (12).

3.2. Image noise model used for the multispectral data

Conditionally to Xs ¼ xi, the covariance matrix of the observation vector4 Ys, is

positive-definite symmetric and admits the following Crout (Cholesky) factorization:
Ry
i ,

1ð1Þi

� 	2
qi1

ð1Þ
i 1ð2Þi

qi1
ð1Þ
i 1ð2Þi 1ð2Þi

� 	2
264

375 ¼ Li LT
i ; ð15Þ
where ðð1ð1Þi Þ; ð1ð2Þi Þ; qiÞ stands, respectively, for the standard deviation on channels B

and G and correlation factor, all on ith class. Li is the lower triangular matrix
Li ¼ 1ð1Þi 0

qi1
ð2Þ
i 1ð2Þi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

i

p" #
: ð16Þ
s ¼ ½Y ð1Þ
s Y ð2Þ

s �T, the superscripts (1) and (2) correspond, respectively, to SPOT channels B (XS1) and

2), respectively.
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With this factorization, the correlated random vector Ys can be transformed into

an uncorrelated vector Zs defined by:
5 l
Zs ¼ AiYs with Ai , L�1
i ¼

1

1ð1Þi

0

� qi
1ð1Þi

ffiffiffiffiffiffiffiffi
1�q2i

p 1

1ð2Þi

ffiffiffiffiffiffiffiffi
1�q2i

p

24 35: ð17Þ
We assume that the two components of Zs are independent conditionally to

Xs ¼ xi and that both follow two GG pdfs with parameters (lð1Þ
i ; rð1Þ

i ; qð1Þ
i ) and

(lð2Þ
i ; rð2Þ

i ;qð2Þ
i ), respectively.

From (17), we get5 li ¼ Aimi and the GG pdfs of Zs and Ys are linked by the

relation:
GðysÞ ¼ detðAiÞGðAiysjli; ri; piÞ

¼ 1

1ð1Þi 1ð2Þi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

i

p G yð1Þs

1ð1Þi

,
lð1Þ
i ; rð1Þ

i ; pð1Þi

 !

� G
 

� yð1Þs qi1
ð2Þ
i � yð2Þs 1ð1Þi

1ð1Þi 1ð2Þi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

i

p ,
lð2Þ
i ; rð2Þ

i ; pð2Þi

!
; ð18Þ
This decorrelation technique of the multispectral observed data was introduced in

[5] by assuming that decorrelated observed data are conditionally independent and

that their pdfs belong to a restricted set of probability functions (Gaussian, Lapla-

cian, etc). We have extended it to the case of generalized Gaussian pdfs. The GG

pdfs will now model the conditional marginal likelihoods P 0
i ðysÞ ¼ P ðYs ¼ ysjxs

¼ xi; s 2 S0Þ:

3.3. Evaluation of the local likelihood P 0
i for discrete observations

In practice, numerical radiometry values are supplied for each channel (e.g., 8 bits

per channel). Let us consider the numerical evaluation of marginal likelihood P 0
i ðysÞ

which is required in the segmentation algorithm. It is crucial in order to really exploit

the benefit of this ‘‘elaborate’’ noise modeling. Indeed, for small values of p (i.e., im-

pulsive noise p < 2), the numerical estimation of GG pdf needs to be accurate en-
ough. Hence, the corresponding joined probability of Ys ¼ ðl;mÞ for

l;m 2 f0; . . . ; 255g given Xs ¼ xi is computed from a sampled lattice grid around

ðl;mÞ of given size ð2N þ 1Þ � ð2J þ 1Þ (cf. Fig. 3) as:

P ðys ¼ ðl;mÞjXs ¼ xiÞ

¼ 1

ð2N þ 1Þð2J þ 1Þ
XN
n¼�N

XJ
j¼�Ji

Gi l
�

þ n
2N þ 1

;mþ j
2J þ 1

�
; ð19Þ
where Gi is the likelihood of Ys conditioned on Xs ¼ xi given in (18), whereas

P ðys ¼ ðl;mÞjXs ¼ xiÞ stands for the probability used by the segmentation algorithm.
i ¼ ½lð1Þ
i lð2Þ

i �T is the mean of Zs given Xs ¼ xi and mi ¼ ½mð1Þ
i mð2Þ

i �T is the mean of Ys given Xs ¼ xi.



