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Abstract - The area of search theory can be divided 
broadly on two parts, one-sided search and two-sided [7]. 
Thus, in this paper; we deal with a two-sided search games 
played by a searcher and a mobile target with a rather 
simple type of motion called the conditionally determin- 
istic motion (CDM). Here, the target motion takes place 
on a network and, more precisely, on a set of possible paths. 

After a general introduction of two-person zero-sum 
games, we examine various formulations of a search game 
for a target moving across a network. Then, this approach 
is extended to interdiction games and multiple detections. 
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1 Introduction 
Search theory is the discipline that treats the problem 

of how best to search for an object when the amount of 
searching efforts is limited and only probabilities of the 
object’s possible position are given. A search (theory) 
problem is characterized by three pieces of data[7]: (i) 
the probabilities of the searched object (the ”target”) 
being in various possible locations; (ii) the local detection 
probability that a particular amount of local search effort 
could detect the target; (iii) the total amount of searching 
effort available. The problem is to find the optimal distri- 
bution of this total effort that maximizes the probability of 
detection[7]. 

The growth of the search theory literature has been 
chronicled in [3]. For instance, the last item (search 
games) is the primary focus of recent researches, including 
numerous sub-domains such as : mobile evaders, avoiding 
target, ambush games, inspection games and tactical 
games. For moving target problems, decisive progress have 
been made in developing search strategies that maximize 
the probability of detecting the (moving) target within 

a fixed amount of time. However, although the general 
formalism of search theory will be used subsequently, we 
shall study radically different problems. 

The area of search theory can be divided broadly in 
two parts, one-sided search and two-sided[2],[ 13. Even 
if Markovianity is a common assumption for modelling 
target motion, it is not so realistic for many situations. To 
a large extend, this is adapted to our ignorance about the 
target behavior. However, for many situations, we can have 
a more precise description of the target possibilities[2],[ 11. 
Thus, in this paper, we deal with a two-sided search games 
played by a searcher and a mobile target with a rather 
simple type of motion called the conditionally determin- 
istic motion (CDM). Here, the target motion takes place 
on a network and, more precisely, on a set of possible paths. 

After a general introduction of two-person zero-sum 
games, we examine various formulations of a search game 
for a target moving across a network [ 5 ] ,  [4]. Then, this 
approach is extended to interdiction games [8] and multiple 
detections [5]. 

2 Search Games 
2.1 Two-Person Zero Sum Games 

Games are the natural framework for avoiding the need 
of a strong prior about the target location; i.e. both tar- 
get and searcher have (randomized) strategies. In this set- 
ting, we denote aij the cost for player I to choose row i 
while player 2 chooses column j .  A two-person zero-sum 
game (denoted tpzg for the sequel) is a matrix game. If 
in a matrix game A = (aij) , i  = l...m , j  = l...n, 
there exists a couple ( i * , j * )  s.t. V i and Vj, we have 
aij. 5 apj. 5 a p j ,  then the couple ( i * , j * )  is a saddle 
point for a pure strategy and we have: 

maxminaij = minmaxaij  = ai.j*. 
i j  j i  
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A mixed strategy for the player 1 is a m-uple denoted 
x = (x1,x2, ..., xm) where the {Zj} are positive and sum 
to 1. A mixed strategy for the player 2 is a n-uple denoted 
9 = ( y i , ~ ~ ,  ..., Yn) with vj 2 0 V j  and Cj y j  = 1. The 
meaning of the x vector is: player 1 chooses the pure strate- 
gy i with the probability xi. Similarly, the player 2 chooses 
the pure strategy j with the probability y j ;  total cost be- 

ing xiyjaij = xTAy. It has been proven (Von Neu- 

man) that all the matrix games have a saddle point for mixed 
strategies; i.e. there always exists vectors x and y such that: 

maxminxTAy = minmaxxTAy = ( x * ) ~ A Y *  = v , 
xi 2 0 a n d c x i  = 1 ; xi 3 0 a n d z g j  = 1 , 

m n  

i=l j=1 

X Y  Y Z  

a j 

(1) 
where v is called the game value. Equivalently, a solution 
{x*, y*} is characterized by: 

The first condition sets that x* assures at least 21 what- 
ever the pure straregy of player 2 is; idem for the second 
one. Every matrix game can be described (and solved) by 
the following linear optimization problem (player 1, primal 
problem) : 

max 20 7 
(21, ..., 2mJO)  

with the constraints: 

The dual of this linear programming problem is the play- 
er 2 point of view, i.e.: 

min Yo , 
(Y1 ,...,Ym 4/00) I, suchthat: , 

(4) 

Both problems give the same value v. 

