Detection of oceanic electric fields based on the
generalised likelihood ratio test (GLRT)

R. Donati and J.-P. Le Cadre

Abstract: Galvanic corrosion phenomena between the hull and the propeller of a ship induce
static clectric ficlds in sea water. These signatures can be obscrved on a vectorial clectrical
sensor and the authors investigate the design of a dctection/localisation method based on the
generalised maximum likelihood ratio test (GLRT). Incorporating a spatio-temporal analysis of
the signals in the physical model, it is possible to partially estimate the trajectory of the target
and to perform a detection decision. The resulting system consists in the calculation of the
projection of the observation on a set of parameterised signatures and in sclecting the projection
that has the largest cnergy. An original method is proposed in order to determine the convenicent
partitioning of the set of projection bascs. Duc to the characteristics of the signals, classical
results concerning performance analysis arc not convenient and a specific framework is
developed in order to analytically determine the behaviour of the system. A comparison with
Monte Carlo simulations tends to prove the validity of the theory and the efficiency of the

processing.

1 Introduction

Up to now, the only electromagnetic anomaly used to
detect underwater targets has been the magnctostatic
signatures due to their ferromagnctic nature [l-3].
However, other phenomena can generate clectromagnctic
fields, including galvanic corrosion between the hull and
the propeller of a ship [4-6].

A circulation of electric currents, sometimes very
powerful, in the sca water results from this chemical
reaction and their static component induces a stalic
electric field known as the UEP field (underwater electric
potential). These signatures are measurcd with threc-axis
electromceters bascd either on current detection (the clee-
tric field being deduced from the measurcd current
density via the microscopic Ohm’s law) or on potential
measurement (the electric field being then deduced by
derivation).

The first stage (Section 2) of this paper is devoted to the
development of an analytic model for thc signaturcs
radiated by a target. It is bascd on a dipolar representation
of the ship and on the assumption of a thrce-laycred
medium made of air, sea water and the scabed. This
structure induces multiple paths due to the interfaces
between the air and the sca water and between the sea
water and the seabed. Solving the Maxwell equations [7]
for a source with a linear and uniform motion involves
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three unknown parameters: the ratio between the closest
point of approach (CPA) and the vclocity, the heading and
the time of CPA. In this sensc, the physical model includes
target-motion analysis (TMA) aspects because the detec-
tion process fundamentally relies on a spatio-temporal
analysis. Contrary to active array processing (e.g. radar
and sonar), the contrast functional uscd here is built
on TMA.

Then, the generalised likelihood ratio test (GLRT) [8] is
applicd to such signals (Scction 3). It consists in ¢stimating
the kincmatic paramcters of the ‘most probable’ source by
maximising the energy of projection of the observation on
a set of synthetic normed signaturcs and then deciding if
this target is present by comparing the maximum energy of
projection to a threshold. The sct of candidate signatures is
obtained by dcfining a discretisation grid for the para-
meters covering all their possible values. The discretisation
steps must be determined in order to minimise the size of
the set while preserving the detection capabilities of the
resulting system. For that purpose, an original scheme has
been developed. It is based upon a distance measure very
similar to the well known ambiguity concept.

The classical GLRT method is presented and embedded
in the projector formalism in order to simplify the analytic
determination of the performance (Section 4), both in
terms of detection and localisation. Duc to the particular
characteristics of the observed signals (time-varying and
time-limited), classical results for performance analysis
[8, 9] are not convenient and some original calculations
are required in order to predict, under the sole assumption
of a strong enough signal-to-noise ratio (SNR), the bcha-
viour of the system. More specifically, an analytic cxpres-
sion of the detection probability (based on the work of
Villier [10]) was derived as well as a proof of the normality
and the consistency of the trajectory estimator.

The results obtained by performing Monte Carlo simu-
lations (Section 5) are then comparced with theoretical
predictions. The cxcellent agreement between them
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validates the not only efficiency of the GLRT on the
electrical signals but also the performance analysis.

An important aspect of this work is that, even if the
GLRT is classicaly used in radar [11] or in various other
domains, the spatial cvolution of the target is then dircctly
included in the used model of the signaturc. In other
words, the GLRT directly performs the detection and the
tracking of the target {under the assumption of a uniform
rectilinear motion), as compared to the radar case where
the use of the GLRT for target detection and target
tracking implies the use of array processing methods. It
is also worth noting that, in our problem, wc have to
process two time series (corresponding respectively to the
X- and Yaxes of a single clectrometer) observed by a
single scnsor, which makes the use of array processing
methods impossible.

