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ABSTRACT

We investigate a new registration method for ultrasound vol-
umes relying on on a statistical texture-based similarity mea-
sure. Texture information is given by spatial Gabor filters
and represented by statistical kernel-based distributions. The
registration similarity measure is then defined as a prob-
abilistic distance, derived from Bhattacharyya coefficient,
between two statistical distributions. Given this similarity
measure, parametric ultrasound image registration is stated
as a robust minimization issue. We also exploit frequency
properties of spatial Gabor filters to propose a multiresolu-
tion approach to perform this minimization. We provide a
preliminary evaluation of the new registration technique on
clinical data.

1. INTRODUCTION

3D Registration of monomodality medical images is of key
interest to visualize and quantify temporal changes in anatomy
and physiology. Image registration has more particularly
considered for brain imaging issues. However, whereas ul-
trasound imagery is well adapted for other body parts (throat,
abdomen, heart,...), only few studies dealt with ultrasound
image registration, since this type of image is of weak inter-
est for brain imaging. Besides, the extension of registration
techniques developed in the latter context is not straight-
forward due to low-quality ultrasound images for nonrigid
organs. In addition, ultrasound is intrinsically a 2D mea-
sure. These different factors undoubtedly explain the lack
of investigation concerning ultrasound image registration.

As it is mostly non-invasive and has a real time capabil-
ity and a relatively low cost nature, 2D ultrasound is pop-
ular. Its major drawback is its weak capability of issuing
quantitative accurate morphometric information [1]. In fact,
conventional ultrasound exams are limited by 2D viewing,
and follow-up studies are then not easily reproducible. 3D
ultrasound imaging overcomes these limitations. In addi-
tion, it facilitates extensive investigation and allows accu-
rate measurements of organ volumes.

The registration issue is to find the best alignment be-
tween two volumes. One of the volumes is chosen as the ref-
erence volume, and the other is transformed iteratively until
the optimal alignment between the two data sets is found.
Registration is required by ultrasound examinations for two
main reasons. First, the combination of several volumes,
called spatial compounding, can significantly improve the
contrast-to-speckle noise ratio. Second, the registration of
different ultrasound data set permits the comparison of se-
rial examinations performed on the same patient.

Medical imaging techniques for image-based registra-
tion mainly rely on internal anatomic point, contour and
surface landmarks, or voxel similarity. Internal landmark
based registration techniques are limited since they require
a specific segmentation. Contour and surface based registra-
tion methods also rely on accurate segmentation of anatom-
ical structures. However, due to poor quality of ultrasound
images, segmentation of ultrasound volumes is a very dif-
ficult task. Hence, voxel similarity-based methods seem to
be more suited to ultrasound volume registration. As they
require no segmentation, they are expected to be fully auto-
matic.

A few voxel similarity-based methods have been pro-
posed for ultrasound registration. Three main similarity mea-
sures were used: mutual information measure ([2]), correla-
tion coefficient on intensity values [3] or on gradient images
[4], and intensity values using optical flow hypothesis [5].
While ultrasound images are of relatively poor quality, they
are highly textured. Besides, texture information has been
proven to characterize ultrasound images, as highlighted for
ultrasound image segmentation [6, 7].

As a consequence, it is highly attractive to consider on
texture information for ultrasound image registration. In
this paper, we investigate such an approach. Texture infor-
mation is handled by means of spatial Gabor filters, which
were shown to provide an accurate texture-characterization
for texture classification and segmentation [8, 9]. Texture
information is rather a region feature than a pixel one. Thus,
texture characteristics supplied by Gabor filters will be ana-
lyzed using local kernel-based density estimation [10]. Rigid



ultrasound image registration is then stated as a robust mul-
tiresolultion minimization issue relying on a statistical simi-
larity measure defined between the considered texture-based
probabilistic distributions.

The paper is organized as follows. Section 2 presents
texture features extracted by spatial Gabor filters. Section 3
introduces the statistical similarity measure exploiting non-
parametric kernel density estimation. The registration algo-
rithm is described in Section 4. Experiments are given in
Section 5, and concluding remarks in Section 6 .