2.2 A search game for a target moving across 
a network 

2.2.1 Simple constraints 
Here, we are dealing with the detection of a target 

whose motion is constrained to be a path in a network. 

The space of possible target positions is made of cells 
indexed by j ;  j = 1,2, ..., m. Time is also discretized 
in n periods. A target path w = { j ( t ) ,  t = 1,2, ..., n}  
is defined as a sequence of cell indexes. Thus, j ( t )  is 
the cell occupied by the target at period t. The set of 
possible paths is known from the searcher. The target can 
choose any feasible path in the network. On another hand, 
the search effort is bounded above at each period. So, 
the aim of the searcher is to maximize the probability of 
detecting the target within the search constraints; while for 
the target it is to minimize the probability to be detected [6] .  

The number K of possible paths is assumed to be finite. 
Let Tt (U) the cell where the target is at period t and the path 
w having been selected by the target. Furthermore, if the 
target remains undetected at time n, it is the winner of the 
game. Here, the total search effort {C(t) t = 1,2, ..., n }  
is indefinetely divisible. The search effort allocated to cell 
j at time t is denoted cp(j, t ) .  If the target is in the cell j at 
time t ,  the conditional probability of detection is given by' 

f(j, cp(j, t ) )  = 1 - exp [ -4 j )cp( j ,  t )  1 Y ( 5 )  

where a( j )  is the visibility coefficient. The search poli- 
cy @ is defined by the spatio-temporal search efforts, i.e. 
9 = {cp(j, t ) } .  t .  The parameters {C( t )} ,  {a( j ) }  and the 
set of paths (i E R} are known at the beginning of the 
game. Then, we denote g(w, a) the non-detection proba- 
bility when the target uses the path w (target) and the search 
efforts 9 (searcher) are in use : 

r 1 

The function g(w, 9) is strictly convex w.r.t. the com- 
ponents (9 = { ~ ( j , t ) } ~ , ~ ) .  Another fundamental point is 
that the search efforts cp(Tt(w),t) act separately. There- 
fore, the optimal search strategy is unique and it is a pure 
strategy. Now, we define the mixed target strategy by 
P = {p, : w E Q } ,  so that we have to consider the func- 
tional G(P, a) defined as : 

GP, @) = PL'J 9(w,  @) 9 

W € R  

and the optimization problem we have to deal with is : 

minmax g(P, @) = maxmin g(P, @) = v , 
under the constraints : 
9 P  P 9  

c d j ,  t )  I C(t) vt and c p ( i  t )  2 0 ,Vt v j  E E , 
3 

p, = 1 andp, 2 OVw E R . I. (7) 

'This density is arbitrary but motivated by operational considerations. 
Funhermore, it can be replaced by any concave or pseudo-concave func- 
tional 
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- d t " l  
--hmy 
--hnro *l.\' ' ' ' ' ' ' 1 '  -- 1 Let P* = {p:}  and (resp.) ** = {cp*(j , t)} be the 

optimal strategies of the target and (resp.) the searcher 

essary conditions are straightforwardly deduced from the 
and denote ,UO = maxg(w, @*). Then the following nec- 

2 6 -  \, 
2.2 - '\ 

WEG? 

where O( j ,  t )  = {w T t ( w )  = j }  and At is a Lagrange 
multiplier and while the game value is G = PO. We remark 
that PO can be also characterized by : 

2 -log(p) y v w  E R 

(9)  

t= 1 

0.4000 

0.1000 

0.4000 which has the definite advantage to be linear w.r.t. the op- 
timization parameters. So, denoting z = -log(p), the op- 
timal search strategy can be obtained as the solution of the 
following linear programming LP5 problem : 

t=2 

0 

0.3000 

0 

cp* ( j ,  t )  

Thus the searcher strategy can be efficiently obtained 
by solving LP5 w.r.t. [z; ( y ~ ( j , t ) } ~ , ~ ] ,  by means of the 
Simplex algorithm. The target strategy can be obtained 
as the solution of a linear system derived from 8 and 9. 
Examples will be provided later. 

