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Abstract: Galvanic corrosion phcnomcna bctwccii the h u l l  and the propeller of a ship induce 
static electric fields in sea water. These signatures can be obscrvcd on a vectorial electrical 
sensor and tlic authors investigate the design of a dctcction/localisation method based on thc 
gcncraliscd maximum likelihood ratio test (GLRT). Incorporating a spatio-temporal analysis of 
the signals in the physical model, i t  is possiblc to partially estimate the trajectory of tlic targel 
and to perform a dctcction decision. The resulting system consists in thc calculation o f  the 
prqjection of the observation on a set of parameterised signatures and in selecting tlic projection 
that has the largest cncrgy. An original iiicthod is proposcd in order to determine the convenient 
partitioning o f  the set of projection bascs. Due to the characteristics of the signals, classical 
results concerning perforinancc analysis arc not convenient and a specific framework is 
developed in order to analytically dctcrininc the behaviour of the system. A comparison with 
Monte Carlo simulations tcntls to prove the validity of thc theory and the efficiency of the 
processing. 

1 Introduction 

Up to now, the only electromagnetic anomaly used to 
detect underwater targets has been the magnetostatic 
signatures due to their fcrroinagnctic nature [ I  31. 
However, other phenomena can generate clcctromagnctic 
fields, including galvanic corrosion between the hull and 
the propeller of a ship r4-61. 

A circulation of electric currents, sometimes very 
powerful, in the sea watcr results from this chemical 
reaction and their static component induces a static 
electric field known as the U E P  field (underwater electric 
potential). These signatures are measured with thrcc-axis 
electrometers based either on current detection (the clcc- 
tric field being deduced from tlie measured current 
density via tlic microscopic Ohm’s law) or  on potential 
measurement (the electric field being then deduced by 
derivation). 

The first stage (Section 2) of this paper is devoted to the 
development of an analytic model for the signatures 
radiatcd by a target. It is based on a dipolar representation 
of tlie ship and on the assumption of a three-laycrcd 
medium made of air, sea water and the scabcd. This 
structure induces multiple paths due to tlic intcrfaccs 
between the air and the sea watcr and between the sea 
water and tlie seabed. Solving the Maxwell equations [7] 
for a source with a linear and uniform motion involves 
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three unl<iiown parameters: the ratio between the closest 
point of approach (CPA) and tlie velocity, the heading and 
(lie time of CI’A. In this sense, the physical model includcs 
target-motioii analysis (TMA) aspects because the detec- 
t ion proccs s fii ii dam en t a I1 y re1 i es on a spat i o- t c inpora I 
analysis. Contrary to active array processing (e.g. radar 
and sonar), the contrast lunctional used here is built 
on TMA. 

Then, the gcnclaliscd lil<eliliood ratio test (GLRT) [XI is 
applicd to such signals (Section 3). It consists in estimating 
the kincinatic parameters of the ‘most probablc’ source by 
inaxiniising the energy 01’ projection of the observation on 
a set of synthetic normcd signatures and then deciding if 
this target is present by comparing thc maximimi energy of 
prqjectioii to a threshold. The sct of candidate sigiiatures is 
obtained by defining a discretisation grid for the para- 
meters covering all their possible values. The discretisation 
steps must be determined in order to niiiiimise the size of 
the set while preserving the detection capabilities of the 
resulting system. For that purpose, an original sclieinc has 
bccii dcvclopcd. It is hascd upon a distaiice measure very 
similar to the well known ambiguity concept. 

The classical GLKT method is presented and embedded 
in the prqjector Corinalisiii in order to simplify the analytic 
dctcrinination of the pcrformancc (Section 4), both in 
terms of detection and localisation. Duc to tlie particular 
characteristics of the observed signals (time-varying and 
time-limited), classical results for performance analysis 
[X,  91 are not convenient and some original calculations 
are required in order to predict, ~iiitlcr the sole assumption 
of a strong enough signal-to-noise ratio (SNR), the bcha- 
viour of tlie system. More specifically, an analytic cxprcs- 
sion of the detection probability (based on the work of 
Villier [ I O ] )  was derived as well 1 proof of tlie normality 
and the consistency o f  the trajectory estimator. 

The results obtained by performing Monte Carlo simu- 
lations (Section 5 )  are then compared with theoretical 
predictioiis. Thc cxcellcnt agreement bctwccn them 
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validates the not only efficiency of the GLKT on the 
electrical signals but also the performance analysis. 

An important aspect of this work is that, even if the 
GLRT is classicaly used in radar [ 111 or in various othcr 
domains, the spatial cvolution of the target is then dircctly 
included in the uscd model of the signaturc. In other 
words, the GLRT directly performs the detection and the 
tracking of the target (under the assumption of a uniform 
rectilinear motion), as compared to the radar case whcre 
the use of the GLRT for targct detection and target 
tracking implies the use of array processing methods. It 
is also worth noting that, in  our problem, wc have to 
process two time series (corrcsponding respcctively to tlic 
X- and Y-axes of a single electrometer) observed by a 
single sensor, which makes the use of array processing 
methods impossible. 

