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Abstract. This paper proposes a statistical model of functional landmarks delim-
iting low level visual areas which are highly variable across individuals. Low lev-
el visual areas are first precisely delineated by fMRI retinotopic mapping which
provides detailed information about the correspondence between the visual field
and its cortical representation. The model is then built by learning the variabili-
ty within a given training set. It relies on an appropriate data representation and
on the definition of an intrinsic coordinate system to a visual map enabling to
build a consistent training set on which a principal components analysis (PCA)
is eventually applied. Our approach constitutes a first step toward a functional
landmark-based probabilistic atlas of low level visual areas.
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modeling, PCA.

1 Introduction

In the context of neuroimaging probabilistic atlases, this paper focuses on the human
visual cortex and more precisely on the statistical modeling of functional landmarks
delimiting low level visual areas. The number of areas in the visual cortex, although
estimated to be around 30, as well as their exact role in the distributed processing of
visual information are not consensually determined yet. In this paper, we consider the
following low order visual areas: V1, V2, V3, V3A and V4 of which a schematic 2D
unfolded map can be found in Figure 1.a. As the denomination of these visual areas is
still under debate, we adopt the notation presented in [1] where V4 is ventrally located
along the ventral part of V3 in the inferior part of the occipital lobe. Note that “ven-
tral” (resp. “dorsal”) qualifies areas located below (resp. above) the calcarine sulcus.
Besides, we will use suffixes “d” and “v” to designate the dorsal and ventral parts of
V1, V2 and V3. These low order visual areas benefit from the retinotopic property: a
univoque correspondence exists between the retina and its representation on the corti-
cal surface of each of these areas. This forms an homeomorphism between a part of the
visual field and the cortical surface within a given area. In other words, a two adjacent
points stimulation in the visual field leads to a two neighboring points activation in the
cortical surface. Positions in the visual field are usually encoded by eccentricity and po-
lar angle. A null eccentricity, which corresponds to the center of gaze, is represented at
the occipital pole while representations of increasing eccentricities move toward more



Left hemipshere

Dorsal

V4

Ventral

@) : — (b)

Fig. 1. (a) Schematic representation for the left hemisphere of an unfolded map of the considered
visual areas. The coordinate system intrinsic to such a map is superimposed. (b) An unfolded 2D
map showing VFR sign and visual areas borders (black lines) of one subject (left hemisphere).

anterior parts of the cortical surface. The upper quadrant of the controlateral hemifield is
projected below the calcarine sulcus (ventral areas) whereas the lower quadrant is pro-
jected above the calcarine sulcus (dorsal areas). V1, the primary visual area, receives
information directly from the retina via the lateral geniculate nucleus and is located
within the calcarine sulcus. The calcarine sulcus fundus is the cortical representation of
the horizontal meridian. This latter also projects onto V2d/V3d and VV2v/V3v border-
s. This alternates with the vertical meridian cortical representation located at V1/V2,
V3d/V3A and V3v/V4 borders. Thus, the representation of the controlateral hemifield
is mirrored between adjacent visual areas.

Retinotopic properties can be exploited to precisely delineate low order visual ar-
eas by fMRI retinotopic mapping [2], [3], [4]. Locations of these visual areas are highly
variable across individuals [5]. In order to grasp this high inter-individual variability, we
propose a statistical modeling of the functional landmarks delimiting low level visual
areas, i.e. of the low level areas borders. We learn the variability within a given pop-
ulation and derive some statistics and shape occurrence probabilities from a statistical
analysis, the principal component analysis (PCA). The training is based on a parametric
representation of the structures of interest and on the definition of an intrinsic coordi-
nate system for these structures in which instances of the training population can be
matched.

In the following section, we describe the visual areas delineation process before
building the statistical model in section 3. Experiments and results are presented in
section 4. Finally, in section 5 we discuss the proposed approach.

2 Dedlineation of Low Level Visual AreasBorders

The complete process to precisely delineate low level visual areas borders is described
in details in [4]. We briefly recall the principle and the main steps of this process. It
relies on retinotopic properties, periodic stimulation and exploits the orientation change
of the representation of the local visual field between adjacent areas. It is performed
by fMRI retinotopic mapping in three steps: measurements of functional data and 3D
analysis, modeling of the cortical surface of interest and effective delineation.



M easurements of Functional Data and 3D Analysis The visual stimuli used al-
low to determine the correspondence bewteen a position in the visual field and its
representation onto the cortical surface. Four periodic stimuli are considered: a dilat-
ing/contracting ring and clockwise/counter-clockwise rotating wedges. In low level ar-
eas, these stimulations induce a periodic travelling wave in low level visual areas whose
the phases are function of the position into the visual field. The corresponding periodic
BOLD activation is recorded in 3D, a Fourier analysis is performed and then phase-
maps are obtained.