Some examples 

Here a simple game with 3 cells (m=3), 3 periods (n=3) 
and 4 paths (K=4) is considered. Paths are defined by : 
w1 = ( l , l , l ) ,  w2 = (1,2,2), w3 = (2,2,1), w4 = 
(3,212).  
The constraints on the temporal amounts of search effort 
are : 

, C ( l )  = 0.9, C(2) = 0.3, C(3) = 0.6 
while a( j )  = 1 V j .  

j= 1 

j=2 

j=3 
- 

w1 I w2 I w3 

t=3 

0.4500 

0.1500 

0 

I w4 il-i 0.1667 0.1667 0.3333 0.3333 
I I I 

I P: I 
We remark that the searcher concentrates search efforts 

on the target path crossing points. Let us now detail the de- 
termination of the target strategy. From the KKT conditions 
we deduce 

P,, + P,, - W P  = 0 for: j = 1 ,t = 1 , 
P,, + P,, - X3/P = 0 f o r : j = l  , t = 3 ,  
P,, - A l / P  = 0 for:  j = 2 ,t = 1 ,  
p,, + p,, + p,, - X2/p = 0 for : j = 2 , t = 2 , 
P,, + P,, - X3/P = 0 for: , j  = 2 t = 3 ,  
P,, - A l / P  = 0 for: j = 3 ,t = 1 , 
P,,+P,, +P,, +P,, = 1 * 

(1 1) 

thus the target strategy is obtained by solving the above 
linear system. 

We consider now a more complicated game: i.e. 4 cells 
(m=4), 6 periods (n=6) and 5 paths (K=5) : 
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W 1  = (3,4,4,3,4,3), W2 = (3,3,3,4,3,3),  
W3 = (3,2,2,3,2,3), W4 = (3,211,1,2, 3), 

Again we assume that a( j )  = 1 V j  and that the following 
constraints hold C(1) = 0.8, C(2) = 0.7, C(3) = 0.9, 
C(4) = 0.4, C(5) = 0.6 et C(6) = 0.5 . 

U5 = (3,4,3,2,3,3). 

Figure 2: The network 

The game value is 0.2307 and searcher and target strate- 
gies are given by the following tables : 

2.2.2 

j=2 0.4667 

0 

Generalized constraints 

In the previous problem, the amount of search effort at 
period t is bounded above by C(t) .  However, three types of 
constraints denoted Ci have a natural interpretation in this 
context, namely: 

Note that this problem has a specific meaning only if 
x C ( t )  > D and again can be solved by means of the 
t 

following linear programming algorithm LP6 : 

’ maximize z 
under the constraints : 
C 4 T t ( w ) ) c p ( T t ( W ) )  - t L 0 E , 
Ccp(j1t) 5 Ct vt 1 (13) 
j  
CCcp(j,t) 5 D 1 

t j  
, cp(j,t) 2 0 V.i v t .  

Results 
We consider again the simple game with 3 cells (m=3), 3 

periods (n=3) and 4 paths (K=4) : 

(3,2,2) (a( j )  = 1 Vj). The cell constraints are C(1) = 
0.9, C(2) = 0.3, C(3) = 0.6, while the following contraint 
is added cp(j, t )  I 1.5. The game value is 0.4066 and 

W 1  = (1,1, l), U2 = (1,2,2), w 3  = (2,2,1), w 4  = 

t j  
the optimal search and target strategies are : 

3 

0.4500 

0.1500 

0 

U 4  

0.5-a 

2.3 An interdiction game 
Again, a 

target is moving on a network but this time the search 
effort is not indefinitely divisible. At each period the 
target is transiting from a node s and to an adjacent node 
t. Simultaneously, the searcher selects one arc k in 
the network and inspects this arc. If the target is passing 
throughout the arc k, then it is detected with a probability 
pk.  These detection probabilities are known both from the 
target and the searcher. 
The aim of the searcher is to find the inspection strategy 
which maximizes the probability that the target be detected. 
Opposite, the target strategy is to minimize it. Therefore, 
this problem can be viewed as a tpzg[?]. 

