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Summary

 

Fluorescent signal intensities from confocal laser scanning
microscopes (CLSM) suffer from several distortions inherent
to the method. Namely, layers which lie deeper within the
specimen are relatively dark due to absorption and scattering
of  both excitation and fluorescent light, photobleaching and/
or other factors. Because of  these effects, a quantitative analysis
of  images is not always possible without correction. Under
certain assumptions, the decay of  intensities can be estimated
and used for a partial depth intensity correction. In this paper
we propose an original robust incremental method for com-
pensating the attenuation of  intensity signals. Most previous
correction methods are more or less empirical and based on
fitting a decreasing parametric function to the section mean
intensity curve computed by summing all pixel values in each
section. The fitted curve is then used for the calculation
of  correction factors for each section and a new compensated
sections series is computed. However, these methods do not
perfectly correct the images. Hence, the algorithm we propose
for the automatic correction of  intensities relies on robust
estimation, which automatically ignores pixels where measure-
ments deviate from the decay model. It is based on techniques
adopted from the computer vision literature for image motion
estimation. The resulting algorithm is used to correct volumes
acquired in CLSM. An implementation of  such a restoration
filter is discussed and examples of  successful restorations are
given.

 

1. Introduction

 

Loss of  intensity is a well-recognized problem in both wide-field
and confocal imaging, but there is no single method correc-

tion of  3D images that is applicable to all studies (Markham
& Conchello, 2001). Indeed, there are many factors that
contribute to intensity loss, and it is not always possible to define
the contribution of  all factors to this effect for each individual
image and study (Rodenacker 

 

et al.

 

, 2001). Consequently,
various empirical methods have been used to correct images for
the effects of  the intensity loss before visualization and quanti-
tative image analysis (e.g. Liljeborg 

 

et al.

 

, 1995; Rodenacker

 

et al.

 

, 2001). In Fig. 1, the difficulty of  the correction problem
is exemplified from two biological images corresponding to
sections taken at two different depths from a CLSM stack. We
can see some geometrical features that have similar appearance
in the two sections. However, because they were acquired at
two different depths, features appear to be different in the
two images; in this example, there are particularly dramatic
differences in the intensity levels.

When a 3D fluorescence image (stack) is obtained with a
CSLM, deeper layers in the specimen are imaged with lower
photon intensity due to scattering and absorption of  both exci-
tation and fluorescence light and photobleaching (Centonze &
Pawley, 1995; Tsien & Waggoner, 1995). This is sometimes
accompanied by shading and some loss of  detail. All these effects
severely restrict a quantitative analysis of  the images (Rigaut
& Vassy, 1991). Indeed, a common way to extract objects for
further measurement consists in applying a constant threshold
in the digitized volume (Irinopoulo 

 

et al.

 

, 1997; Rodenacker 

 

et al.

 

,
1997). This threshold can no longer be constant throughout
the volume because, due to light scattering and absorption, the
deeper lying sections are weaker in intensity than the top most
sections (Ortiz de Solorzano 

 

et al.

 

, 1999; Rodenacker 

 

et al.

 

, 2001).
Prior to any extraction of  objects a compensation for this light
attenuation in lower lying parts of  the specimen must be
then applied. In fact, it has been shown in CLSM studies that
the rate of  photobleaching, which mainly contributes to
intensity loss, varies along the depth direction or 

 

z-

 

axis) (van
Oostveldt 

 

et al.

 

, 1998). The possibility of  spatial heterogeneity
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appears to be largely ignored in correction studies, and most
authors assume that the rate of  photobleaching in a 3D image
is spatially homogeneous and can be described by an exponen-
tial function of  depth (e.g. Rigaut & Vassy, 1991), which has
been shown to be adequate in many situations. However, it
has been shown that, under certain well-defined conditions,
bleaching of  a thin, spatially uniform fluorescent test layer in
both conventional and confocal microscopy is best described
by a bi-exponential curve (Ghauharali 

 

et al.

 

, 1998; Markham
& Conchello, 2001).

There are several 

 

ad-hoc

 

 methods in the literature for the
correction of  sections (e.g. Rodenacker 

 

et al.

