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Abstract

Augmented Reality has now progressed to the point
where real-time applications are being considered and
needed. At the same time it is important that synthetic ele-
ments are rendered and aligned in the scene in an accurate
and visually acceptable way. In order to address these is-
sues a real-time, robust and efficient 3D model-based track-
ing algorithm is proposed for a ’video see through’ monoc-
ular vision system. The tracking of objects in the scene
amounts to calculating the pose between the camera and
the objects. Virtual objects can then be projected into the
scene using the pose. Here, non-linear pose computation is
formulated by means of a virtual visual servoing approach.
In this context, the derivation of point-to-curves interaction
matrices are given for different features including lines, cir-
cles, cylinders and spheres. A local moving edges tracker is
used in order to provide real-time tracking of points normal
to the object contours. A method is proposed for combining
local position uncertainty and global pose uncertainty in
an efficient and accurate way by propagating uncertainty.
Robustness is obtained by integrating a M-estimator into
the visual control law via an iteratively re-weighted least
squares implementation. The method presented in this pa-
per has been validated on several complex image sequences
including outdoor environments. Results show the method
to be robust to occlusion, changes in illumination and miss-
tracking.

1. Introduction

This paper addresses the problem of markerless real-
time augmented reality (AR). Many different types of sen-
sors have been used to achieve this including : GPS, gy-
roscopes, cameras, hybrid vision, accelerometers and many
more which have been summarized in [1, 2]. Although the
implementation oresented here is not restricted to a partic-
ular display technology, the problem is restricted to the use
of a monocular vision sensor: a camera. This study will
focus on the registration techniques that allow alignment of

real and virtual worlds using images acquired in real-time
by a moving camera. In such systems AR is mainly a pose
(or viewpoint) computation issue. In this paper a marker-
less model-based algorithm is used for the tracking of 3D
objects in monocular image sequences. The main advan-
tage of a model based method is that the knowledge about
the scene (the implicit 3D information) allows improvement
of robustness and performance by being able to predict hid-
den movement of the object and acts to reduce the effects of
outlier data introduced in the tracking process.

Real-time 3D tracking. The most common geometric
features used in pose computation which are suitable for
AR applications include indoor fiducial/marker based [3,
19, 25, 32, 33] and outdoor fiducial/marker based [26], the
latter shows how the size of the marker contributes to ro-
bustness and ease of use. In the related computer vision
literature geometric primitives considered for the estima-
tion are often points [13, 7], segments [9], lines [20], con-
tours or points on the contours [21, 24, 10], conics [28, 6],
cylindrical objects [8] or a combination of these different
features [25]. Another important issue is the registration
problem. Purely geometric (eg, [9]), or numerical and iter-
ative [7] approaches may be considered. Linear approaches
use a least-squares method to estimate the pose. Full-scale
non-linear optimization techniques (e.g., [21, 23, 10]) con-
sists of minimizing the error between the observation and
the forward-projection of the model. In this case, minimiza-
tion is handled using numerical iterative algorithms such as
Newton-Raphson or Levenberg-Marquardt. The main ad-
vantage of these approaches are their accuracy. The main
drawback is that they may be subject to local minima and,
worse, divergence. It is important to note that other ap-
proaches to on-line augmented reality do not rely on pose
estimation but on relative camera motion [5], planar homog-
raphy estimation [30] or optical flow based techniques [26].
These methods have been shown to work in real-time and
in outdoor environments, however, they are restricted to pla-
nar surfaces which may be problematic in complex environ-
ments.
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Statistically robust tracking. To handle occlusion,
changes in illumination and miss-tracking a statistically ro-
bust estimation of the pose has to be considered. In re-
lated computer vision and statistics literature many dif-
ferent approaches exist to treat external sources of error.
Amongst the robust outlier rejection algorithms, methods
in computer vision have included the Hough Transform and
RANSAC [12]. These approaches treats the standard devi-
ation of the inlier data (scale) as a constant to be tuned. On
the other hand the statistical methods such as Least Median
Square (LMedS) and M-estimators [16] have been devel-
oped which treat scale as something to be estimated. Up
to present most approaches focus only on a single geomet-
ric error function and reject any outliers which do not cor-
respond to this definition. The reader is referred to [31]
for a review of different robust techniques applied to com-
puter vision. Statistically robust pose computation algo-
rithm, suitable for real-time AR techniques, have been con-
sidered. Most of these approaches are related directly to
computer vision literature [12, 13, 22, 20].