We consider here the following game [8]. 

Let us now present a general formulation for this prob- 
lem. Let G = ( N ,  A) ,  a network with N denoting the set 
of nodes and A the set of arcs. A path in G, starting at the 
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node io and arriving to the node i, is defined as a sequence 
of nodes and arcs of the form io, (io, &)$I, (i~,iz), ... , 
im-l, (&+I,&), i,. A path I E L is characterized by 
the arcs A(1) composing it. The matrix D is the incidence 
matrix: i.e. dk,l = 1 iff the path 1 includes the arc k and is 
equal to 0 else. The I-th column of the D matrix (denoted 
d(Z)) is the incidence vector for the path 1. 

Our aim is to solve a tpzg Q where the pure strategy of 
the searcher is to select a path I ,  from s to t .  Let us define 
the z vector by : z k  = 1 if the searcher inspects the arc k 
and z k  = 0 else. Then, the cost function V for Q is defined 
by : V ( z , l )  = p k z k ,  which is the probability that 

the target be detected. The V ( z ,  Z) expectation is denoted 
$J and is the interdiction probability. For the searcher, the 
objective is to maximize $, while it is the converse for the 
target. 

k E A ( 1 )  

Let x k  be the probability that the searcher inspects the 
k arc and denote y1 the probability that the target chooses 
the path 1. Thus, the vectors x and (resp.) y represent the 
mixed strategies of the searcher, (resp.) target; and : 

L E A  IEL 

The optimization problem can be written as the matrix 
game [8] MaxminO : 

( max min x P D y ,  
X Y 

I subject to: 
1 (15) 

c x i = 1  c y j = 1 ,  
i=l j=1 

Q being a finite matrix game can be solved by the following 
linear programm : 

v c  = min v , 
under the constraints: 

(YF) 

P D y -  1~ 5 0 ,  (16) 
1 

C y j = l  y . j > O V j  
j=1 

v* = m a x v ,  

under the constraints : (PD)Tx - lv _< 0 , 

1 
where all the terms of the lv vector are equal to v. If 

the above problem gives us the target strategy, the searcher 
strategy is obtained by dualization, i.e. : 

( X P )  

(17) k 
c x j = 1  x i 2 0  vi. { i=l 

Not surprisingly, the problem may be solved by a Simplex- 
like algorithm. However, a major problem may be the car- 
dinality of the set of paths which can grows very rapidly. 

Figure 3: The network 

Results 

The network as well as the possible paths are described 
below : 

1 1 1 1 0 0 0 0 0 0  
1 1 0 0 0 1 0 0 0 0  
1 1 0 0 0 0 0 0 1 1  
0 0 1 1 1 0 0 0 0 0  
0 0 0 0 1 1 0 0 0 0  
0 0 0 0 1 0 0 0 l l  
0 0 1 1 0 0 1 1 0 0  
0 0 0 0 0 1 1 1 0 0  
0 0 0 0 0 0 l 1 1 1  

~ a u l  1 :  i1 = ( 1 . a . 3 . 4 )  , 

~ 3 :  I ~ = ( I . ~ . ~ , I O ) ,  
Paula: I a = ( 1 . 2 , 6 ) ,  

Paul 4 : I4 = ( 6 . 3 , 4 )  , 
Paul 6 :  16 = ( 6 . 6 )  , 
Paul 6 : 16 = ( 6 . 9 . 1 0 )  , 
Paul7: I 7 = ( 7 . 8 . 3 . 4 ) ,  