Fig. 3. Point resampling grid to estimate the probability P ðys ¼ ðl;mÞjxs ¼ xiÞ. This is an important ingre-

dient when the likelihood function has a thin shape compared to the distance between two gray levels (cf.

Eq. (19)).
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4. Application to the generation of nautical charts

In order to demonstrate the efficiency of the segmentation method, we now apply

it to the reconstruction of water depth maps from multispectral SPOT images. We

first report results of segmentation using the statistical method described in Sections

2 and 3 involving a prior Markov model defined on a quadtree and GG pdfs to mod-

el the conditional likelihood of the image observations. Then, we will introduce the

bathymetric inversion model used. From the bathymetry application point of view, a

key contribution of our work lies in the independent estimation of these parameters
for each water depth class resulting from the segmentation of the sea areas.

4.1. Segmentation of SPOT images

We summarize in Table 2 the overall segmentation method relying on a prior Mar-

kov model defined on a quadtree (described in Section 2.1) and a GG image noise

model (described in Section 3.2) and exploiting two channels of one SPOT image.

Fig. 4B shows the obtained segmentation map into three classes for the original
SPOT image displayed in Fig. 4A. Table 3 contains the estimated values of the

‘‘shape’’ parameter p for each class. Let us note that, for class x2, the two estimated

GG pdfs are (almost) Gaussian, whereas for the two other classes, the estimated GG

noise models exhibit low ‘‘shape’’ parameter values corresponding to heavy tail

densities.

In order to validate the GG noise model, the following Kolmogorov test Ki is

computed over each segmented region:
Ki ¼
1

Ni

X255
l;m¼0

Hiðl;mÞj � NiP ysð ¼ ðl;mÞjXs ¼ xiÞj; ð20Þ



Table 2

Outline of the overall unsupervised algorithm from initialization to final segmentation

I Parameter initialization

1. Priors ðU½0�
x Þ : pi ¼ 1=K and aij ¼

1
2

for i ¼ j;
1

2ðK�1Þ otherwise:

�
with K the number of classes:

2. Data model ðU½0�
y Þ :

qi ¼ 0

mðcÞ
i and 1ðcÞi estimated by the K-means technique ½29�

rðcÞ
i ¼ 1

lðcÞ
i ¼ mðcÞ

i =1ðcÞi

pðcÞi ¼ 2

����������

9>>>>>=>>>>>;
for c ¼ 1; 2

The probability Pn
i ðysÞ is computed using Eqs. (18) and (19) for n ¼ 0, and Pn

i ðysÞ ¼ 1 elsewhere.

II Estimation procedure: two-pass computation of posterior marginals P ðXs ¼ xijy;U½k�Þ and
P ðXs ¼ xj;X�

s ¼ xijy;U½k�Þ (Table 1).

III Parameter updating:

1. The parameters p½k�
i and a½k�ij are evaluated using Eq. (8).

2. Data parameters are updated using the following stochastic procedure:

(a) draw a sample from P ðXs ¼ xijy;U½k�Þ for s 2 S0

(b) Covariance matrix estimation:

R̂Ry
i ¼

1

Ni

X
fs2S0=Xs¼xig

ðys �miÞðys �miÞT; where Ni ¼ cardfXs ¼ xi for s 2 S0g:

(c) Decorrelation procedure (Eq. (17)).

(d) Estimation of the GG pdf parameters in the decorrelated space: lðcÞ
i (Eq. (14)), pðcÞi (Eq. (11))

and rðcÞ
i (Eq. (12)) for c ¼ 1 and 2.