2 Electrical signals modelling

2.1 Electrical noise

Noise is assumed to be whitc and gaussian in the frequency
band from 5 x 107 to 5 x 1072 Hz which corresponds to
the spectral bandwith of the signatures we wish to detect.
This band is determined by considering the rclative
motion between the target and the sensor, as for magnetic
signatures [1].

If the noise is not really whitc and gaussian, a whitening
filter can be added and numerical bandpass filters, used in
order to limit the observation to the frequency band of
intcrest, should make the signal gaussian (it is a classical
effect of numerical filtering operations produced by appli-
cation of the large numbers law). In this paper, synthetic
white gaussian noise has been used with a power spectral
density equal to 100 nV/m/(Hz)"/2,

2.2 Electrical signatures

The model in use for the static field induced by corrosion
cffects is based upon a three-layer tabular modelling of the
medium: air, sea water and scabed [6, 12]. As the context
of this work is shallow waters (from 0 to 200 metres), the
target is assumed to have a linear and uniform motion at a
constant depth. It can be represented by an horizontal
electric dipole.

The determination of the signatures radiated by such a
target is relatively classic [5, 13]; it is based on the resolu-
tion of the well known Maxwell equations [5, 7] for a
frequency equal to zero:

curl(E) + jouH = 0,
(S(}" - r\)
curl(H) — (joe +o)E =1l 0
0

(M

where E is the electric field, H is the magnetic field, @ is
the angular frequency of the signal and o, 1o, ¢ arc the
constants of the medium (;/*=—1). The Dirac function
corresponds to the dipotar source of magnitude /7 (/ being
the intensity of the cotrosion currents and / the length of
the line of current) oriented along the X-axis and loca-
lised at the position determined by the ry(x,, y,, z,)
vector. In an homogeneous medium (i.c. an infinitc
sea), solving (1) leads to the following formulation of
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the three-dimensional clectric field observed at the point
r(x, y z) [13]:

! (x—x)°
= =,
I (r =x)0 =y
— 3 s B 2
4no, |r—l{\,|5 @
NCREN et
]I‘ - r.\‘l’

However, it is now nccessary to take into account the
different paths involved in the signal propagation, due to
the reflections on the sea watcr/air and sea water/seabed
interfaces when the water depth is equal to A. The incoming
signal can:

o first reflect on the surfacc and then be affected by m
double-reflections on both the seabed and the surface; so:

1 Pl = o= 4 (=0 2mh+ 2
(3)
o first reflect on the seabed and then be affected by m

double-reflections on both the seabed and the surface,
yielding:

|V - ".va‘ = \/(X' - x\-)z + (J; _y,\-)z + (Z + 2mh + Zg )2
C)
o first reflect on the surface and on the seabed and then be

affected by m double-reflections on both the seabed and the
surface; so: :

ol = = 80 (=) (o 2mh = )
(5)
e first reflect on the seabed and on the surface and then be

affected by m double-reflections on both the seabed and the
surface, yielding:

P = Pl =\ =5 (5 =)+ (2 — 2mh —2,)
(©)

Thesc different paths lcad to many components for the
signal collected at any point in the water and it is worth
noting that the only difference between (3)—(6) is the
vertical distance covered and the number of double-
reflcctions (i.e. the term z-+emh+¢'z, with e=+£1
and ¢ = % 1). For each path, (2) is valid when replacing
z — z, by the total vertical distance covered by the signal
and taking into account the fact that, for each reflection on
the scabed, there is an attenuation equal to A = (0, — 03)/
(o, + a), where o, and g, respectively correspond to the
electrical conductivity of the sca water and the scabed.