Modeling of the Cortical Surface of Interest The center of the grey matter, where
functional activations are expected, is extracted from a tissue classification procedure
followed by a dilatation of the grey matter/white matter interface. An unfolding algo-
rithm [6] is applied to flatten the cortical surface, this one being restricted to the visual
cortex area of interest. This algorithm enables to visualize the whole surface while re-
sorting to no cuts.

Delineation of Visual Areas A surface representation of the cortical response can
now be obtained. Voxels are projected on the unfolded cortex map and projections are
interpolated by a Gaussian smoothing. A measure called “local visual field ratio” (VFR)
is eventually computed to perform delineation [7]:
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VFR = B(u,v) 1)
where (¢, ¢, ) are the phases of observed responses corresponding to eccentricity =
and polar angle « of the visual field, the cortical surface being parameterized by (u, v).
The sign of VFR has a very precise interpretation: its change indicates a change in
the orientation of the representation of the visual field. Therefore, visual areas borders
correspond to zero level of VFR. Figure 1.b shows an example of such delineated maps.
A good reproducibility has been demonstrated in [4].

3 Statistical Modeling

We propose now a statistical model of a delineated map, i.e. of the set of the six borders
V1d/vVad, V1v/V2v, V2d/V3d, V2v/V3v, V3d/V3A and V3v/V4. Our model is based
on a training of the variability within a given population and is finally obtained by a
well-known multidimensional data analysis, the principal components analysis (PCA).
The building of the training population first requires the definition of a data represen-
tation and second a matching scheme of these data. We assume relevant to establish a
dense point to point correspondence between the set of maps and to derive theses cor-
respondences from a parametric data representation once the population is aligned on a
common coordinate system which has to be defined. In summary, building the training
set consists in providing the data with a parametric representation, to sample this repre-
sentation such that each of the six borders has the same number of sample points across
the training set and to register this population on a common system of coordinates in
which lines will be matched point to point.



3.1 DataParameterization and Resampling

The delineation process produces visual borders areas as lines which are more or less
straight or curved and irregularly sampled, even over-sampled. We have chosen to use
cubic B-spline curves to fit them. This choice is indeed well adapted to model a large
set of curves and enables an easy resampling of the data.

Let nbp be the initial number of sample points of a given border c. A set of nbc
control points is first generated, from which it is then possible to generate a new set
of nbp" points which regularly sample the border ¢. For each line, the number of sam-
pled points, nbpj,_, g, is chosen such that each border is provided with a satisfactory
representation across all the subjects. If borders are initially represented with a similar
initial number of sampled points, then each border is over-sampled on the most sam-
pled instance. Otherwise, initially over-sampled borders are sub-sampled with nbp”
performing a compromise of the number of sampled points of this border over the set
of subjects. The choice of nbp™ never leads to an effective sub-sampling of the initial
border.

Each of the six borders of interest is thus represented by a set of nbp;,_; ¢ points
sampled on a cubic B-spline curve. Such a border can also be advantageously repre-
sented by the set of the nbcj,_, ¢ control points associated with these new sampled
points. This latter representation will be exploited in the statistical analysis step.

3.2 Matching

The alignment of the training set is based on the definition of an intrinsic coordinate sys-
tem that we consider to be common to all instances in the training set. Let R; (Oy, 11, 12)
be this intrinsic coordinate system. R; is determined for each instance in a geometric
way only from V1 borders, i.e. from lines V1d/VV2d and V1v/VV2v. The confidence de-
gree in the localization of V1 borders is indeed higher than in the other borders since
the fMRI signal becomes less significant away from V1.

The z axis is defined as the bissectrice of the axes of inertia of VV1d/V2d and
V1v/V2v and follows the postero-anterior direction. Roughly, this axis separates ven-
tral and dorsal areas and approximates the representation of horizontal meridian in V1.
In other words, it follows the calcarine sulcus fundus. Axis y is defined orthogonal to
z axis and is directed towards dorsal (resp. ventral) areas for the left (resp. right) hemi-
sphere. The origin of R, is defined as the intersection of the inertia axes of V1d/vad
and V1v/V2yv, as illustrated in Figure 1.a.

The training population is then aligned on R, by a change of basis from the intrinsic
coordinate system to the original coordinate system of each subject R (O, i1, i2). This
can be expressed by the rigid transformation (rotation + translation) matrix M:

t _Rt -
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Once all the maps are expressed in R;, the matching consists in pairing control points
having the same curvilinear abscissae.



Fig. 2. Examples of resampled borders (continuous lines). Dots are the initial sampled points.