2. TEXTURE FEATURE EXTRACTION

In order to extract texture features from ultrasound volumes,
we use a dyadic Gabor filter bank ([9, 8]). Such texture fea-
tures were successfully used for ultrasound image segmen-
tation in [7]. The impulse response of an even-symmetric
Gabor filter is given by:
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2 }, θ and φ are the rotation angles around
the z and y axes respectively.

3. SIMILARITY MEASURE

We present in this section the statistical texture-based sim-
ilarity measure exploited to formulate the registration issue
between the two ultrasound volumes. We will in particular
rely on kernel-based density estimator and on the Battachar-
rya as investigated by [10] for color image segmentation and
filtering.

3.1. Multivariate Kernel Density Estimate

Let {xi}i be a set of n points in Rd, a d-dimensional space.
We denote by f̂(x) the multivariate density kernel estimate
computed at point x as follows:
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where K(x) is the kernel and h the window radius. The op-
timal kernel yielding minimal mean integrated square error

is the multivariate Epanechnikov kernel. Its expression is
given by:

KE(x) =

{
1
2 c−1

d (d + 2)(1 − ‖x‖2) if ‖x‖ < 1
0 otherwise

(3)

where cd is the volume of the unit d-dimensional sphere.

3.2. Texture Representation

As stated previously, texture is rather a region information.
Thus, we exploit kernel density estimation to represent at a
given point texture information provided by spatial Gabor
filters. Let {ri}i=1,··· ,nh

be the voxel locations centered
at r in a ultrasound volume. Given a texture value u, the
associate probability in voxel r is given by:

p̂u(r) = Ch

nh∑
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K
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r − ri

h

)
δ(u − V (ri)) (4)

where Ch is the normalization constant, δ is the Kronecker
delta function. Texture value u is in fact a vector of tex-
ture feature values, V (ri) is the texture feature vector for
the voxel ri. The resulting density p̂ is the discrete esti-
mated density using an histogram formulation. The further
the voxels from the considered voxel r, the lower weights
they are assigned by kernel K. This property increases the
robustness of the estimation.

3.3. Bhattacharrya Coefficient

Given the evaluation of statistical texture-based distributions,
we define a probabilistic similarity measure between regis-
tered voxels using the the Bhattacharyya coefficient. This
quantity is widely used, in particular for computer vision
applications [10], to evaluate distance between probabilistic
distributions. Given such two distributions p and q, for the
voxels r and r

′ respectively, the Bhattacharyya coefficient
ρ(p(r), q(r′)) is defined as:

ρ(p(r), q(r′)) =

∫ √
pz(r)qz(r′) dz (5)

where z is the feature representing here texture information.
The larger the coefficient, the more similar the two distribu-
tions.

Spatial Gabor filters provide at each voxel a texture fea-
ture vector of high dimension (typically, more than 60). Since
kernel-based estimator are known to fail for high-dimensional
space, we assume texture features at different scales and ori-
entations are statistically independent. This assumption is
also widely used when Gabor features are exploited for seg-
mentation or classification purposes. Given this assumption,



the global texture-based density is written as:

pz(r) =

ng∏

i=1

pzi
(r) (6)

where ng is the size of a texture feature vector, zi is the ieme

response given by the Gabor filter bank. Thus, each Ga-
bor texture feature is analyzed separately, and associated to
one-dimensional probabilistic density. The Bhattacharyya
coefficient is now given by:

ρ(p(r), q(r′)) =

ng∏

i=1

ρ(pzi
(r), qzi

(r′)) (7)

From the Bhattacharyya coefficient, the similarity mea-
sure between two voxels r and r

′ is finally defined as:

d(r, r′) = 1 − ρ(p(r), q(r′)) (8)

This similarity measure depicts a rich texture information
in a well-formalized probabilistic framework, and will be
straightforwardly exploited for rigid ultrasound registration
as explained in the following Section.

4. ROBUST RIGID REGISTRATION

In this section, we present our robust multiresolution frame-
work for rigid ultrasound registration. We first introduce the
parametric deformation model to be estimated. We will then
state the registration issue as a robust minimization based on
the statistical texture-based similarity measure. We will fi-
nally discuss its implementation within an incremental frame-
work.