I1 E = -  
471a 1 
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2. I Electrical noise 
Noise is assumed to be white and gaussian i n  the frequency 
band from 5 x 10- to S x lop2 Hz which corresponds lo 
the spectral bandwith of the signatures we wish to detect. 
This band is determined by considering the relative 
motion between the target and tlic sensor, as for magnetic 
signatures [ I ] .  

If the noise is not really whitc and gaussian, a whitening 
filter can be added and numerical bandpass filters, uscd i n  
order to limit the observation to the frequency band of 
interest, should make the signal gaussian (it is a classical 
effect of numerical filtering operations produced by appli- 
cation of the large numbers law). In this paper, synthetic 
white gaussian noise has been used with a power spcctral 
density cqual to I 00 nV/in/(I-Iz)”2. 

2.2 Electrical signatures 
The model in use for the static field induced by corrosion 
effects is based upon a three-layer tabular modclling of tlie 
medium: air, sea water and scabcd [6, 121. As the context 
of this work is shallow waters (from 0 to 200 metres), the 
target is assumed to havc a linear and uniform motion at a 
constant depth. It can be represented by an liorizontal 
electric dipole. 

The determination of the signatures radiatcd by such a 
target is relatively classic [S, 131; it is based on the resolu- 
tion of the well Imown Maxwell equations [5, 71 for a 
frequency equal to zero: 

where E is the electric ficld, H is the inagnetic field, ( J )  IS 

the angular frequency of the signal and 0, p o ,  I: arc the 
constants of the medium ( j 2  = - I ) .  The Dirac function 
corresponds to thc dipolar source of magnitude I1 (I bcing 
the intensity of the corrosion currents and 1 the length of 
the line of current) oriented along the X-axis and loca- 
lised at the position determined by the r\(x,, y , ,  z , )  
vector. In an homogeneous medium (i.c. an infinitc 
sea), solving (1) leads to the following formulation o f  
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/ r  - r\,,,J = ,/(s - x, )~  + ( y  - - v , ) ~  + (z - 2mh + z , ) ~  

( 3 )  

0 first reflect on the seabed and thcn bc affected by /?I 

double-reflections on both thc seabed and the surface, 
yielding: 

0 first reflect on the surface and on the seabed and then be 
affected by ni double-reflections on both the seabed and the 
surface: so: 

0 first reflect on the seabed and on the surface and then be 
affcctcd by ni double-reflections on both the seabed and the 
surface, yielding: 

2 Ir - r,r4,,r I = d(x - x,)’ + (y  - yy) + (z - 2mh - z , ) ~  

(6) 

Thcsc different paths lcad to many coinponcnts for the 
signal collcctcd at any point in the water and it is worth 
noting that the only diffcrence between (3)-(6)  is thc 
vertical distance covered and the number of double- 
reflections (i.e. thc term z + t : n z h  + t ; ’ ~ , \  with I: = f I 
and I ! =  f 1). For each path, (2) is valid when replacing 
z - z , ~  by the total vertical distance covered by the signal 
and taking into account the fact that, for each reflcction on 
the scabcd, there is an attcnuation equal to A = (01 ~ g 2 ) /  

((r, +a2), where u l  and uz respectively correspond to thc 
electrical conductivity of the sea water and the seabed. 

Then, for a target trajectory which makes an angle 
denoted ‘head’ with the X-axis of the sensor, the total 
field E observed at any point (x, J, z )  in the water and 
expressed in Cartesian coordinates linked to tlic sensor is as 
follows (Etargct being the total ficld expressed in Cartesian 
coordinates relative to the target): 

r cos(heud) - sin(/ieat/) 0 1 
0 
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with: 

and: 

p = 11 

n - x,, = v(l,.,,,'f - t) 

y - y ,  = CPA 
(8) 

In (8), CPA is the closest point of approach, that is to say 
the smallest distance between the sensor and the target. We 
can see that the three components of the electric field are 
real valued. In the expression, the infinite sun1 represents 
the different number of double-reflections (on the seabed 
and on the sea surface) corresponding to the various paths 
of the signal. Practically, due to the attcnuation at each 
reflection on the seabed, it is sufficient to only consider thc 
first 20 terms. 

Hereafter, the vertical component will be neglected i n  
this work because it is too weak to be observed. The sensor 
depth (z), the water depth ( h )  and the conductivities of the 
sea water and the seabed are known (in tlie area where 
the system is deployed) and sonic brief calculations 
and physical considcrations show that tlie shape of the 
signatures is roughly iadcpendent of the target depth zs (in 
shallow watcrs) as well as of both the CPA and the velocity 
v as long as the ratio C/%/v is constant. I n  our model, we 
can then fix the value of v and only deal with the ratio 
CPAIv. 