(e) Evaluation of the likelihood PðysjXs ¼ xi;U
½kþ1�
y Þ using Eqs. (18) and (19).

IV Repeat step II until U½k�
x and U½k�

y converge

V Segmentation step:

The modes of a posteriori marginals (MPM) provide the final segmentation (Eq. (6)).
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where Hiðl;mÞ is the two-dimensional histogram of the observed data at pixel s la-
beled by class xi and Ni is the number of points belonging to class xi.

In Table 4, we report the computedKi-test values for the three classes fx1;x2;x3g,
both for the Gaussian model and for the GG model. The segmentation of sea areas
into three classes can also be obtained when considering Gaussian models by simply

fixing the shape parameters to 2. These results (second column of Table 4) illustrate

the better adequacy of the GG noise model compared to the Gaussian one. Let us

point out that we obtain similar values for the class x2. Indeed, for this class, both

shape parameter values are close to 2 when considering the GG model (Table 3).

4.2. Reconstruction of water depth information

4.2.1. SPOT radiometry and bathymetry

A way to establish a relation between radiometry and bathymetry was initially

proposed by Lyzenga [16,15]. It implies that the sea bottom is uniform over the area

considered for the computation of the bathymetry model [25].



Fig. 4. (A) Acquired 512� 512 RGB SPOT Image. One observes the ground areas (in red color, due to

infrared radiation of the vegetation), white zones corresponding to clouds reflection in the three bands,

and sea areas with different blue levels, corresponding to the penetration of (XS1 � XS2) bands within

the water. (B) Segmentation results obtained using a quadtree structure and the generalized Gaussian noise

model. Three water depth classes where defined (K ¼ 3). The red crosses correspond to the set of in situ

bathymetric measurement locations (class x1 (black): 20 points, class x2 (dark blue): 30 points, class x3

(light blue): 20 points). The yellow color stands for ground zones. (C) Nautical chart generated by the

class-wise bathymetric models estimated for each segmented region and using the training set of in situ

bathymetric measurements.
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As far as we are concerned, we estimate one bathymetric model for each class

fx1;x2;x3g resulting from the segmentation stage, by using the following relation

[15,25]:



Table 3

Estimation of the ‘‘shape’’ parameter p on the decorrelated data

Class xi pð1Þ pð2Þ

x1 1.3 1.7

x2 2.0 2.1

x3 1.2 1.3

Classes x1, x2, and x3 correspond, respectively to ‘‘black’’, ‘‘dark blue’’, and ‘‘light blue’’ colors

displayed in Fig. 4B. One observes that the shape parameter p fits with the observations: 1:26 p6 2:1,

where p ¼ 2 corresponds to the classic Gaussian pdf.

Table 4

Kolmogorov test for the GG (whatever p) and Gaussian noise (p ¼ 2) models used for the segmentation on

the quadtree of the observed bi-spectral (XS1 � XS2) images, displayed on Fig. 4A

Kolmogorov test Ki on class xi Gaussian modeling GG modeling

K1 0.267 0.216

K2 0.397 0.402

K3 0.688 0.647

These results show that the GG law is a better degradation model to describe the observed radiometry,

according to the Kolmogorov criterion.
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bzzðsÞ ¼ Ai ln yð1Þs

�
� XS

1
1

�
þ Bi ln yð2Þs

�
� XS

1
2

�
þ Ci: ð21Þ
where Ai, Bi and Ci are the bathymetry model parameters to estimate , bzzðsÞ denotes
the water depth estimated at point s, XS1

c holds for the lower radiometry bound,
corresponding to high water depth for sensor c, and yð1Þs and yð2Þs stand for radi-

ometry values from channel XS1 and XS2, respectively. For notation convenience,

we will write eyycðsÞ ¼ lnðyðcÞs � XS1
c Þ with c 2 f1; 2g. We adopt a robust estimation

technique [26,27] to estimate Ai, Bi, and Ci without being affected by the presence

of outliers. The estimation is based on n in situ reliable depth measurements zðlÞ,
l ¼ 1; . . . ; n, (as illustrated in Fig. 4B), which leads us to minimize the following

function:
eðAi;Bi;CiÞ ¼
Xn
l¼1

qðrlÞ with rl ¼ zðlÞ � bzzðlÞ; ð22Þ
where bzzðlÞ is the depth value supplied by the model (21) and q is a robust estimator.