Outline of the paper and contributions In this paper,
pose computation is formulated in terms of a full scale non-
linear optimization: Virtual Visual Servoing (VVS). In this
way the AR pose computation problem is considered as
similar to 2D visual servoing as proposed in [32, 25]. 2D
visual servoing or image-based camera control [17, 11, 14]
allows control of a eye-in-hand camera wrt. to its environ-
ment. More precisely it consists in specifying a task (mainly
positioning or target tracking tasks) as the regulation in the
image of a set of visual features. A set of constraints are
defined in the image space. A closed-loop control law that
minimizes the error between the current and desired posi-
tion of these visual features can then be built which deter-
mines automatically the motion the camera has to realize.
This paper takes this framework and builds an image feature
based system which is capable of treating complex scenes in
real-time without the need for markers. Contributions can
be exhibited at three different levels:

• the derivation of the Jacobian for complex visual fea-
tures including ellipses, cylinders, points, distances
and any combination of these is easily obtained. Deter-
mining an accurate approximation of the Jacobian, also
called interaction matrix, is essential to obtain the con-
vergence of the visual servoing. In this paper, a com-
plete derivation of interaction matrices for distances
to lines, ellipses and cylinders are given. A general
framework for derivation is obtained by taking advan-
tage of the duality of visual servoing methodologies.
Furthermore, computational efficiencies are obtained
by ’stacking’ Jacobians and using a constant interac-
tion matrix.

• the widely accepted statistical techniques of robust M-
estimation [16] are employed. This is introduced di-
rectly in the virtual visual servoing control law by
weighting the confidence on each feature. The Median
Absolute Deviation (MAD) is used as an estimate of
the standard deviation of the inlier data.

• this formulation for tracking objects is dependent on
correspondences between local features in the image
and the object model. In an image stream these cor-
respondences are given by the local tracking of fea-
tures in the image. In this paper low level tracking
of the contours is implemented via the Moving Edges
algorithm [4]. A local approach such as this is ide-
ally suited to real-time tracking due to an efficient
1D search normal to a contour in the image. In a
’real world’ scenario some features may be incorrectly
tracked, due to occlusion, changes in illumination and
miss-tracking. Since many point-to-curve correspon-
dences are made, the method given here has many re-
dundant features which favors the use of robust statis-
tics. Furthermore a method is proposed for propagat-
ing uncertainty from the local edge features to a global
pose determination algorithm which means that no ar-
bitrary predetermined edge detection threshold is nec-
essary.

It should be noted that Drummond and Cipolla [10] have
recently proposed a similar approach to robust complex ob-
ject tracking. Even though the formulation based on Lie
Algebra is very different, it is also a full scale non-linear
pose computation. It is also based on a 1D search along
the edge normal in subsequent frames, as well as a robust
M-estimation, however, only polyhedral objects were con-
sidered. The analytical form of the feature Jacobian was
not determined, edge detection thresholds were needed and
the orientation of the edges were not considered. The latter
degrades the performance of the system in terms of accu-
racy of initial measures and subsequent computational effi-
ciency.

In the remainder of this paper, Section 2.1 presents the
principle of the approach. In Section 2.2 the details of the
robust visual servoing control law are shown and a stabil-
ity analysis is presented. In Section 2.3 the computation of
the confidence in the local features extraction is introduced.
Section 3 deals with the chosen visual features considered
in the tracking process. Firstly the analytical formulation of
the interaction matrices for various features are derived and
then the algorithm used for tracking local features is pre-
sented. In Section 4, several experimental results including
visual servoing experiments are demonstrated.
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2. Robust virtual visual servoing

2.1. Overview and motivations

As already stated, the fundamental principle of the pro-
posed approach is to define the pose computation problem
as the dual problem of 2D visual servoing [11, 17]. In visual
servoing, the goal is to move a camera in order to observe
an object at a given position in the image. This is achieved
by minimizing the error between a desired state of the im-
age features s∗ and the current state s. If the vector of visual
features is well chosen, there is only one final position of the
camera that allows this minimization to be achieved. An ex-
planation will now be given as to why the pose computation
problem is very similar.