3.3 Statistical Analysis

Let P be the training population made up of N observations of maps x; ;—1,..., n resam-
pled and registered as described above. Any map x is represented by the control points
vector of the splines representing each of the six borders of interest:
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where (zt, y!) are the nbc] control points of the I " line of the map (I = 1,...,6).

We perform on P a principal components analysis. This analysis characterizes the
variations within a given training population and extracts the principal modes of defor-
mation relative to the mean map. Briefly, PCA consists in expressing the observations
in a new basis, also orthogonal, with mean map x as an origin and eigenvectors or
modes of the observations covariance matrix C as axes. An approximation of these ob-
servations can be obtained by truncating a certain number of modes. The reconstructed
observation is then written as x = X + &,b,, Where m is the number of retained
modes, ¢, the truncated modes matrix and by, = (b;)i=1,....,m the m—dimensional
vector representing the original observation in the truncated modal basis. Reconstruc-
tion quality can be measured by 7 = >~ | X;/Ar where ); is the i™ eigenvalue, in
decreasing order, of matrix C and corresponds to the variance explained by the ¢ !
mode, and where Ar is the total variance.

Under the assumption that the distribution of the elements of P is gaussian, the
variation of b;,;—1 .. in an interval such as [—3+/A;, 3v/A;] provides an indication of
the variability of the studied object class. This indication is all the more reliable and
realistic as the training set contains a sufficient number of representative instances.

4 Experiments and Results

Experiments have been led on an 8 subjects database. Since the extraction of the V3v/V4
right border has failed for one subject, only 7 subjects have been used for the right hemi-
sphere.



Table 1. For each border and each hemisphere, average and standard deviation in mm over all the
subjects of the Hausdorff distance between initial lines ad resampled lines.

| Borders [|Left hemisphere[Right hemisphere]

V1d/vad|| 0.562 + 0.009 | 0.561 + 0.004
V1v/V2v|| 0.603 £+ 0.010 | 0.770 £ 0.073
V2d/v3d|| 0.620 + 0.019 | 0.571 % 0.005
V2v/V3v|| 0.612 + 0.026 | 0.573 & 0.019
V3d/V3A|| 0.480 &+ 0.020 | 0.586 + 0.011
V3v/V4 || 0.522 £ 0.016 | 0.587 + 0.100

4.1 Data Parameterization and Resampling

Each border has been parameterized and resampled as described in section 3.1. The
number nbe of control points computed from the nbp original sampled points has been
fixed empirically such that nbc = nbp/2. In theory, data representation is all the more
fine as the ratio nbc/nbp is close to 1. In practise, due to the non-uniformity of the initial
curve sampling, a ratio equal to 2 has appeared sufficient. Figure 2 shows some exam-
ples of resampled curves with initial curves superimposed. It indicates a very good con-
servation of the global original shape and of its position. In order to quantify the error
induced by resampling, we have computed the Hausdorff distance between resampled
lines and initial lines, for each border and each subject. Given 2 sets of points S; and
Sa, the Hausdorff distance H is defined as:

H(S1, SQ) = max(h(Sl,Sg), h(SQ,Sl)) with h(Sl, Sz) = meagc IHGIE ”81—82”. (4)

h(S1, Sz) is the directed Hausdorff distance from S; to Ss, || . || being the Euclidean
norm. The Hausdorff distance measures the distance from the point in S; the furthest
to the point set Ss and vice-versa. Hence, it is sensitive to a large error and provides
somehow the maximal error resampling. The average of this distance over the set of
subjects as well as its standard deviation are presented in Table 1. The error is weak and
stable over the database.

4.2  Alignment

Figure 3 shows the borders locally registered onto the intrinsic coordinate system for
both hemispheres. We can observe a relatively important variability within these popu-
lations, in particular as the position is concerned. This variability increases when mov-
ing away from V1.

4.3 Statigtical Analysis

The statistical analysis has been applied on the control points of the splines defining
the borders previously resampled and registered. The number of control points, nbc;],
has been fixed such that nbc] /nbp] = 4. This choice induces an observation vector
with 90 points and so 180 variables. It produces a fine representation of the lines to
model while avoiding a huge dimensionality in regards to the cardinal of the training
population. Table 2 exhibits the percentage of cumulative variance for each hemisphere
according to the number of modes retained. The first mode strongly predominates. Fig-
ure 4 shows the variations around the mean map along the first mode. We observe a
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Fig. 3. Training populations corresponding to left and right hemispheres. They are locally reg-
istered in the intrinsic coordinate system. VV1d/V2d and V1v/V2v are represented in dark grey,
V2d/V3d and V2v/V3v in black, V3d/VV3A and VV3v/V4 in light grey.