 

, 2001). Because
manual correction is a tedious, time-consuming and unrelia-
ble task and we wish to obtain a reliable distinction between
background and objects of  interest (Rigaut & Vassy, 1991), it
is desirable to have automatic correction tools. Moreover, pre-
cise automatic correction is valuable not only in the example
research study described above, but in many situations
involving repeated CLSM acquisitions for the same subject. To
address this problem, an iterative correction method based
on an approximated inversion of  the CLSM transfer function
was proposed in Visser 

 

et al.

 

 (1991) and later improved by
Roerdink & Bakker (1993) using the Fourier transform; a
method based on the study of  the stack 2-D histograms that
can be formed for each consecutive pair of  sections has been
also applied to calculate the attenuation factor in Liljeborg

 

et al.

 

 (1995). Here, the approach we have taken for image

attenuation compensation is inspired by methods used for
image motion estimation (Black & Rangarajan, 1996; Black
& Anandan, 1996; Odobez & Bouthemy, 1995; Sawhney &
Ayer, 1996; Negahdaripour, 1998; Germain 

 

et al.

 

, 1999;
Haussecker & Fleet, 2001) and image registration (Nestares &
Heeger, 2000) in computer vision. Indeed, most image correc-
tion techniques rely on the assumption that both scattering
and absorption are assumed to be governed by an exponential
decay law with increased depth within the specimen (Rigaut
& Vassy, 1991; Chen 

 

et al.

 

, 1995; Ghauharali 

 

et al.

 

, 1998;
Ghauharali & Brakenhoff, 2000; Murray, 1998), a model
already studied in Negahdaripour (1998) and Haussecker &
Fleet (2001). So, we propose an algorithm for the automatic
correction of  CLSM images that relies on robust estimation
(Huber, 1981) to compute the correction parameters: the
resulting estimation procedure automatically ignores those
pixels (outliers) where the decay model is violated. This com-
pensation is important not only for the correct extraction of
the objects by thresholding but, even more importantly, for the
quantification of  fluorophores, which is the primary goal of
many applications.

The rest of  the paper is organized as follows: in Section 2, we
evaluate the accuracy of  the exponential model and describe a
numerical implementation of  the robust estimation of  the
correction parameters. In Section 3, we present experimental
results obtained by applying the algorithm to real 3D confocal
images. Conclusions are drawn in the last part of  the paper.

Fig. 1. Two sections of  an original CLSM stack made of  40 sections. (a) Section 15; (b) Section 25.
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2. Methods

 

In this section, we evaluate the exponential decay law for
modelling scattering and absorption, and photobleaching. We
also describe a gradient-based approach used for estimating the
related attenuation factors. In our context, a robust estimation
method is used to estimate the correction parameters. This section
ends with details regarding the implementation of  the algorithm.

 

2.1. Assumptions

 

To estimate the intensity decay function, several basic model
assumptions have to be considered (Rodenacker 

 

et al.

 

, 2001):
(

 

i

 

) homogeneity of  medium with depth, (

 

ii

 

) independence of
emission with depth, (

 

iii

 

) transparency of  stained objects with
depth, (

 

iv

 

) constant background noise intensity with depth
and (

 

v

 

) sufficiently distributed emitting material with depth.
However, some of  these factors cannot be modelled theoreti-
cally. Assumptions are then necessary for simplification of  the
correction function estimation as well as for the correction
itself. Assumptions (

 

i

 

), (

 

ii

 

) and (

 

v

 

) are critical for the estimation
of  the decay function. Generally, a homogeneous exponential
model decay function gives an acceptable partial correction
of  depth influences (Rigaut & Vassy, 1991; Chen 

 

et al.

 

, 1995;
Ghauharali 

 

et al.

 

, 1998; Ghauharali & Brakenhoff, 2000;
Murray, 1998). In the following, we have also adopted this
simple parametric modelling.

First, loss of  intensity is assumed to be modelled by an
exponential decay function:

 

i

 

z

 

 = 

 

i

 

0

 

e

 

−

 

kz

 

(1)

where the subscript 

 

z

 

 = 0, 1, ... , 

 

N

 

z

 

 is the section (or depth)
index, 

 

i

 

z

 

 

 

is the average intensity computed by summing all pixel
values of  section 

 

z

 

, 

 

i

 

0

 

 is the average intensity of  the bleachable
component before bleaching and 

 

k

 

 is a constant that controls
the rate of  intensity loss (bleaching rate). In Eq. (1) we expressed
the intensity loss only as a function of  depth. This modelling is
also possible for wide-field microscopes where optical sections
are collected sequentially with identical exposure times. There
are other factors, such as attenuation of  fluorescent intensity
due to tissue depth, that are also proportional to depth. Two
more general forms of  exponential functions are also allowed
to describe the intensity decay with depth: a single exponential
function plus a constant term (Murray, 1998) and the sum of
two exponential functions (Ghauharali 

 

et al.