To illustrate the principle, consider the case of an object
with various 3D features P (for instance, oP are the 3D
coordinates of these features in the object frame). A vir-
tual camera is defined whose position in the object frame
is defined by r. The approach consists in estimating the
real pose by minimizing the error ∆ between the observed
data s∗ (usually the position of a set of features in the im-
age) and the position s of the same features computed by
forward-projection according to the current pose:

∆ =
(
s(r) − s∗

)
=

[
prξ(r,

o P) − s∗
]
, (1)

where prξ(r,o P) is the projection model according to the
intrinsic parameters ξ and camera pose r. It is supposed
here that intrinsic parameters ξ are available but it is possi-
ble, using the same approach to also estimate these param-
eters.

In this formulation of the problem, a virtual camera is
moved (initially at ri) using a visual servoing control law in
order to minimize this error ∆. At convergence, the virtual
camera reaches the position rd which minimizes this error
(rd will be the real camera pose).

Considering that s∗ is computed (from the image) with
sufficient precision is an important assumption. In vi-
sual servoing, the control law that performs the minimiza-
tion of ∆ is usually handled using a least squares ap-
proach [11][17]. However, when outliers are present in the
measures, a robust estimation is required. M-estimators can
be considered as a more general form of maximum likeli-
hood estimators [16]. They are more general because they
permit the use of different minimization functions not nec-
essarily corresponding to normally distributed data. Many
functions have been proposed in the literature which allow
uncertain measures to be less likely considered and in some
cases completely rejected. In other words, the objective
function is modified to reduce the sensitivity to outliers. The
robust optimization problem is then given by:

∆R = ρ
(
s(r) − s∗

)
, (2)

where ρ(u) is a robust function [16] that grows sub-
quadratically and is monotonically nondecreasing with in-
creasing |u|. Iteratively Re-weighted Least Squares (IRLS)
is a common method of applying the M-estimator. It con-
verts the M-estimation problem into an equivalent weighted
least-squares problem.

To embed robust minimization into visual servoing, a
modification of the control law is required to allow outlier
rejection.

2.2. Robust Control Law

The objective of the control scheme is to minimize the
objective function given in equation (2). This new objective
is incorporated into the control law in the form of a weight
which is given to specify a confidence in each feature loca-
tion. Thus, the task function to be regulated to 0 is defined
as:

e = CD(s(r) − s∗), (3)

• where matrix C is a combination matrix of size m × k
where k is the number of features and m the number of
controlled robot degrees of freedom (6 to reach a unique
desired position). this matrix allows to consider more visual
features than the number of controlled d.o.f.

• D is a diagonal weighting matrix given by

D =




w1 0
. . .

0 wk




The computation of weights wi is described in Section 2.3.

If C and D were constant, the derivative of equation 3)
would be given by:

ė =
∂e

∂s

∂s

∂r

dr

dt
= CDLsv, (4)

v is the camera velocity screw and Ls is called the image
Jacobian [17] or interaction matrix [11] related to s. This
matrix depends on the value of the image features s and
their corresponding depthZ in the scene (which is available
here). If an exponential decrease of the task function e is
specified:

ė = −λe, (5)

where λ is a positive scalar, the following control law is
obtained from equation (4):

v = −λ(CD̂L̂s)
−1e, (6)

where L̂s is a model or an approximation of the real ma-
trix Ls and D̂ a chosen model for D.
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To simplify the control law, C can be chosen to be the
pseudo inverse (D̂L̂s)

+ of D̂L̂s. This gives CD̂L̂s =

(D̂L̂s)
+D̂L̂s = Im, which finally leads to:

v = −λ(D̂L̂s)
+D

(
s(r) − s∗

)
, (7)

If D̂ and L̂s were constant, a sufficient criteria to ensure
global asymptotic stability of the system would be given
by [29]:

(D̂L̂s)
+DLs > 0 (8)

As usual, in image-based visual servoing, it is impossible to
demonstrate the global stability. It is, however, possible to
obtain the local stability for two cases of L̂s and D̂:

• the first case is to use the current value of the weights,
an estimate of the depth at each iteration and the cur-
rent feature:

(D̂L̂s)
+ =

[
DLs(s, Ẑ)

]+
(9)

This choice allows the system to follow, as closely as
possible, the intended behavior (ė = −λe). However,
even when condition (8) is satisfied, only local stability
can be demonstrated since D and Ls are not constant
(refer to (4) that has been used to derive (8)).

• In the second case a constant Jacobian is considered
using the initial depth Zi, the initial value of the fea-
tures si and the first value of the weighting matrix
D̂ = Im .