More precisely, we have
eðAi;Bi;CiÞ ¼
Xn
l¼1

q zðlÞð � Aieyy1ðlÞ � Bieyy2ðlÞ � CiÞ; ð23Þ
where qðrlÞ is M-estimator able to handle the presence of outliers [26,27]. We have

considered the Andrews function defined by:
qðrÞ ¼ 4 sin2 r
2a

� �
if jrj < pa;

4 otherwise:

�
ð24Þ
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Its influence function WðrÞ ¼ d
dr qðrÞ is given by
Table

Mean

clas

x1

x2

x3

Table

IRLS

sea-seg

1. In

2. A

(a

(b

(c

(d

Table

Errors

Nor

K ¼
K ¼
K ¼

K ¼
all the
WðrÞ ¼
2
a sin

r
a if jrj < pa;

0 otherwise:

�
ð25Þ
The minimization of function e is achieved by iterated reweighted least-square

(IRLS) technique [28]. It amounts to the succession of weighted linear problems:
P
l vleyy 21ðlÞ P

l vleyy1ðlÞeyy2ðlÞ P
l vleyy1ðlÞP

l vleyy1ðlÞeyy2ðlÞ P
l vleyy 22ðlÞ P

l vleyy2ðlÞP
l vleyy1ðlÞ P

l vleyy2ðlÞ P
l vl

24 35 Ai

Bi

Ci

24 35 ¼

P
l vleyy1ðlÞzðlÞP
l vleyy2ðlÞzðlÞP
l vlzðlÞ

24 35;
ð26Þ
where weights vl ¼ ðWðrl�1Þ=rl�1Þ are evaluated w.r.t. previous residuals rl�1 [28].

The estimation proceeds by alternatively updating the weights and solving (26) as

summarized in Table 6.

In Table 5 we report the means and standard deviations (in meter) of water depth

values computed for the three classes corresponding to the observation of Fig. 4A and

its segmentation displayed in Fig. 4B. Let us notice that these results are in good agree-

ment with the different depth levels evenly spaced (4.2, 10.4, and 17.5m) in average.
5

and standard deviation (in meter) of computed water depth for the three classes (Fig. 4B)

s xi l r

17.5 4.1

10.4 3.0

4.2 2.0

6

procedure for the estimation of the bathymetric model parameters for a given class xi of the

mentation

itialization: v½0�l ¼ 1

t the kth iteration:

) Solve Eq. (26) with weights v½k�l (parameter values ðA½k�
i ;B½k�

i ;C½k�
i Þ).

) Compute bzz ½k�ðlÞ for available in situ measurements.

) Update weights v½kþ1�
l ¼ Wr½k�l =r½k�l

) Stop the procedure when convergence is reached.

7

between true and estimated water depths for the Gaussian and the GG noise models

ms (in meter) L1 L2

1 1.96 2.88

3 with Gaussian modeling 1.75 2.52

3 with GG modeling 1.73 2.48

1 corresponds to a single ‘‘sea area’’ (no segmentation on the quadtree, single inversion model for

sea area: this is the method used until now by the EPSHOM cartography office).
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Fig. 4C shows the nautical chart generated using the piecewise bathymetric model

finally estimated. Linear artifacts are visible but they are already present in the SPOT

image and originate from the behavior of the satellite sensors.