 

, 1998; Markham
& Conchello, 2001), i.e.

(2)

have been proposed, where 

 

z

 

 = 0, 1, ... , 

 

N

 

z

 

, 

 

i

 

z

 

 

 

is the average
intensity of  section 

 

z

 

, 

 

A

 

 and 

 

B

 

 are the coefficients for the two
exponential terms, and 

 

k

 

A

 

 and 

 

k

 

B

 

 are the two exponential rate
constants.

For solving Eq. (1), a straightforward search procedure
was carried out by log-linear fitting of  the curve (i.e. the value
that gave the smallest residual sum of  squared deviations of
the data from a calculated single exponential decay curve)
(Murray, 1998). Moreover, a non-linear weighted least-squares
method is used to estimate the parameters of  the bi-exponential
model (see Eq. 2) for the the best fit to the section-intensity
data curve in Markham & Conchello (2001). Finally, for cor-
rection, every pixel in section 

 

z

 

 is multiplied by a factor that is
the ratio of  the fitted value at the first section to the fitted value
at section 

 

z

 

. The estimated parameters are all constrained to be
positive so that the exponential function neither increases nor
becomes negative (Markham & Conchello, 2001).

In our approach to correct intensities loss, we made use of
the fact that variations in the attenuation parameters with
depth are relatively small. A robust gradient-based approach
is then proposed to estimate the attenuation factors involved.

 

2.2. Gradient-based image correction

 

The intensity decreasing with depth can be approximated
by an exponential decay model. From Eq. (1), the brightness
function 

 

I

 

z

 

(

 

x

 

, 

 

y

 

) has the following analytical form:
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z
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) = 

 

I

 

0
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e

 

−

 

kz
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x
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�

 

 

 

G
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, (3)

where 

 

x

 

 = (

 

x

 

, 

 

y

 

) denotes the spatial coordinates of  the 2D
discrete image domain 

 

G

 

z

 

 (or section 

 

z

 

) of  

 

N

 

 pixels, and 

 

I

 

z

 

(

 

x

 

)
is the grey-level value at location 

 

x

 

 in section 

 

z

 

. The partial
derivative along the 

 

z

 

-axis of  both sides of  Eq. (3) then yields
the following brightness constraint equation:

(4)

This differential equation states that the rate of  change at
any depth is proportional to the current value. Hence, our
brightness constraint equation is linear in the decay parameter 

 

k

 

.
In this paper, we investigate new methods for the computation of
correction factors based on the following extended linear model:

 

∆
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(5)

where 
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−
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1

 

(

 

x

 

) is the numerical approximation

of  the partial derivative  along the 

 

z

 

-axis computed for

two immediately consecutive sections. This model allows
linear transformation of  the brightness of  an image point, from
one section to the next, described by a rate 

 

k

 

 and an offset 

 

m

 

.
It incorporates effects from any event that changes the image
brightness of  a point through a linear transformation. This
modelling permits changes in contrast and mean intensity but
is valid only if  stacks show a small decrease of  the global inten-
sity. Previous methods are more limited because the parameters
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of  the decay models are estimated based on the assumption
that the fluorophore density is constant along the depth,
which is not the case for most types of  biological specimen as
the intensity variation is also a function of  the geometry.
Nevertheless, the fluorophore density is probably more constant
between two consecutive sections, which is the main assump-
tion of  the current method; this does not mean the parameters
are constant along the depth.

Now, let 

 

θ

 

 = (

 

k

 

, 

 

m

 

) denote the vector of  unknown parameters
we wish to estimate. If  we consider all the pixels based on phys-
ical considerations, we obtain the following over-determined
linear system from Eq. (5):

(6)

where the subscript 

 

i

 

 indexes all the pixels of  the image-section

 

z

 

, 

 

N

 

 is the number of  pixels of  the section 

 

z

 

 and the superscript

 

T denotes the transpose operator. This over-determined system
can be solved using conventional least-squares methods: the
least-squares solution of  the system minimizes the sum over all
pixels of  the squared residual errors, defined as 

 where u(xi; θ) = −kIz(xi) − m. However, the least-squares
solution is very sensitive to isolated points having high residual
errors. In principle, one very poor pixel xi with a very large
residual ri can corrupt the solution. Alternative error functions
then have to be used. Robust regression techniques are generally
adequate to avoid the influence of  pixels that violate the intensity
conservation assumption due to the different acquisition pro-
tocols. The resulting systems of  equations can be solved using
weighted least squares with a small number of  parameters
that simultaneously characterize the attenuation of  all pixels.