(D̂L̂s)
+ =

[
Ls(si,Zi)

]+
, (10)

This choice leads to a simpler control law:

v = −λL̂s

+
e = −λLs(si,Zi)

+D
(
s− s∗

)
(11)

and a simpler convergence criteria:

Ls(si,Zi)
+DLs > 0. (12)

Note also that, even if the model (10) is constant, the
evolution of the weights during the realization of the
control law is taken into account through the com-
putation of e, as in (11). Furthermore, the weights
wi(0) could be computed instead of choosing them to
be equal to 1, however, these initial weights may be
equally incorrect. Once again, only the local stability
of the system can be demonstrated since equation (12)
is only satisfied around si. In the results presented in
section 4, we have used this second solution.

Of course it is also necessary to ensure that a sufficient num-
ber of features will not be rejected so that DLs is always of
full rank (6 to estimate the pose).

It has been shown that only local stability can be demon-
strated. This means that the convergence may not be ob-
tained if the error s − s∗ is too large. However,in tracking
applications s and r are obtained from the previous image,
thus the motion between two successive images acquired at
video rate is sufficiently small to ensure the convergence.
In practice it has been observed that the convergence is ob-
tained, in general, when the camera displacement has an
orientation error less that 30o on each axis. Thus, potential
problems only appear for the very first image where the ini-
tial value for r may be too coarse. In the current algorithm
the initialization is done manually.

2.3. Computing confidence

The weights wi, which represent the different elements
of the D matrix and reflect the confidence of each feature,
are usually given by [16]:

wi =
ψ(δi/σ)

δi/σ
, (13)

where ψ
(
δi/σ

)
=

∂ρ
(

δi/σ
)

∂r
(ψ is the influence function)

and δi is the normalized residue given by δi = ∆i −
Med(∆) (where Med(∆) is the median operator).

Of the various loss and corresponding influence func-
tions that exist in the literature Tukey’s hard re-descending
function is considered. Tukey’s function completely rejects
outliers and gives them a zero weight. This is of interest
in tracking applications so that a detected outlier has no ef-
fect on the virtual camera motion. This influence function
is given by:

ψ(u) =

{
u(C2 − u2)2 , if |u| ≤ C
0 , else,

(14)

where the proportionality factor for Tukey’s function is
C = 4.6851 and represents 95% efficiency in the case of
Gaussian Noise.

In order to obtain a robust objective function, a value
describing the certainty of the measures is required. The
scale σ is the standard deviation of the inlier data and is an
important value for the efficiency of the method. In non-
linear regression for pose computation, this estimate of the
scale can vary dramatically during convergence. Scale may
be manually chosen as a tuning variable or may be estimated
online. One robust statistic used to estimate scale is the
Median Absolute Deviation (MAD), given by:

σ̂ =
1

Φ−1(0.75)
Medi(|δi −Medj(δj)|). (15)

where Φ() is the cumulative normal distribution function
and 1

Φ−1(0.75) = 1.48 represents one standard deviation
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of the normal distribution. To date, a convergence proof
for non-linear regression using the MAD only exists if it
is calculated once as an ancillary scale estimate due to the
median’s lack of asymptotic properties [15]. However, al-
though convergence has yet to be proved, experimental re-
sults show that recomputing the MAD at each iteration gives
better results (see Section 4).

3. Visual features

3.1. Interaction matrices

Any kind of geometrical feature can be considered
within the proposed control law as soon as it is possible to
compute its corresponding interaction matrix Ls. In [11], a
general framework to compute Ls is proposed. Indeed it is
possible to compute the pose from a large set of image in-
formation (points, lines, circles, quadratics, distances, etc...)
within the same framework. It is also easy to show that com-
bining different features can be achieved by adding features
to vector s and by “stacking” the corresponding interaction
matrices. Furthermore if the number or the nature of visual
features is modified over time, the interaction matrix Ls and
the vector error s is easily modified consequently. In [25],
classical geometrical features (point, straight line, circle and
cylinder) have been considered.

In this paper, a new distance feature ‘s’ is considered
as a set of distances between local point features obtained
from a fast image processing step and the contours of a more
global CAD model. In this case the desired feature ’s∗’ is
considered zero. The assumption is made that the contours
of the object in the image can be described as piecewise lin-
ear segments or portions of ellipses. All distances are then
treated according to their corresponding segment or ellipse.