The red crosses in Fig. 4B correspond to in situ bathymetry measurements which

are used to estimate parameters Ai, Bi, and Ci for each class xi, i ¼ 1; . . . ;K. Table 7
Fig. 5. (A) Observed 512� 512 SPOT Image. (B) Image after segmentation on the quadtree. (C) Water

depth estimated (meter). (D) Nautical chart. A lot of corral pinnacles, dangerous for the navigation safety

and difficult to locate because of their small sizes, are well detected and classified with our approach. Thus,

the unsupervised processing chain we proposed is of great interest to process a large amount of data and

allows fast updating of nautical charts.
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reports L1 and L2 error norms between these in situ measurements and estimated

water depths at the same locations. The same set of in situ bathymetry measurements

(90 points for each class) are considered for the two segmentation maps obtained

with the Gaussian model (p ¼ 2) and the GG models (whatever p).
Compared to the classical bathymetric inversion procedure, where one single

bathymetric model is learned and used for all the sea area (i.e., K ¼ 1), our approach
Fig. 6. (A) Observed 512� 512 SPOT Image. (B) Image after segmentation on the quadtree. (C) Water

depth estimated (meter). (D) Nautical chart. The processing scheme exhibits rapid convergence properties

and is well suited to automatic extraction of features from a large variety of images: the full processing

time using a PC—Pentium III bi-processor (2GHz, 4Go of RAM) is about 3min.



172 J.-N. Provost et al. / Computer Vision and Image Understanding 93 (2004) 155–174
involving an image segmentation into different classes and the estimation of a

bathymetry model for each segmentation class, improves the accuracy of the com-

puted water depth map.

4.2.2. Experimental results

We tested the classification chain on some real SPOT images (Figs. 4A, 5A and

6A). After extraction of maritime areas by a Markov chain algorithm [3], we have

segmented those areas into three classes. This is a good tradeoff between water depth

level and available in situ measurements. For other applications, such a segmentation

process is obviously faster than other methods for a high number of classes and sen-

sors. Let us quickly remind the different steps of the proposed algorithm for the water

depth recover. After a pre-treatment allowing to separate sea areas from the others

[3], we adopt a hierarchical Markovian modeling on a quadtree (Fig. 1) to classify
the sea zones into different classes corresponding to different water depths (Figs.

5B and 6B). The noise model is based on a generalized Gaussian pdf, allowing to take

into account a large variety of distributions and to better fit the model with the

observations (as shown in Tables 3, 4 and 7). The outline of the overall unsupervised

segmentation algorithm on the quadtree is summarized in Table 1 whereas the

parameter initialization and updating is described in Table 2. Then, the last step con-

sists in the reconstruction of the water depth which algorithm is given in Table 6. This

step requires a training set of in situ bathymetric measurements (like in Fig. 4B) and
yields to Fig. 5C or Fig. 6C. The nautical chart is then generated by clustering the

water depths within a five-meter quantification (see Figs. 4C, 5D and 6D).

The full processing time for an image of size 512� 512 pixels using a PC—Pen-

tium III bi-processor (2GHz, 4Go of RAM) is about 3min.
5. Conclusion

We have presented a novel and efficient approach to segment multispectral images

with non-Gaussian noise in an unsupervised way. The image noise model exploits

Generalized Gaussian distributions and the prior in-scale-Markov model is defined

over a quadtree. The GG modeling we have proposed is very attractive to cope with

correlated multispectral data. We have demonstrated its efficiency in the context of

water depth estimation from SPOT multispectral images: we have validated our

method on real data formed by SPOT images and in situ measurements provided

by a previous oceanographic campaign and also utilized as ground truth. The seg-
mentation of the sea areas into different depth classes based on multispectral radiom-

etry data allows us to estimate several meaningful sets of parameters defining a

global adaptative bathymetric model. It involves the unsupervised classification of

the ‘‘sea areas’’ into homogeneous regions. This leads to accurate water depth mea-

surements, demonstrating the feasibility and efficiency of an automatic processing

able to handle simultaneously large amounts of data.

The hierarchical Markovian model we have adopted, is a general framework to

deal with multispectral and/or multiresolution data. In that sense, this structure is
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well adapted to further extensions integrating observations at different resolutions or

from other sensors.
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