Then, for a target trajectory which makes an angle
denoted ‘head” with the X-axis of thc sensor, the total
field E obscrved at any point (x, » z) in the water and
expressed in cartesian coordinates linked to the sensor is as
follows (Eqgee being the total field expressed in cartesian
coordinates relative to the target):

cos(head) —sin(head) 0O
E = | sin(head)  cos(head) 0 |Ey (7
0 0 1
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with:
1 (r—x)°
- 3 + 3 - 5 +/] (r.vl(h r.\'im)
r—r v~n|
0| (x—x)—
target — ZTE—O] 3 W + fZ(’ s100 \H)I)
x)z—z)
3—_-_——_}_/1(’\10’ \H”)
r—rl
where
2
. X —X,)
Afl(rlq}o’rﬂﬂl):_lr— ) |()|3 |r~l’]0‘5
Fy s

(x — x.)2
+ A +3 s
ZZ ( l" ’\//u‘3 |l‘—l‘ ‘5

=l m= sint

3 (x—x )0 —»,)

3
b= r0l

+ZZW(“fm )

=1 m= sint |

/2 (".\'IO’ r.\'im) =

(x —‘XS)(Z +z.\')
|V — ol

+ Z ZAM< X=X )(Z \Il)l))

i=1 m= Feim |

Silr0, o) =3

and:
p=1
X —xy=Wepg — 1) (8)
y—y,=CPA

In (8), CPA is the closest point of approach, that is to say
the smallest distance between the sensor and the target. We
can see that the three components of the electric field are
real valued. In the expression, the infinite sum represents
the different number of double-reflections (on the scabed
and on the sea surfacc) corresponding to the various paths
of the signal. Practically, duc to the attenuation at each
reflection on the seabed, it is sufficient to only consider the
first 20 terms.

Hereafter, the vertical component will be neglected in
this work because it is too weak to be observed. The sensor
depth (z), the water depth (4) and the conductivitics of the
sea water and the seabed are known (in the area where
the system is deployed) and somc brief calculations
and physical considcrations show that the shapc of the
signatures is roughly independent of the target depth z, (in
shallow waters) as well as of both the CP4 and the velocity
v as long as the ratio CPA/v is constant. In our model, we
can then fix the value of v and only dcal with the ratio
CPA)v.

Then, the observation only depends on four parameters:

e the ratio CPA/v,

o the time of CPA: 1. py4,

e the angle between the heading of the target and the
X-axis of the sensor, here denoted as ‘head”,

e a magnitude coefficient 4, that is a function of the
electric moment of the source p =1/ and of the velocity
of the target v.

An cxample of the electrical signatures is shown on
Fig. 1 (with and without noise) for an electric moment
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equal to 50 Am (ampere metre). This represents the mean
valuc of alternating clectric moments measured on US
merchant ships in Bostick et al. [14], assuming that the
static clectric moment is of thc same order of magnitude
(in fact, it is generally stronger).

On Fig. 1, the X-axis represents the time (in seconds) and the
Yaxis the clectric ficld in nanovolts per metre. The scabed
conductivity is expressed in sicmens per metre (S/m).

3 Detection with the generalised likelihood
ratio test (GLRT)

3.1 Principle

The outputs of the two horizontal axes of the sensor, which
are assumed to be temporally white, normal and correlated,
arc uscd simultaneously. Thus the total observation can be
viewed as a sequence of N two-dimensional random

vectors (# means ‘transpose’):
!
/ X, Xy Xy
vl = , e 9
] KJ’I) <»V2> (J’N )] ©

Due to the limited bandwidth of the signals we wish to
detect, the sampling rate is typically 0.05Hz and the
number of samples N to consider can bc taken to be
equal to 100. Then, we have to deal with the two following
hypothescs:

X; b
Hl):zi:( ):( ):l)i’
Yi byi
H. : _ X o b,\"i p E\ (0 ’ l) (10)
|8 = (y,-) = by; + K E‘,(ﬂ, )

= b, + kE(0, i)

Z:[Z],Zz,~--7

where £ is the magnitude factor previously defined and €
the vector of parameters containing CPA/v, the target
heading and t¢p. In (9) and (10), the signal E is given
by (7) and (8) (for p and v being arbitrarily taken respcc-
tively cqual to | Am and to [ m/s, since the shape of E does
not depend on v but only on the ratio CP4/v which is
included in (0 and b represents the noise described in
subsection 2.1. The likelihood ratio stands as follows:

cxp[—§z (z0 — kE'(0, )" (z; — kE(O, i))]
Az) = :
cxp[—%zz;l“*lz(]
where:
2
= Ebb) — [“ “‘3‘] (1
),\_v Oy

Now, keeping in mind that the matrix I' is symmetric and
positive definite, let 4 and B be two vectors having the
same form as the obscrvation z, we can define a scalar

product by:

1 f b -
B) :Z(U,‘l,aa)f l(/z:;) =A% IB

with:
rojpop .- [0
3= [C_'] o (12)
; 0]
o] --- J0o] I
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Fig. 1 ULP signatures