Case of a distance to a line. The derivation of the interac-
tion matrix that links the variation of the distance between
a fixed point and a moving line to the virtual camera mo-
tion is now given. In Figure 1 p is the tracked point feature
position and l(r) is the current line feature position.

The position of the line is given by its polar coordinates
representation,

x cos θ + y sin θ = ρ, ∀(x, y) ∈ l(r), (16)

The distance between point p and line l(r) can be charac-
terized by the distance d⊥ perpendicular to the line. In other
words the distance parallel to the segment does not hold any
useful information unless a correspondence exists between
a point on the line and p (which is not the case). Thus the
distance feature from a line is given by:

dl = d⊥(p, l(r)) = ρ(l(r)) − ρd, (17)
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Figure 1. Distance of a point to a line

where
ρd = xd cos θ + ydsinθ, (18)

with xd and yd being the coordinates of the tracked point.
Thus,

ḋl = ρ̇− ρ̇d = ρ̇+ αθ̇, (19)

where α = xd sin θ − yd cos θ. Deduction from (19) gives
Ldl

= Lρ+αLθ. The interaction matrix related to dl can be
thus derived from the interaction matrix related to a straight
line given by (see [11] for its complete derivation):

Lθ=
(
λθcosθ λθsinθ −λθρ ρcos θ −ρsin θ −1

)

Lρ=
(
λρcosθ λρsinθ −λρρ (1+ρ2) sinθ −(1+ρ2) cosθ 0

)

(20)
where λθ = (A2 sin θ −B2 cos θ)/D2, λρ = (A2ρ cos θ +
B2ρ sin θ + C2)/D2, and A2X + B2Y + C2Z +D2 = 0
is the equation of a 3D plane which the line belongs to.

From (19) and (20) the following is obtained:

Ldl
=




λdl
cos θ

λdl
sin θ

−λdl
ρ

(1 + ρ2) sin θ − αρ cos θ
−(1 + ρ2) cos θ − αρ sin θ

−α




T

, (21)

where λdl
= λρ + αλθ.

Let it be noted that the case of a distance between a point
and the projection of a cylinder is very similar to this case
and will be left to the reader.

Case of a distance to an ellipse. Here the derivation
of the interaction matrix is given which relates the dis-
tance between a fixed point p and an ellipse that results
from the projection in the image plane of a moving cir-
cle or a moving sphere. If the ellipse is parameterized by
its center of gravity and by the moments of order 2 (that
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is (xg , yg, µ02, µ20, µ11)), the distance de between a point
p(x, y) and an ellipse is defined by the ellipse equation:

de = µ02x
2 + µ20y

2 − 2µ11xy + 2(µ11yg − µ02xg)x
+2(µ11xg − µ20yg)y + µ02x

2
g + µ20y

2
g

−2µ11xgyg + µ2
11 − µ20µ02

(22)
The variation the distance due to the variation of the ellipse
parameters are thus given by:

ḋe =




2(µ11(y − yg) + µ02(xg − x))
2(µ20(yg − y) + µ11(x− xg))
((y − yg)

2 − µ02)
2(yg(x + xg) + xgy + µ11)
((x − xg)

2 − µ20)




T

︸ ︷︷ ︸
Lde




ẋg

ẏg

˙µ20

˙µ11

˙µ02




= Lde
Lcv (23)

where Lc is the interaction matrix related to an ellipse and
is given in [11].

3.2. Tracking visual features

When dealing with image processing, the normal dis-
placements are evaluated along the projection of the object
model contours using the spatio-temporal Moving Edges al-
gorithm (ME) [4]. One of the advantages of the ME method
is that it does not require any prior edge extraction. Only
point coordinates and image intensities are manipulated.
For convenience, the word “contour” is used to refer to the
list of tracked points. The ME algorithm can be imple-
mented with convolution efficiency, and leads to real-time
computation [4, 24]. The process consists in searching for
the “correspondent” pt+1 in image It+1 of each point pt. A
1D search interval {Qj , j ∈ [−J, J ]} is determined in the
direction δ of the normal to the contour (see Figure 2). For
each point pt and for each entire position Qj lying in the
direction δ a criterion corresponding to the square root of
a log-likelihood ratio ζj is computed. This ratio is nothing
but the absolute sum of the convolution values, computed
at pt and Qj , using a pre-determined mask Mδ function of
the orientation of the contour. This improves accuracy and
subsequent efficiency of the tracking by only finding edges
with the same orientation and not all edges in the path.