2.3. Robust statistics

Robust statistical estimation techniques have been designed to
find the parameter vector which best fits a model to the obser-
vations when some data contain gross errors or behave like
outliers. For mathematical details the reader is referred to Huber
(1981), Hampel et al. (1986) and Rousseeuw & Leroy (1987).
Many robust statistical techniques have been applied to standard
problems in computer vision (Meer et al., 1991) such as local
image smoothing (Black et al., 1998), image reconstruction
(Black & Rangarajan, 1996), image registration (Nestares &
Heeger, 2000), optical flow estimation (Black & Rangarajan,
1996; Black & Anandan, 1996; Odobez & Bouthemy, 1995;
Sawhney & Ayer, 1996; Germain et al., 1999).

Robust estimators. As identified by Hampel et al. (1986), the
main goals of  robust statistics are: (i) to describe the structure
of  the bulk of  the data; (ii) to identify deviating data points
(outliers) or deviating substructures for further treatment,

if  desired. To state the issue more concretely, robust statistics
address the problem of  finding the parameters vector θ =
(θ1, ... , θ p) that provide the best fit of  a model, i.e. u(xi; θ), to a
set of  N data measurements d = {d0, ... , dN} which may be
corrupted by gross errors (in our application, p = 2, θ1 = k, θ2 =
m, and di = ∆Iz(xi)). This problem is then equivalent to finding
the parameter vector θ that minimizes the sum of  a function
of  the residual errors ri = (di − u(xi; θ)). In the robust statistics
framework, this sum does not grow indefinitely (in contrast to
the squared function used by least-squares), but rather satu-
rates for large residual errors. This yields

(7)

where the subscript i denotes the index of  the ith image pixel,
σρ is a scale parameter and ρ is our error norm. The ρ-function
is also called an M-estimator because this minimization corre-
sponds to the maximum-likelihood estimation, if  ρ is inter-
preted as the opposite of  the conditional log-likelihood of  the
observations d. Note that when the errors in the measurement
are normally distributed, the optimal ρ-function has a quad-
ratic form:

(8)

which gives rise to the standard least-squares estimation pro-
blem. The problem with the least-squares solution is that the
outlying points are assigned a high weight, which is not desir-
able when data contain outliers. To eliminate the contribution
of  these outliers, a hard redescending ρ-norm should be more
appropriate. This results in different robust estimators and the
robustness of  a particular estimator refers to its insensitivity to
outliers, or deviations, from the assumed statistical model.

Furthermore, to analyse the behaviour of  a ρ-function, we
take the approach of  Hampel et al. (1986) based on influence
functions. The influence function characterizes the bias that a
particular measurement has on the solution and is propor-
tional to the derivative ψ, of  the ρ-function. Consider, for example,
the quadratic ρ-function (Fig. 2a,b)

ρ (r) = r 2, ψ (r) = 2r. (9)

For least-squares estimation, the influence of  outliers increases
linearly and without bound. Now consider the following Geman
& McClure (1987) estimator:

(10)

plotted along with its ψ-function in Fig. 2(c,d). Examination
of  this ψ-function reveals that when the absolute value of  a
residual increases beyond a threshold characterized by σρ, its
influence decreases.
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Iteratively reweighted least squares. Given a robust estimator,
the problem is now to find the parameter vector θ that
minimizes a robust cost function that evaluates the error
made on the model. This can be accomplished by taking the
objective function written in terms of  robust ρ-functions (see
Eq. 7) and derive a new objective function to minimize, such
that:

(11)

where wi are appropriate weights. This so-called iteratively
reweighted least squares (IRLS) method then converts the M-

estimation problem into an equivalent weighted least-squares
problem. A necessary condition for minimization is that the
derivatives of  the error measure with respect to each com-
ponent θj of  the parameters vector θ = (θ1, ... , θp) are null. So
we get

(12)

The weights wi at each data point xi are therefore given by

(13)