Table 2. Percentage, 7, of cumulative variance according to the number of modes retained for
left and right hemisphere; 7, = > Ai/Ar x 100.

[Modes||Left hemisphere|Right hemisphere|

1 70.2 60.0
2 84.1 82.6
3 89.8 90.0
4 94.2 95.1
5 96.7 98.6
6 98.8 100
7 100 100
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Fig. 4. For both hemispheres, variations according to the first mode around the mean map (thick
black lines): —2v/A1 < b1 < +2v/A1 . V1d/V2d and V1v/V2v are represented in dark grey,
V2d/V3d and V2v/V3v in black, V3d/V3A and V3v/V4 in light grey.

borders variability both in shape and position. However, position variability appears
as the most important. We also note that borders appear less variable on the ventral
side of the right hemisphere. These results, although interesting, should be interpret-
ed in regards to the cardinal of the training population. In this restricted experimental
framework, their scope is limited.



5 Discussion and Per spectives

We have proposed an approach to statistically model functional borders delimiting low
order visual areas. Further work is still needed for a complete validation of such a
model which namely requires to enlarge our data set. The definition of the intrinsic
coordinate system has been constrained by presently available information. It could
benefit from more anatomical and functional information. In particular, it would be
interesting to effectively use the calcarine sulcus as a landmark. The origin, determined
upon a geometric criterion, could also benefit from more functional information. For
instance, it could be extracted from an area (measurements are marred with uncertainty
and depend on SNR) responding to some predefined eccentricity and polarity. The use
of the fovea representation on the cortical surface could also be investigated. Although
this representation is not punctual, it could serve as a basis to define the origin. The
matching process depends on the extraction technique, on the parameterization and on
the definition of the intrinsic coordinate system. If the extraction partially failed such
that some borders are more or less truncated, this matching is not adequate anymore and
introduces a bias in the model. Two ways could be explored: improving the robustness
of the extraction or using a based-distance matching, nevertheless relevance of this latter
can not be systematically guaranteed. Eventually, the proposed method can be used
in a given population 1) to study retinotopic area variations, 2) to realign functional
scans based on functional visual landmarks or even on anatomical ones, e.g. calcarine
sulcus, 3) to map inter-subject functional data onto the mean subject [8] and finally 4)
to build a functional and anatomical probabilistic atlas of retinotopic areas for a given
population [9]. Such an atlas could namely be exploited in mapping subjects for which
only anatomical landmarks, e.g. calcarine sulcus, are available.

References

1. S. Zeki. Improbable areas in the visual brain. Trendsin Neurosciences, 26(1):23-26, 2003.

2. S.A. Engel, D.E. Rumelhart, B.A. Wandell, A.T. Lee, G.H. Glover, E.J. Chichilnisky, and
M.N. Shadlen. fMRI of human visual cortex. Nature, 369(6481):525, 1994.

3. M.L. Sereno, A.M. Dale, J.B. Reppas, K.K. Kwong, J.W. Belliveau, T.J. Brady, B.R. Rosen,
and R.B.H. Tootell. Borders of multiple visual areas in human revealed by functional magnetic
resonance imaging. Science, 268:889-893, 1995.

4. J. Warnking, M. Dojat, A. Guérin-Dugué, C. Delon-Martin, S. Olympieff, N. Richard,
A. Chéhikian, and C. Segebarth. fMRI retinotopic mapping - step by step. Neurolmage,
17(4):1665-1685, 2002.

5. K. Amunts, A. Malikovic, H. Mohlberg, T. Schormann, and K. Zilles. Bordmann’s areas 17
and 18 brought into stereotaxic space-Where and how variable? Neurolmage, 11:66-84, 2000.

6. A. Guérin-Dugué, S. Olympieff, J. Gisert-Lopez, A. Chéhikian, J. Warnking, C. Rubin, and
C. Segebarth. Représentation plane du cortex visuel en imagerie fonctionnelle a résonance
magnétique. In RFIA, 2:29-38, 2000.

7. M.L. Sereno, C.T. McDonald, and J.M. Allman. Analysis of retinotopic maps in extrastriate
cortex. Cerebral Cortex, 4:601-620, 1994.

8. 1. Corouge, P. Hellier, B. Gibaud, and C. Barillot. Inter-individual functional mapping: a non
linear local approach. Neurolmage, 2003. In press.

9. D.C. Van Essen, J.W. Lewis, H.A. Drury, N. Hadjikhani, R.B.H. Tootell, M. Bakircioglu,
and M.I. Miller. Mapping visual cortex in monkeys and humans using surface-based atlases.
Vision Research, 41:1359-1378, 2001.