The new position pt+1 is given by:

Qj∗ = arg max
j∈[−J,J]

ζj with ζj =| It
ν(pt)∗Mδ+I

t+1
ν(Qj)

∗Mδ |

ν(.) is the neighborhood of the considered pixel. At this
step, a list of k pixels exists from which distance sdl or sde

to their corresponding 3D model feature projection can be
computed. This is performed for each new frame and never
requires the extraction of new contours.

(a) (b)

Qj+1

Qj+n

Qj

δ∗

δ
pt

l(r)t l(r)t

pt

pt+1

100    100    100

0        0        0

100    100      0

(d)

(c)

 100      0    −100

−100 −100   −100

0       −100 −100

Figure 2. Determining points position in the
next image using the ME algorithm: (a) calcu-
lating the normal at sample points, (b) sam-
pling along the normal (c-d) 2 out of 180 3x3
predetermined masks (in practice 7x7 masks
are used) (c) 180o (d) 45o.

3.3. Uncertainty Propagation

The local ME method described in Section 3.2 deter-
mines points along the normal of a contour using a maxi-
mum likelihood approach. The decision as to whether or
not a spatio-temporal edge exists is made by thresholding
the local likelihood value. ζj∗ is chosen to be an edge pro-
viding that it is greater than a threshold λ. This threshold is
usually chosen manually and it depends on both the contrast
of the contours in the image as well as the size of the mask
being applied. A method is presented here to propagate the
local likelihood of the points to the global likelihood of the
pose. Assuming that the local measure of uncertainty ζj∗

is independent of the global measure of uncertainty wi, the
weights are thus given by:

wpi
= wi ∗ ζj∗ , (24)

wherewpi
is the propagated weight. Matrix D is then given

by

D =




wp1
0

. . .
0 wpn




This has the effect of giving the most certainty to strong
contours in terms of the local likelihood and amongst those
correspondences the M-estimator converges upon those
which conform globally to the 3D shape of the object.
Effectively the robust estimator chooses which correspon-
dences should be considered instead of a manually chosen
threshold. This is advantageous when different scenes are
considered along with different size masks.
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4. Experimental results

In the four experiments presented,“real” images are ac-
quired using a commercial digital camera. In such exper-
iments, the image processing is potentially very complex.
Indeed extracting and tracking reliable points in real envi-
ronment is a non trivial issue. The use of more complex
features such as the distance to the projection of 3D circles,
lines, and cylinders is demonstrated. In all experiments, the
distances are computed using the Moving Edges algorithm
previously described. Tracking is always performed at be-
low frame rate.

Tracking in an indoor environment. In the first experi-
ment the result of the tracking of four 3D circles is shown.
This long sequence (more than 2000 images) contains mul-
tiple occlusions of some of these circles. Although the im-
ages are quite simple in this experiment, if no robust estima-
tion is considered tracking fails after a few images because
the minimization process has to deal with miss-tracking and
problems due to occlusion.

Figure 3. Tracking 3D circles. Four circles
are tracked along a 2000 images sequence.
This sequence features multiple occlusions
of some of these circles.

In the second experiment an object whose model is com-
posed of a cylinder, a circle and two straight lines is consid-
ered (See Figure 4). This illustrates the capabilities of our
algorithm to consider various features within the same min-
imization process. This long sequence features numerous
occlusions.

Tracking in an outdoor environment In the third exper-
iment (see Figure 5), an outdoor scene is considered. Here,
distance to the projection of a cylinder and to two straight
lines are used to compute the pose. Despite very noisy im-
ages (wind in the trees, multiple occlusions, etc.) track-
ing is achieved along a 1400 image sequence. The images
display the tracked lines and cylinder limbs as well as 3D
information inserted after the pose computation (the refer-
ence frame and the projection of the cylinder and lines (in
blue)). In Figure 6 this approach was applied to a real-time
augmented reality application. These images are extracted
from the sequence after the insertion of virtual objects. Due
to both the introduction of the robust estimation and to the

Figure 4. Tracking considering a circle, a
cylinder and two straight lines and the result-
ing AR sequence.

high redundancy of visual features, visual alignment is sat-
isfactory to the human eye.