Fig. 2.  Common ρ-functions and their derivatives ψ: (a) ρ(r) = r2; (b)  ψ(r) = 2r; (c) ; (d) .ρ σ
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The following estimation algorithm is then proposed. The first
IRLS step consists in obtaining a first estimate of  θ using wi = 1,
i = 1,  ... , N; in that case, all data are regarded as inliers. Because
the model u(xi; θ) is linear with respect to the parameter θ, this
can be achieved using least squares minimization. Then,
weights are evaluated using Eq. (13), and a new estimate of  θ is
computed using weighted least squares. The process is repeated
until convergence and the weights are updated at each iteration
such that those points displaying greater residual errors are
given less weight in the next iteration. From a practical point
of  view, the minimization is led alternately with respect to θ
on the one hand, and with respect to the wis on the other
hand:
• the wis being ‘frozen’, the minimization in θ becomes:

(14)

This weighted least squares problem is equivalent to the
resolution of  a linear system.
• θ being ‘frozen’, the minimization with respect to weights

yields

(15)

The two steps are repeated until convergence or when a maxi-
mum number of  iterations is reached (Odobez & Bouthemy,
1995). Note that when the residual |ri| becomes larger, the
corresponding optimal weight wi becomes smaller and smaller,
providing the robustness of  the estimator. One problem
with the robust estimators is that the resulting function to be
minimized is non-convex, and thus there is no guarantee of
convergence to a global minimum. Therefore, it is necessary to
start with an initial condition close to the absolute minimum.
The accurate estimates obtained in our experimental results
confirm that the algorithm is almost always converging to the
global minimum, or at least to a nearby local minimum if  we
choose wi = 1, i = 1, ... , N, as initial conditions.

Finally, there are numerous ρ-functions that have been used
in the computer vision literature, each with different motiva-
tions and strengths, but their common property is their ability
to reduce the effect of  outliers. In the remainder of  this paper,
we consider the Geman–McClure function, plotted along with
its influence function in Fig. 2c,d, which gives nonzero descend-
ing weights. This function has a differentiable ψ-function which
provides a gradual transition between inliers and outliers.

‘Robust’ scale. Also, the ρ-function have scale parameters
which allow the shape of  the function to be changed. We use
tools from ‘robust statistics’ to estimate automatically the scale
parameter σρ of  the data from residuals (Sawhney & Ayer,
1996; Black et al., 1998). The deviation σe of  residuals can in
fact be related to the constant σρ appearing in the ρ-function.

Given contaminated data from a zero-mean Gaussian distri-
bution, a robust estimate of  σe is related to the residuals
through

σe = 1.4826 × MAD(ri)
σe = 1.4826 × mediani(|ri − medianj(rj)|) (16)

where ‘MAD’ denotes the median of  absolute deviation taken
over all the pixels, i = 1, ... , N, and the constant derived from
the fact that the MAD of  zero-mean normal distribution with
unit variance is 0.6745 = 1/1.4826. The median-based esti-
mate has an excellent resistance to outliers; it can tolerate
almost 50% of  them, and can be efficiently computed with
a linear time median-finding algorithm. To estimate σρ, one
possibility is to choose values for the scale parameters σρ so
they begin rejecting outliers at the value σe. The point where
the influence of  outliers first begins to decrease as the magni-
tude of  the residuals increases for zero occurs when the deriva-
tive of  the ψ-function is zero. For the Geman–McClure norm it
occurs at  and residuals | ri | greater than σe are
considered as outliers. Furthermore, a binary mask of  regions
of  outliers can be also generated. Note that this binarization is
only a post-processing step for display purposes, whereas the
computation of  attenuation parameters uses the continuous
weights derived from the ρ-function.

2.4. Regularization

This step has been implemented to complete and stabilize the
estimation of  the parameters vector θ = (k, m). We make the
assumption that parameters are slowly evolving with regard
to the depth sampling frequency. The estimates k and m
usually must present smooth variations from one section to
the next. Accordingly, a regularization can be implemented by
adding a smoothness constraint on the set {θ1, ... , } where
Nz is the total number of  sections in the stack.

The maximum a posteriori (MAP) estimation is a popular
Bayesian formulation of  regularization techniques according
to the general scheme of  balancing between trust to data and
fidelity to priors (i.e. constraints). It consists in finding an
estimator of  θ that maximizes the posterior probability distribu-
tion of  θ given the data d = {d1, ... , dN}:

(17)

(18)

The likelihood P (d | θ) measures the distortion between the
observation data and the model and P (θ) is the a priori proba-
bility distribution of  θ which gathers the priors.