CPA=600m; V=>5m/s; head =90"; p =50 Am; z,=100 m; z=190 m
« X-axis without noisc

b Y-axis without noisc

¢ X-axis with noisc

o Y-axis with noisc

Then, the normalised signature vector #(0) is defincd by
normalised the vector E(0), i.c.:

$(0) = kE(0) = Ku(0)
with:

E(0)
)= ——— 13
“O = TE®), 50) =

where s(0) is the signature of the target reccived on the
sensor. Then, by using this scalar product, the expression
of the likelihood ratio becomes:

AQR) = exp[—%(/(z —2K(z, u(ﬂ)))] (14)
so that:
arg max(A(z)) = arg max(log(A(z)))
0.K 0.K

= arg max(—l(—ZK(z, u(@)) + KZ)>
0.k 2

= arg max (— l[(K — (z, u(9)))’
0.K 2

- (Z, ”(0)>2]>

(15)
and finally:

0 = arg max({z, u(0))%) IQ =z, ll(é» (16)
0

The parameter vector @ is estimated by sclecting the
normed signal #(@) which maximises the cnergy of projec-
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tion (z, u(@))> (in the sense of the previously defined scalar
product). K is then given by the norm of the projection.

So, a quantity of the form |IT,z|? is computed, where 7,
is a projcctor paramcteriscd by 0:

I, = u(0)u(0)> "' (17)

The encrgy of projection, considered as a function of the
parameter vector @, is not concave. Moteover, the presence
of local cxtrema means that gradient descent algorithms
cannot be used. The only method available is to cursorily
examine all the possible values of the parameters by using
a discretisation grid. Then, by sclecting the best one, we
get a rough estimation- of the parameters; the accuracy of
which is limited by the stepsize of the grid. It is then
possible to improve the estimation of the parameters by
using a standard numerical optimisation code initialised by
this rough cstimation, i.e. in the vicinity of the global
maximum.

Then, the decision that the estimated target is present is
made conditionally to the test:

2108(A(z),_) > 1 < (z, u(0)? > p (18)

3.2 Discretisation of the signature parameters
First, even if the signature depends on four parameters,
only three of them are involved in the expression of the
basis of the signal space; K is only a magnitude factor.
So, the idea consists in discretising these three para-
meters with a sufficiently large stepsize in order to limit
the computational load, but not too large in order to
maintain the detection capabilities of the system. More
precisely, we calculate the optimal stepsizes under the
constraint that, whichever signal s(6) we might observe,
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there exists in our system a normed sighaturce u#(0+ A6)
such that the energy of projection of the observation on
this signature remains greater than or equal to 90% of the
energy of projection of the obscrvation upon u(0). Then,
our algorithm consists in:

: imax Himiu
Aom,]/?o" =1 407 + 40,
subject to:
(5(0), u(0 + A8 > 0.9(s(0), u(0))>
with:
5.(0) u . (0)
0) = =K
v <n<ﬂ)> (m(ﬂ)) (19

40 = (407 or 407, 405 or 405, 407 or 407)

0;,.« and 0., respectively correspond to the maximum
and the minimum possiblc values of the parameter 0, 467
is the positive error by which 0; is affected and 46; the
negative one. Then, for a given observed signature, we
have to solve an optimisation problem with 2* constraints.
In fact, we will show that only onc of them must be
verified.

More precisely, il \ﬂ,,+das(6)|2 =f(0+40) is the
energy of the projection of the signature, that is defined
by the parameter # on the basis defined by the parameter
0+ 40, and if 40 is assumed to be small, a sccond order
expansion yields:

S0+ 40) = 1(0) + [40] [grad(/YO)]
+ 140 fhess( /) O)][40]

=/(0)+ % [40] [hess(fNO)][40]  (20)

because the cnergy of the projection of the signature, that is
defined by the parameter 6 on the basis defined by the
parameter @ is a maximum, thus implics that its gradicnt
vector at this point is the null vector.

So, the relation |1y | 405(0))7/ | {Tys(0))> = 0.9 dcfines
an cllipsoid centred around @ and the optimisation problem
consists in finding the largest solid rectangle inscribed in
the cllipsoid. First, that implics that the solid rectangle is
also centred around @, and consequently that 48; = — A0 .
It can be also inferred that the first vertex that reaches the
ellipsoid when the solid rectangle increases is the one
located in the quadrant containing the minor axis of the
ellipsoid, that is to say the eigenvector associated with the
largest eigenvalue of the hessian matrix.