Palhe: Ig=(l.8.9.10). 
Palh 8 : Ig = (7.8.6) , 

and P = ( 0.6 0.8 0.9 0 . 7  0.8 0.6 0.9 0.7 0.6 0.9 )T 

. Then the optimal target and searcher strategies (game val- 
ue v = 0.2880) are : 

x = ( 0 0 0.3200 0 0.3600 0 0.3200 0 0 0.2880 )' 
y =  ( 0 0 0.1086 0 0.1600 0.2000 0.2114 0 0.3200 

(18) 

2.4 Optimal search for gain maximization 
In the previous problems, we were considering both 

target and searcher strategies in a game perspective. This 
is no longer the case, even if the general context is still the 
search of a target moving in a network. Here, the aim of 
the searcher is to detect as frequently as possible the target. 
Thus, the objective functional is no longer binary. The 
interest of this approach is that it  is closer to the objective 
of target tracking. Let us present now the modelling [ 5 ] .  

Let G(V,A) be this network with V the set of nodes 
and A the set of arcs (n = #A). The target has available 
a set R of possible paths and selects one of them for all 
the search duration. The path 1 E R is made of ml arcs 
denoted Z(1), 1(2 ) ,  ..., Z(m1). The probability that the target 
selects the path I for transiting across the network is equal 
to 7T(Z) 2 0 (E  T(Z) = 1). 

1ER 

A search plan is made of elementary efforts (Pk 2 0 dis- 
tributed on the arcs and denoted q5 = {VI, ...,pn}. Con- 
ditionnally to the search effort (Pk (on the arc k) and to the 
event "target is passing throughout this arc", it is detected 
with a probability p k  = 1 - eXp(-CX.k(Pk) ( a k  >_ 0). If the 
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target is detected on the arc k, the searcher has an income of 
v k  2 0, at an expense equal to c k  2 0. The objective func- 
tional is the gain of the search, i.e. incomes minus expens- 
es. For instance, we can assume that the probability P(1, i) 
that the target be detected on one the arcs Z(l), Z(2), ..., Z(i) 
conditionally to the event "target is passing throughout the 
path E R '' is *: 

Thus, the probability to detect on the arc Z(i) is P(1,i) - 
P(1, i - l), with P(1,O) = 0; with an income equal to &(i). 
Then, the objective functional is the gain R(4) defined by : 

Figure 4: The network 

ml n 

It is strictly concave w.r.t. 4 and the problem is to maxi- 
mize a concave functional on a convex set. Therefore, the 
solution is unique, i.e. max R ( p )  with the usula constraints 

q k  5 C. Again, it can be solved by linear programming 
v 

n 

k = l  
algorithms. 

Results 

vh 

11.0 2.0 
15.0 I .o 2.0 
18.0 

15.0 
11.0 I ;; 1 ;:: 2.0 

17.0 I .o 2.0 
16.0 I 0 2.0 
17.0 I .o 2.0 
16.0 I .o 2.0 
19.0 I .o 2.0 
16.0 I .o 2.0 
I 

arc k 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

We consider the network illustrated by fig. 4. The target 
has 5 paths available and the total amount (C) of search ef- 
fort is equal to 5. This total amount is splitted everywhere 2.5 Dynamic search game 
on the 12 arcs. Possible paths and probabilities that the tar- 
get takes a given path are : 

Path 1 : Z1 = {1,2,3} ~ ( Z I )  = 1/5 ,  
Path 2 : 12 = {1,7,8,3} 4 l 2 )  = 1/5 , 

Path 4 : 14 = {4,9,10,6} ~ ( 1 4 )  = 1/5 , 
Path 5 : Z5 = {11,12} r ( Z 5 )  = 1/5 .  

Path 3 : Z3 = {4,5,6} ~ ( 1 3 )  = 1/5 , (21) 

21n th is  formulation of P(1, i), we assume independence of elementary 
detections, a quite criticable hypothesis 

2.35 
0 
0 

1.82 
0 
0 
0 
0 
0 
0 
0 
0 

Here, we restrict to WO cells and the evader begins at cell 1. 
Theevadermustchooseaperioda E (1, ...,T-l} forgoing from 
cell 1 to cell 2 and then another period T{O. + 1, ..., T }  for going 
from cell 2 to the evader-target. Let zt the search effort allocated 
to cell 1, the rest being allocated to cell 2. Assume, furthermore, 
that the elementary non-detection probability is exponential; then 
the non-detection probability for period t ( Pnd(t)) is obtained by 
considering the following events (see [9] for all the definitions): 