With a Bayesian approach, the M-estimation described in
Section 2.3 is actually equivalent to the maximum likelihood
estimation:
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(19)

(20)

(21)

We can now introduce the a priori smoothness constraint on θ
in P (θ). A widely used formalism for regularization consists in
using the following a priori term:

P(θ) � exp − [(θ − θ′)T Λ (θ − θ′ )] (22)

(23)

where θ′ is the estimate of  θ in the immediately preceding
section,  and  are the variances associated with the varia-
tions of  parameters k and m between two consecutive sections
and Λ is a 2 × 2 diagonal matrix: Λ = diag ( , ). The corre-
sponding function is quadratic, which means that the emer-
gence of  discontinuities between two consecutive estimates of
θ is severely punished.

As a primary conclusion, we may write the MAP estimator
of  θ as:

(24)

(25)

which is equivalent to the minimization of  the following
regularized energy:

(26)

For the IRLS implementation, we have then to solve (see
Eq. 14):

(27)

Here, the first quadratic term means that the norm of  the MAP
estimate deviation from data should be as small as possible,
and the other terms enforce smoothness. The variances 
and  are used to set a balance between the likelihood
function – quantifying the faithfulness to the data – and an a
priori term with regards to estimator behaviour as we have seen
before. Great effort has been made to set these variances from

data but usually it leads to non-tractable algorithms. Therefore,
 and  are chosen on an empirical basis.

2.5. Implementation details

The estimation algorithm. The weighted least squares problem
(Eq. 27) is equivalent to the resolution of  some linear system.
This yields:

(28)

where k′ and m′ are the estimates of  k and m obtained for the
immediately preceding section of  the stack numbered from 0
to Nz. This computation (Eq. 28) is performed at each iteration
of  the IRLS algorithm, summarized as follows:

begin
initialization: wi = 1, i = 1, ... , N
do

update k and m according to Eq. (28)

update 

until convergence
end

This algorithm is running for each section while k′ and m′ are
updated. Note the two updating steps are repeated until con-
vergence (i.e. there is no change in the parameters between
two successive iterations) or when a maximum number of
iterations is reached.

Image warping. We have proposed an IRLS algorithm to
estimate attenuation parameters θ = (k, m) robustly between
two consecutive sections. Now, we need to compensate this
attenuation for each section of  the stack. To restore sections,
a simple idea is to take one section as reference and then to
compensate all the other sections with respect to the chosen
section. Choosing the reference section is performed manually:
it corresponds naturally to one section among the sections
located at the top of  the stack (for instance at depth 0), if  the
specimen is scanned from top to bottom. The reference section
is not changed by the restoration process and all the successive
sections, from top to bottom, are restored with respect to the
reference section.

Formally, we have (see Eq. 5):
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I z(x) − Iz+1(x) ≈ −kzIz(x) − mz (29)

where kz and mz denote the attenuation parameters at depth z.
An approximation of  Iz(x) based on Iz+1(x) is then given by:

(30)

Similarly, an approximation of  Iz+1(x) based on Iz+2(x) is given by:

(31)

and therefore

(32)

By summing all estimation results, a restored image 
computed from an original section Iz+n(x), with reference to an
initial section Iz(x) chosen by the user, is obtained as:

(33)

if  we define gz+n,z+n+1(I.(x)) as:

(34)

Given an input section Iz+n(x) at depth z + n and n successive
pairs of  estimates , the restored image is warped
backwards with reference to the section z.

3. Experimental results

Before starting the automatic correction procedure it is neces-
sary to provide a reference section as a starting point. This
was performed manually and the remaining steps of  the algo-
rithm, implemented in C++ language, are fully automatic,
taking 1–3 min running on a workstation equipped with an
UltraSPARC-II 296-MHz processor and 1.7 Gb RAM. Unless
specified, the values of  the parameters used in all the experi-
ments were the same as those used in previous sections. Priors
tend to stabilize the algorithm so that it seeks a solution in the
vicinity of  those found in the previous depth samples. All the
restored stacks were produced using the same set of  parame-
ters; in our experiments,  and  show
better performance in estimating attenuation parameters.