Consequently, if this vertex is kept inside the cllipsoid,
so will the others and verifying this sole constraint is
cquivalent to considering the 2° initial constraints. This
is illustrated in Fig. 2 (for only two parameters).

This constraint must be simultancously verified for all the
signature types that we may obscrve, that is to say, for example,
for these possible values of the paramcters of the target:

CPA =500 or 2000 m

velocity =2 or 8 m/s

course = 0 or 45°

tep, =2500 or 5000 s

e correlation coefficient between the noises on the X-axis
and the ¥axis=—0.8 or 0 or 0.8

The quantification stepsizes obtained are:

e course: steps of 30° from 0 to 180
e CPA/v: steps of 32 s from —2000 to 2000 s

IELE Proc.-Radar Sonar Navig., Yol. 149, No. 5, October 2002
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Fig. 2 Geometric interpretation

e time of CPA: steps of 20s from 0 to 5000 s

That yields a sct of about 100 000 bascs of projection.

4 Schematic representation of the processing

The different tools useful for the detection of occanic
electric fields with the GLRT have been detailed in the
preceding Scctions and it is now possible to summarisc the
whole algorithm by the scheme represented on Fig, 3.

On this schemc, the signal model E corresponds to (8). It
is worth keeping in mind that the maximisation is made by
choosing the maximum output of the different branches,
each branch corresponding to a particular valuc of the
parameter vector of the signaturc model; the number of
branches is consequently determined by the parameters’
stepsizes cvaluated in Scction 3.2.

5 Performance analysis

5.1 False alarm probability
The definition of the falsc alarm probability is:

Pip = prob[m‘?x{enelg}tbaxis(6)} > 1/Hy] @rn

where energy_basis(0) is the energy of projection of the
signal on the basis defined by the parameter 6.

The probability density function of cach cnergy can first
be calculated. As the noises arc gaussian, it is straightfor-
ward to demonstrate that the quantity (z, «(0)) is a zero-
mcan gaussian random variable with a variance equal to:

var = E{(z, u(0))*} = E{(u'0)X " '2)*)
=u'(0)3 ' [covar(@)]X 'u(0) =1 (22)

Consequently, the probability density function of each
energy of projection is a centred khi-2 with onc degree
of freedom.

However, the false alarm probability calculation sufters
from many fundamental drawbacks. Morc precisely, if the
energies of projection were all independent, the false alarm
probability would be casily determined by:

Pya = problmax{energy_basis(0)} > n/H,|
0

= | — problall_energies < /)]

= | =[] problenergy_basis(9) < n/H,] (23)
0
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Fig. 3 Scheme of the GLRT detector

Unfortunately, they are not independent duc to the fact that
the bases of projection for different values of the para-
mcters are not orthogonal. In order to calculate the Py, it
would be necessary to dctermine all the corrclations
between the various energies, that is to say

)

correlations (=n(n — 1)/2). As n =100 000, this is clearly
unfeasible.

It is worth mentioning another approach for calculating
the Ppa which heavily relies upon differential gcometry
[10]. But the major drawback of this method is that it is
only valid for weak values of the Pi:a (< 0.1). So, it is not
convenient for the calculation of a complete ROC (receiver
operating characteristics) curve.

A third approach that could have cnabled us to calculate
the Py is the Wilks’s theorem [9] which demonstrates that,
if the random vectors z; are independent identically distri-
buted under both the Hy and H, hypotheses, then under H:

2log(A2)y_p) = 11 (24

where 7 is the number of parameters. However, in our
problem, the samples are not identically distributed under
H, because the mean value of cach sample is then cqual to
the signature of the target which is a time-varying signal.

The conclusion is that for such a system, the analytic
calculation of the false alarm probability seems impossible
and the only practical solution is to perform Monte Carlo
simulations. This point has already been identified in
Friedlander and Porat [15, 16]; in order to avoid it, a
suboptimal version of the GLRT is proposed, consisting in
splitting the observed data into two scts, the first one being
used to give an estimate of the signal parameters under H,
and the second one to make the detection. The main

drawbacks are that this method is limited to the case of

whitc noises and that it results in a decrease of the
detection probability.