An augmented reality application for system mainte-
nance In this example a scenario is given for guided main-
tenance of an airconditioning system. Many lines with dif-
ferent contrasts along with two circles are considered in the
pose computation. Large images of size 768x576 pixels are
used in the tracking and real-time performance is still ob-
tained The scenario deals with heavy occlusions and the ef-
fects of video interlacing. In the images displayed in Fig-
ure 8a, red dots correspond to inlier data, white dots corre-
spond to data rejected by the ME algorithm and green dots
correspond to the outliers rejected by M-estimation. For-
ward projection of the model appears in blue. On Figure 8c,
one can see that most of the dots on the right part of the
object are correctly detected as outliers. Despite this large
occlusion tracking is correctly handled. The images in Fig-
ure 8b display the results of a simple AR scenario.

Tracking in a 3D visual servoing experiment. A posi-
tioning task using a CCD camera mounted on the end effec-
tor of a six d.o.f robot has been considered. This application
requires both a fast and reliable tracking algorithm. From
an initial position, the robot has to reach a desired position
expressed as a desired position of the object in the image
(depicted in blue in the images). The object of interest in
this experiment was a micro-controller device. To prove the

42



Figure 5. Tracking in an outdoor environ-
ment. Despite multiple occlusions and dis-
turbances, tracking is still very reliable and
handled in real-time.

Figure 6. Tracking considering a cylinder and
two straight lines with application to aug-
mented reality.

robustness of the algorithm, the micro-controller was placed
in a highly textured environment as shown in Fig. 7. Track-
ing and positioning tasks were correctly achieved. Images
were acquired and processed at video rate (25Hz). Multiple
temporary and partial occlusions by an hand and various
tools as well as modification of the lighting conditions were
imposed during the realization of the positioning task.

5. Conclusion and Future Perspectives

This paper has presented an accurate and efficient real-
time AR algorithm that is robust to many sources of external
error. Advantages of the virtual visual servoing formula-
tion are demonstrated by considering a wide range of per-
formance factors. Notably the accuracy, efficiency, stabil-
ity, and robustness issues have been addressed and demon-
strated to perform in highly complex scenes. In particular,
the interaction matrices that link the virtual camera veloc-
ity to the variation of a distance in the image were deter-

a b

c d

Figure 7. Tracking in complex environment
within a classical visual servoing experi-
ments: Images are acquired and processed
at video rate (25Hz). Blue : the desired po-
sition defined by the user. Green : position
measured after pose calculation. (a) first im-
age initialized by hand, (b) partial occlusion
with hand, (c) lighting variation, (d) final im-
age with various occlusions

mined. The generality of the formulation was shown by de-
termining distance features for more complex objects such
as straight lines, spheres and cylinders. A new robust con-
trol law that integrates an M-estimator has been proposed.
The resulting pose computation algorithm is thus able to
deal efficiently with incorrectly tracked features that usually
contribute to a compound effect which degrades the system
until failure. Experimental results obtained using several
cameras, lens, and environments were presented. The algo-
rithm has been tested on various images sequences and for
various applications (visual servoing, augmented reality,...)
which demonstrates a real usability of this approach. Each
time tracking is handled in real-time.

In perspective, the algorithm presented here has several
limitations that need to be addressed in the future. Firstly it
relies on a coarse manual localization of 4 points to initial-
ize the pose. The experimental cone of convergence is about
30o and the maximum speed of the camera or the object
relies on a trade-off between real-time calculation and the
search distance normal to the contour. With current com-
puting power this distance is very large (10 to 15 pixels).
A lack of contrast around contours and too large occlusions
are classical failure modes. Finally, this method uses a CAD
model which is approximately created by hand and a piece-
wise parametric representation of the object. Future work
will be devoted to addressing these issues by considering
deformable objects and the reconstruction of parametric ob-
jects models.
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a b

c d

e f

Figure 8. Tracking and AR for a constructed maintenance scenario. Even with heavy occlusion and
disturbances, tracking is still very reliable and handled in real-time. (a-d) Tracking results (e-f) AR
sequences corresponding to image a (resp c)
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In this study the spatio-temporal aspect of the tracking
process has not been considered in depth. Indeed robust-
ness can also be handled from one time-step to another (as
is possible in a Bayesian framework, such as with the Ex-
tented Kalman Filter e.g. [27] or a particle filter [18]). The
measurements provided by our algorithm could then be-
come part of the measurement model for such approach.
Such filters may be considered in a future implementation
of our system.
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