Confocal images were acquired using a Zeiss LS 410 confo-
cal microscope 410 equipped with two lasers (argon and UV
lasers). The images were coded in 256 levels of  grey. Condi-
tions of  acquisition were kept according to Pawley’s (1990)
recommendations for confocal microscopic analysis. The
microscope acts as an ‘optical microtome’ allowing the section-

ing of  fluorescent-labelled cells sequentially and storage of
each optical section digitally. In the first study, nuclear DNA of
rat colonic cells along crypts was stained with Hoechst 33258
or propidium iodide (with sample pretreated by RNase I). The
optical section thickness, and therefore the z-axis resolution,
is a function of  the numerical aperture of  the lens and the
aperture size of  the adjustable confocal pinhole. In this study,
the pinhole was set to eight arbitrary disk units for all fluores-
cent probes; it provides an x–y resolution of  160–180 nm and
a z-sectioning space of  1 µm (according to the 730-nm maxi-
mal depth resolution described for fluorescent CSLM). Prepa-
rations were observed under a ×40 water immersion objective
with a 1.2 numerical aperture and captured in a frame of  512
× 512 pixels (zoom factor of  1) with a 72-dot/inch resolution
and four scans per image (scan time: 1 s). Stacks of  images
(x–y sections, 5122 pixels) were collected with 80 images (by
L. Pardini (INRA-Unité de Biométrie et Intelligence Artificielle,
Jouy-en-Josas, France) and B. Kaeffer (INRA-UFDNH, Nantes,
France)). The images were stored in TIF format and trans-
ferred to a UNIX work-station for analysis. We choose arbitrarily
the section # 20 as the reference section (Fig. 3a). Hence,
sections from 1 to 20 are unchanged in the restored stack. The
restored images are obtained using the procedure described
previously (see Section 2.5). In Fig. 3, we show the raw images
(numbered from top to bottom) when there is loss of  intensity
but no correction for them. Figure 4 shows the results with the
German–McClure ρ-function after 20 iterations. The value σe

was automatically estimated and the values of  σρ were defined
with respect to σe as: . The proposed approach
detects spatial positions (pixels) when the exponential model is
violated (i.e. | ri | > σe). These violations (or outliers) appear
as dark regions in Fig. 5 and inliers as white regions. Here,
outliers correspond to non-stained regions and noise. Note that
fluorescence values lower than 10 are not taken into account
in this estimation procedure because these values are
assumed to correspond to noise and background. Plots of  the
two parameters k and m with respect to the section index z are
shown in Fig. 6. The parameters are not constant along the
depth as expected but regularized. The section mean intensity
curves when there is no correction (dashed line) and when
correction for intensity loss is applied (solid line) are also
shown in Fig. 7(a). If  the sections contents (i.e geometric
features) are homogeneous with respect to the section index,
the restored mean intensity curve is ideally horizontal. Finally,
the average contrast (noted Cz at depth z) curves, computed from
the absolute difference between two successive sections as

 where N is the number of  pixels 

per section, are shown in Fig. 7(b). Unlike the original images
stack, the results indicate the restored stack does not exhibit a
decrease in contrast with depth and quantitative information
can be extracted.

In the second study, stacks of  images were collected with
40 sections per stack showing tomato membranes (image
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Fig. 3. Reference section # 20 and some sections from an original CLSM stack of  80 sections: (a) Section # 20, (b) Section # 24, (c) Section # 28,
(d) Section # 32, (e) Section # 36, (f ) Section # 40, (g) Section # 44, (h) Section # 48, (i) Section # 52, ( j) Section # 56, (k) Section # 60, (l) Section # 64,
(m) Section # 68, (n) Section # 72, (o) Section # 76, (p) Section # 80.
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Fig. 4. Some sections from a restored CLSM stack of  80 sections: (a) Section # 20, (b) Section # 24, (c) Section # 28, (d) Section # 32, (e) Section # 36,
(f ) Section # 40, (g) Section # 44, (h) Section # 48, (i) Section # 52, ( j) Section # 56, (k) Section # 60, (l) Section # 64, (m) Section # 68, (n) Section # 72,
(o) Section # 76, (p) Section # 80.
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Fig. 5. Detection of  outliers (black pixels) for some sections from a restored CLSM stack of  80 sections: (a) Section # 20, (b) Section # 24, (c) Section # 28,
(d) Section # 32, (e) Section # 36, (f ) Section # 40, (g) Section # 44, (h) Section # 48, (i) Section # 52, ( j) Section # 56, (k) Section # 60, (l) Section # 64,
(m) Section # 68, (n) Section # 72, (o) Section # 76, (p) Section # 80.
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courtesy of  M. F. Devaux, INRA-URPOI, Nantes, France,
2003) (Figs 8 and 9). The 200–250-µm tissue sections were
stained with calcofluor 0.01%. The specimens were digitized
using a ×10 air immersion objective with a numerical aper-
ture of  0.5, giving a depth discrimination of  about 5.0  µm. The
z-step between each section was 5.0 µm. The sections were
512 × 512 pixels with a pixel size of  2.5 × 2.5 µm. The pinhole
was set to seven arbitrary disk units for all fluorescent probes.
The excitation wavelength was 364 nm and the light emitted