Fortunatcly, the determination of the Py, by simulations
is not a real problem for us because the Ppa only depends
on the set of bases of projection (which is fixed) and on the
characteristics of the noises. So, the false alarm probability
can be determined by simulations during a learning stage
of the system and then be considcred known when the
detector is operational.

226

5.2 Detection probability

Surprisingly, the determination of the detection probability
is less problematic. Our demonstration is detailed in the
Appendix but we will now present the main results.

Our work is based on the assumption that, as thc observed
signal is embedded in noisec, the cnergy of projection will
not be a maximum for the real value of the parameters but
rather for a value @ close to the real value. Then, we can
expand the energy of projection up to the sccond order:

52l = £(8) = £(8) + [0 — 01 grad(/)(0)]
| R
+510 - 01 [hess(/)(0)][0 — 0] (25)
and we then find that its maximum value is given by:
sup () = /(8) ~ L grad(/YO)Thes(1)(O)]”
0

x [grad(f)(0)] (26)

Now, calculations presented in the Appendix give that:

[hess(/)(0)] = [sfz‘ il }

20,90, |
AL
[y
— 2[[( 0, 3 30]:|‘ y (27)
ol
ou’ —1
2KW|Z b
[grad(/)(0)] = :
Hu’ |
ZK@;Z b
0
ou' | ou
N : 2% ]_
” i [4[{ a()l a()/:lll.. )
0 ‘ ,:\,.:l,,
(28)

Then, we show that:

- %[gmd(f')(ﬂ)]'[hm(f O [grad(/)(0)] = 1, (29)
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with p=3. Now, by demonstrating the fact that this
random variable is independent of f(@) which is the
square of a gaussian random variable cqual to:

(z,u) = K + X 'p (30)

we arrive at the conclusion that the probability density
function of the maximum of the projection cnergies is a
non-central khi-2 with [ 4 p=4 degrees of frecdom:

sup f(0) = sup [ 3z* = 2log(A(@),_3) — 4(K?) (1)
0 6

This result is the same as the ones given by Kendall and
Stuart [17] and also Zhu and Haykin [1 1] but its validity is
no longer limited to the case of independent identically
distributed samples and we have cstablished that this
assumption is not required as long as the SNR remains
strong enough. This result cnables us to compute the
operational characteristics of the detector. This point will
be devcloped in Section 6.

5.3 Cramer-Rao lower bounds (CRLB)
The calculation of the Cramer—Rao Lower Bounds (CRLB)
of the cstimators requires the determination of the Fisher
information matrix FIM,:

E((6 - 0)(0 — 0)} > FIMy'

with:

] J
[FIM,), = E{ [@ 108170(2)] [Wogm)} } (32)

In (32), pe(z) is the probability density function of the
observation z conditionally to the parameter 6. The sign
‘greater than or equal to” means that the difference between
the two matrices is non-negative definite.

Under the assumption of a normal obscrvation:

pe(z) =4 pr[~%<(z — Ku(6)), (z - KM(G)))} (33)

so that:
and finally:
e [ )
' i
[esrsomp] o
y

5.4 Performance of the estimators

The behaviour of an estimator is fully determined by the
knowledge of its probability density function. In gencral,
the CRLB is not necessarily rcached.

First, classical theorems that demonstrate the asymptotic
normality and consistency of the maximum likelihood
cstimator require the assumption of independent identi-
cally distributed samples. As the signature of the target is a
time-varying signal, this hypothesis is not verificd.

Some results also enable the gencralisation of the pre-
vious theorems to the case of time-varying problems [§],
but the signal must have an infinite duration. However, for
the electrical signaturcs, after a certain time, when the
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target is far enough away, they become identically cqual to
zero, regardless of the value of the parameters of the target.
So, they do not apply to our problem.

Nevertheless, if we assume that the SNR is strong
enough, it is possible to establish the normality and the
congistency of our estimator by using the results of our
calculation of the detection probability. In fact:

[0 — 0] = —[hess(/)(O)] ' [grad(£)(®)]  (36)

and under the hypothesis of a strong enough SNR, we have:

du'
ZKME b
[grad(/)(0)] =~
du'
— b
ZKMPZ h
0 t
du ou
Nl ek 37 2
- : [ w, > a(),], _
0 I
(37)
PrI
hess(f)(0)] = | ¥3 ' E 200,
[hess(/)(0)] [sz 0,0 o
J=lop
du' | du
=2k y '™
[ a0, = 0, o 38)
So, it is straightforward to deduce that:
0 ' o
« du' __\ ou
-0 I Gl Sl
[0=01= N [ 0w,
0 i8N
0
=n||: ,[FIM(,],:;, , (39)
0

So, we scc that the MLE estimator has a rather “classical’
behaviour despite non-stationarity and time-limited
signals.