4.1. Parametric Deformation Model

We consider a generalized affine transformation involving
the combination of four different transformations: scaling,
shearing, rotation and translation. We use an affine para-
metric model with 12 parameters:

vθ(r) = A(r)θ (9)

where vθ(r) is the displacement vector for the voxel r =
(xr , yr, zr) :

vθ(r) =




a0 + a3xr + a4yr + a5zr

a1 + a6xr + a7yr + a8zr

a2 + a9xr + a10yr + a11zr




and θ = (a0, · · · , a11)
T , a vector of 12 parameters which

have to be estimated.

4.2. Robust formulation

Solving for the optimal alignment between two 3D ultra-
sound volumes is stated as the recovery of the model pa-
rameters θ which minimizes a distance computed over the
whole set of voxels of the transformed volume. The con-
sidered global distance is simply taken as the sum of the lo-
cal probabilistic texture-based similarity measure introduce
previously. In addition, M-estimators are considered to han-
dle outliers during the minimization scheme ([5]). More
precisely, the registration issue comes to solve for:

θ̂ = arg min
θ

∑

r

α (1 − ρ(p(r), q(r + vθ(r))) (10)

where α is the M-estimator. Robust M-estimation is equiva-
lently formulated as an alternate weighted least-square min-
imization:

θ̂ = arg min
θ

∑

r

wr‖1− ρ(p(r), q(r + vθ(r))‖
2 (11)

wr is an auxiliary variable acting as “weight”, computed
from the influence function β(x) = α′(x)/x associated to
considered M-estimator α ([5]). The M-estimation involves
two steps. First, the computation of the robust weights for
given residual errors, and, secondly, the weighted least-square
minimization for given weights. In our experiments, we ex-
ploit the Cauchy estimator as M-estimator.

4.3. Incremental Estimation

We adopt an incremental strategy to solve for each weighted
least-square minimization. Given a current estimate θ̂k, it
comes to estimate a small increment such that: θ = θ̂k +
∆θk. This incremental strategy then involves a lineariza-
tion of the quadratic criterion around the current solution in
order to derive a close-form solution of the increment esti-
mate.

More precisely, the linearization of the Bhattacharrya
coefficient is given by:

ρ(p(r), q(r + vθ+∆θ(r)) = ρ(p(r), q(r + vθ(r)) + BT .∆θ
(12)

where B = dρ(p(r),q(r+vθ+∆θ(r))
d∆θ

|∆θ=0. After few manipu-
lations, the incremental solution of (11) is:
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This incremental minimization is stopped when the incre-
ment estimate is beyond a given threshold.

In addition, we exploit the characteristics of Gabor fea-
tures to conduct this robust registration within a multireso-
lution framework. In fact, the minimization is initiated with
low resolution Gabor features, while higher resolution Ga-
bor features are incrementally introduced during the mini-
mization.

5. EXPERIMENTS

Registration was applied to clinical ultrasound volumes of
carotid. Affine transformations have been applied on these
volumes. We have created an artificially deformed volume
by using a Thin Plate Spline deformation. This produces
a global smooth deformation which simulate non-rigid mo-
tion in tissues. Thus, the proposed method can be evaluated
qualitatively and quantitatively.

1) 2)

3) 4)

Fig. 1. Carotid Ultrasound Volumes. 1) original volume,
2) deformed volume, 3) difference between original and de-
formed volumes, 4) difference between original and regis-
tered volumes.

To evaluate the preliminary results, we compute the mean
error (e1, e2) concerning the translation vector and the ma-
trix including rotation, shearing and scaling transformations
using the Frobenius norm: (e1, e2) = (0.47, 0.12). More-
over, as a qualitative measure, the difference image between
the original volume and the registered one has been chosen
(Figure 1). More experiments have to be done to validate
the proposed method.

6. CONCLUSION

We have presented a new registration algorithm for ultra-
sound volumes that includes texture information using a sta-

tistical similarity measure. Texture feature vectors obtained
with a Gabor filter bank, have been represented by kernel-
based distributions. A robust parametric registration algo-
rithm have been proposed, using also the multiresolution
properties of Gabor filters. Preliminary promising results
have been presented. Further investigations are needed, more
experiments will be done to validate the proposed registra-
tion method.
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