1. evader remains in cell 1, throughout the whole scenario1 

2. evader is in cell 1 and moves to cell 2, (t = c), -) P n d  = 

3. evader remains in cell 2 (a < t < 7). -+ Pnd = 

(1 5 t < 0). Pnd = p;t 

aft 
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4. evader in cell 2 and moves to the target (U < t < T ) ,  + 

We also assume that (ai < pi 5 1) and we have to consider 
a tpzg where the evader strategy (player 1) is defined by the two 
transition numbers U and T ,  while the searcher strategy is defined 
by the T -uple z = ( 1 1 ,  , ZT}. The objective functional stands 
as follows: 

Pnd =a;-"* . 

T-1 

s=l 
6 2 wsp(Q,T,S), 1 5 Q < 5 t, 
T-I 

s=l 

(24) 
v s = L  

Moreover, the following assuptions are usual: 
Zt+l  < ~ t , t = l ,  ..., T - 1 ,  

0 the searcher strategy is indivisible, i.e. zt E {0,1} 
A straightforward consequence of these two assumptions is that 
there exists a period s for which: 

z t = 1  f o r  t < s  { z t = O  else. 

Thus, the searcher strategy is completely defined by s and the ob- 
jective functional becomes: 

p~p~- ' - l ~z  if s < U ,  

P ( U , T , S )  = Pf-'alP;-"-'az if U 5 s < T , 
Pf-'ai if s > r .  

The mixed evader strategy amounts to considering the probability 
to select the couple {U, T }  , while for the searcher it is to choose 
s with a probability we. The searcher strategy w, is obtained by 
solving the following linear programm: 

(23)  
{ 

we remark that the searcher has a clear "tendency" to choose s 
on thefirst steps. 

Proposition 2. The optimal searcher strategy [9] is given by solv- 
ing the following linear system: 

Z l 1 W S  = l .  

Results Consider the following values for the non-detection 
functions: p1 = 0.9,al = 0 . 6 , ~ ~  = 0.5, then we have for 
t = 10 (game value 0.4214): 

I 9 I 0.0005 I 
3 Conclusions 

Various formulations of search games for detecting a target 
transiting across a network have been considered. All of them 
share a general framework based on tpzg and linear programming. 
It is worth to mention that linear programming permits to'consid- 
er a large number of paths. However, to take benefit from this 
great tool, the objective functional must be separable which may 
be questionable. 

A AppendixA 
More generally, we consider the functional G(P, @) defined 

by: 

where the functional f stands for the non-detection probability. 
We have to deal with the following problem; find P' (target) and 
9' such that : 

G(P, 9') 5 G(P*, 9') 5 G(P', 9) tlp, V 9 .  (27) 

So, we have to examine two problems. 

A.l  First sub-problem 
G(P, 9*)  5 G(P', a*). 

We have to find the necessary conditions for the following prob- 
lem : 

m$ -G(P,@*) , 
such that : (28) 

p w  = 1 ,  pw > o v w  E 0. 
W € R  

The associated Lagrangean (uw 2 0 Vw E Q) is : 

So that we have two cases to consider: 
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wen t#to 

ing cp* ( j ,  t o )  > 0, we have (KKT conditions) : 

G ( j ,  t o ) i  (YJ'(j, t o )  ) + At, = 0 I 

so that in the exponential case we have 

where n(j, to )  stands for the set of paths passing by the cell j ,  at 
time to. 
Now, from the KKT conditions of the first sub-problem, we know 
that n f(cp*(Tt(w) ) = cst > 0 if there exists w E n(j ,  t o )  
such that p: > 0. In this case, we thus have : 

t 

p : = c s t > o .  (34) 
w E W . t O  ) 

If this is not the case; i.e. if p: = 0, V w E n(j, t o )  then : 

a ( T t ( w )  ) cp'(Tt(w) ) I PO , V u  E n(j, t o )  I 

t 

so that, finally : 
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