6 Simulations

In Fig. 4, the results of Monte Carlo simulations (for the
signals represented in Fig. 1) are presented and compared
with their theoretical counterpart. The left-hand sides of
Figs. 4a, b and ¢ represent the histograms of the estimators
for a target whose kinematic parameters are given in the
figurc caption. Their theoretical probability density func-
tions (pdf) (which are normal functions centred on the true
values of the parameters and with variances equal to
the CRLB) are also plotted in the right-hand sides of
these Figures. In Fig. 4d, we present the ROC curve
obtained by simulation, for a far away target in order to
make the curve casier to read, and compare it with the
‘theoretical/ simulation’ curve for which the detection
probability was analytically calculated and the false
alarm probability was determined by simulation.

Good agreement between the theoretical results and the
simulations is obtained, both for detection and estimation,
with a very low SNR (see Fig. 1). The estimators are
almost optimal, they reach the Cramer—Rao lower bounds,
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they are gaussian and consistent, the CPA/v estimator
excepted, which is affected by a small bias.

This bias can be justified by the fact that the dependency
of our physical model upon the single ratio CPA/v (and not
upon both CP4 and v) implies greater horizontal distances
compared with the vertical distances. In our simulations,
with a CPA distance equal to 600 m and a water depth equal
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to 200 m, this assumption is not completely realistic and
the shape of the signature depends on both CPA4 and v.

The theoretical detection probability also presents a
good agreement with the simuilation results; the error is
always less than 10% and cven less for small values of the
false alarm probability (which will be the case for an
operational systcm).

IEE Proc.-Radar Sonar Navig., Vol. 149, No. 5, October 2002

Authorized licensed use limited to: UR Rennes. Downloaded on July 10, 2009 at 11:24 from IEEE Xplore. Restrictions apply.



7 Conclusions

This work has shown the potentialities of a detection/
localisation system based on the application of the GLRT
on the observation collected on a vectorial UEP sensor.
Spatio-temporal processing has been directly incorporated
in the physical model of the target signatures and a realistic
performance analysis has been developed. Due to particu-
lar assumptions, classical results for performance analysis
do not hold; this leads us to consider a specific framework
which is general and applicable to many other problems.
Original results have been established. They enable us to
accurately predict the behaviour of our system both for
detection and estimation. These approximations are valid
under mild hypotheses.

Good detection and estimation capabilities for our
system havc been demonstrated, both in theory and simu-
lations. The theory has been presented in a unified form-
alism and gave results which might be instrumental in the
development of a multisensor system.
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9 Appendix

Our calculation of the detection probability follows the general
guidclines of Villier [10]. Our calculation slightly differs from
that of Villier [10] and constitutes a generalisation to the case
of a multi-dimensional vector of parameters.

Our work is based on the assumption that, as the observed
signal is embedded in noise, the energy of projection will
not be a maximum for the real value of the parameters but
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rather for a value @ close to the real value. Then, we can
expand the energy of projection up to the second Oldel.

\Tyz” = £(0) = £(0) + [0 — 6] [ grad(f)(0)]

+310 — 0] hess(NOID — 0] (40)

Differentiating (40), it appears that the function _/'((;) is a
maximum for:

[0 — 0] = —[hess(/)(O)]'[grad(f)(0)] (41)
Substituting the value given by (41) in (40), we have:
Sup/(B) = /() 3 [grad(1)(O)] Thess(/)(O)]
)
x [grad(f)(0)] (42)

Using the general properties of projectors, and more

precisely the fact that (Ilyz, Hyz) = (z, yz), wc can
write that:

Lgrad(£)0)) = [grad([1142]") | = [grad((1Ty2. 11,2)]
= [grad((z. 11,z))] (43)
with:
[grad((z, T yz))] = [grad(z’)f' H,,z)} (44)

So, replacing z by s+ b where s = Ku(0) is the obscrved
signature and b the noisc in which it is embedded, we have:

‘ ) B N <H0
[gmd(/)(o)]_li a0, ] =1...p

N
[ E a0; jli»—l,.“,/)

i

ol
+py 0y (45)
a0; i=l,..p

1

We can similarly calculate the expression of the hessian
matrix:

132”9

a0, d()

[hess(£)(0)] = | s’

@ [70

X 30,0, b

[
Lop

RERL
a0, ao

+| b3 (46)

o
Now, using the cquality ||u|| =1, we obtain:
ou —1 ou
<u &)‘> u'y ), =0 (47)
and again differentiating (47):

u' | du - u
— ¥ ' = =0 48
a0, = a0, " 0,0, “8
Differentiating the expression of the projector (17) also
gives:

3”()*8” e 8“’ 1

a0, —a0," = "%,

(49)
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from which it can be inferred that:
it Oy ou'

30, a0, (50)
so that:
oll oy u
p 0 dT), (618

Now, differentiating the projector to the second order
yiclds:

Py, Pu Wy du ou' 5!

30,00, 90,00, T, a0,
e du' Pu
P 3 52
a0, 00, >~ 0,0, ©2)

From (51), we deduce that:
#r, lyom  Fu

= 7 5
30,00, a0, a0, ~ 00,00, 53
and then:
' [(’ ]70 4_:()_1{’ ,_lﬁli ¢ ]8”(’(”
T R TR P T )
' -, on
-2 3= 54
a0, * a0, (34)
From (47) and (51), it can be inferred that:
_yoll _polr ou
¢ ! 0 2 ¢ 1 0 2 1 1
s = K"n =0 (5
2y, s =K * a0, 2 =0 69
and from (54):
/««‘I82H0€: 2, *182”01
80,00, 90,00,
o' | du
= —2K?— — 5
2 90, a0, (56)

Now, assuming that thc SNR is not too weak, further
approximations are realistic which consists in neglecting
in (45) the third term and only keeping the first term in
(46). Using (55) and (56), it leads to the following
approximations:

i or7
[grad(f)0)]=2|s> ' —Lb
L a0, i=1p
_ 1yl a”f)
- 2_ u'X a0, b ] ‘‘‘‘‘ )
ok s b] (57)
L d i=1,..p

and:

00,00,

, o' ) u
-9 o
{ l, > a()j] ey

[hess(£)(0)] = |:s’21 I, :1

)

The hessian matrix has then the behaviour of a determi-
nistic matrix and the maximum of the encrgies of projec-
tion can be simply viewed as a sum of two random
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variables. It just remains to derive their p\obablhty dc.mlty
function. For the first one, f(0,)=|MHy(s+b), it is
straightforward to show that:

() = (z, u(0))* = (s + b, u(0))’

= (K + (b u(0))7 — 71K (59)
For the second random variable, we just have to note that:
[gmd(f)(ﬂ)]
2K — 'p
8{), 2
ok My
a0,
0
. ' | du
: 4K* — 60
MR [ a, > a(),] (50)
0 S

and then, it clearly appears that:

- %[g"ad(ff)(ﬂ)]'[/wSS(f)(9)]*'[gmd(f')(ﬂ)] - 1, (61)

with p=3. Now, we only have to prove the independence
of the two random variables.

First, /(0) is the square of a gaussian random variable
cqual to:

) =K+u'3'b (62)
and the gradient is a gaussian random vector equal to:
[grad(f)(0)] = [ka 3" b:l (63)
i=1,..,p

So, the calculation of the correlation between (@) and cach
component of the gradient vector gives:

x| ou
E[(K—I—uZ b) <2K—0~}, b)]
. —1 ' ]()ll
—E[(K—I—u/z b) (2Kb2 aoﬂ

_ 1 du
= 2K°EW% 30;
B!
+oku' S EDY)E Y
()(),
=] ou
=0+ 2Ku —=0 (64)

a0,

So {z, u) and each component of [ grad(/)(0)] are uncor-
related. As they are also normal, they are independent.

The conclusion is that the probability density function of
thc maximum of the projection encrgics is a non-central
khi-2 with | 4+p =4 degrees of freedom:

sup /() = sup| 2= 2l0g(A(2),_y) — £(K?) (65
0 0

This result is the same as the one given by Kendall and
Stuart [17] and also Kay [18] but its validity is no longer
limited to the case of independent identically distributed
samples and we have cstablished that this assumption is not
required as long as the SNR remains strong enough.
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