over 397 nm was collected using a long-pass filter. Figure 8(a)
shows the reference section # 12 arbitrarily chosen in the
stack. Section # 39 of  the stack is also shown in Fig. 8(b) for
visualization purposes. A subset of  images from the stack
(numbered from top to bottom) when there is loss of  intensity
are shown in Fig. 9. Figure 10 shows the restoration results after
20 iterations of  the IRLS algorithm (see Section 2.5). The image
contrast is approximatively the same for all the restored sections,
as expected. Parameters of  the algorithm are the same as

Fig. 6. Plots of  attenuation parameters k and m against section number: (a) k against section number, (b) m against section number.

Fig. 7. Plots of  the mean intensity and average contrast curves of  the original and restored stacks: (a) mean intensity curves, (b) average contrast curves.
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those used in the previous experimental study and Sections
1 to 12 are unchanged in the restored stack. Additionally,
the outliers are thresholded (black pixels) and displayed in
Fig. 11. The evolution of  attenuation parameters with respect
to the section index z is shown in Fig. 12. The section mean
intensity curves against section number when there is no
correction (dashed line) and when correction for intensity loss
is applied (solid line) are shown in Fig. 8(b). Finally, the average
contrast curves of  the original and restored stacks are shown
in Fig. 13(b). As previously, the average contrast of  the
restored stack clearly does not decrease with depth in this
study.

4. Discussion and conclusion

The aim of  this study was to compensate loss of  intensity in 3D
fluorescence microscopy. We have presented a method to cope
with loss of  intensity due to photobleaching, attenuation
of  fluorescence in tissue depth or other factors. As we have
shown, the distortions in restored intensity levels can be
extreme and can cause large errors in the interpretation of
restored images, especially if  quantification is required. A
simple and unsupervised correction method has been proposed
for 3D fluorescence microscopy by using an exponential form
to fit the data. In the compensation method used here, the
absorption is not assumed to be constant throughout each

section, i.e. the compensation factors are not constant
but estimated for each section. This function is adaptively
estimated using a gradient-based approach, robust statistics
and regularization, without manual setting of  any underlying
optical attenuation constants. We only impose the attenua-
tion coefficients (k, m) do not abruptly change between two
successive sections and the thickness between two consecu-
tive sections is not too large. In that sense, the method is
limited for high-NA imaging. However, in practice we just need
to assume the image contents are not too different between
two consecutive sections whatever the z-resolution may be. Our
compensation method contributes also to the accuracy of  the
quantification of  fluorophores in 3D fluorescence microscopy;
the experimental results clearly indicate the restored stacks
do not exhibit a decrease in contrast with depth and pixels
that violate the model may be isolated for further processing
if  desired.
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Fig. 9. Some sections from an original CLSM stack of  40 sections: (a) Section # 15, (b) Section # 18, (c) Section # 21, (d) Section # 24, (e) Section # 27,
(f ) Section # 30, (g) Section # 33, (h) Section # 36, (i) Section # 39.
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Fig. 10. Some sections from a restored CLSM stack of  40 sections: (a) Section # 15, (b) Section # 18, (c) Section # 21, (d) Section # 24, (e) Section # 27,
(f ) Section # 30, (g) Section # 33, (h) Section # 36, (i) Section # 39.
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Fig. 11. Detection of  outliers (black pixels) for some sections from a restored CLSM stack of  40 sections: (a) Section # 15, (b) Section # 18, (c) Section # 21,
(d) Section # 24, (e) Section # 27, (f ) Section # 30, (g) Section # 33, (h) Section # 36, (i) Section # 39.
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