Then, the observation only depends on four parameters: 

0 the ratio CPAIv, 
0 the time of CPA: t(.,+, , 
0 the angle between the heading of the target and the 
X-axis of the sensor, here denoted as 'hecrcl', 
0 a inagnitude coefficient k ,  that is a function of the 
electric moment of the source ,ti = 11 and of the velocity 
of thc target v. 

An example of the electrical signatures is shown on 
Fig. 1 (with and without noise) for an electric moment 
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equal to 50 Am (ampere metre). This represents the mcan 
value of alternating electric moments measured on US 
merchant ships in Bostick et crI. [14], assuming that the 
static electric nionicnt is of the same order of magnitude 
(in fact, i t  is generally stronger). 

On Fig. 1, the X-axis represents the time (in seconds) and the 
Y-axis the electric field in nanovolts per metre. The seabed 
conductivity is cxpressed i n  sicincns per metre (S,"). 

3 Detection with the generalised likelihood 
ratio test (GLRT) 

3.7 Principle 
The outputs of the two horizontal axes of the sensor, which 
are assumed to be temporally white, normal and correlatcd, 
arc used simultaneously. Thus the total observation can be 
viewed as a sequence of N two-dimensional random 
vectors ( t  means 'transpose'): 

Due to the limited bandwidth of the signals we wish to 
detect, the sampling rate is typically 0.05 Hz and the 
number of samples N to consider can bc talmi to be 
equal to 100. Then, we have to deal with tlie two following 
hypotheses: 

= hi + k E ( 8 ,  i) 

whcrc k is the magnitude factor previously defined and 8 
thc vcctor of parametcrs containing CPA/v, the target 
heading and t ( ' / > A .  I n  (9) and ( I O ) ,  the signal E is given 
by (7) and (8) (for 11 and 11 being arbitrarily taken respcc- 
tively cqiial to I Am and to 1 ids ,  since the shape of E does 
not depend on v but only on the ratio CPAlv which is 
included in  0 and 12 rcpresents the noise described i n  
subsection 2.1. The Iildihood ratio stands as follows: 

I 1 exp[-:x(Z: - kE' (8 ,  i ) ) P ( Z i  - k E ( 8 ,  i)) 
A(z) = r 1 

where: 

Now, l<ecping in mind that the matrix r is symmetric and 
positive definite, let A and B be two vectors having the 
same form as the observation z ,  wc can define a scalar 
product by: 

/ 

with: 

x =  
. .  

[O] .. ' .  : 
. .  . 
: . . ' . [O] 

[O] ' . . [O] r 
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Then, the normalised signature vector u(8) is defined by 
noriiialiscd the vcctor E(8) ,  i.c.: 

s(8) = /cE(8) = KU(6) 

with: 

where s(0) is the signature of the target received on the 
sensor. Then, by using this scalar product, the expression 
of the likelihood ratio becomes: 

A(z) = exp - - ( K 2  - 2 K ( z ,  ~ ( 8 ) ) )  [ :  
so that: 

arg max(A(z)) = arg max(log(A(z))) 
0 . K  O , K  

~ ( 8 ) )  + K 2 )  

(15)  
and finally: 

6 = arg max((z, u ( ~ > ) ~ )  k = (z, u ( 6 ) )  (16) 

The parameter vector 8 is estimated by sclccting the 
normed signal u(8) which maxiinises the energy of projcc- 

(I 
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tion (z, ~ ( 8 ) ) ~  (in the sense oftlie previously defincd scalar 
product). K is then given by the norm of the projection. 

So, a quantity ofthc form lh',zI2 is computed, where no 
is a projector parainctcriscd by 8: 

The energy of projection, considered as a function of thc 
parameter vcctor 8, is not concave. Moreover, the presence 
of local cxtrema means that gradient descent algorithms 
cannot be used. The only method available is to cursorily 
examine all the possible values of the parameters by using 
a discretisation grid. Then, by sclecting thc best onc, we 
get a rough estimation o l  the parameters; the accuracy of 
which is limited by the stepsizc of the grid. It is then 
possible to improve the estimation or' the parameters by 
using a standard numerical optiinisation code initialised by 
this rough estimation, i.e. in the vicinity of the global 
maximum. 

Then, the decision that the estimated target is present is 
made conditionally to the test: 

3.2 Discretisation of the signature parameters 
First, even if the signature depends on fobur parameters, 
only three of them are involved in the expression of the 
basis of the signal space; K is only a magnitude factor. 

So, the idea consists in discretising these three para- 
meters with a sufficiently large stepsize in order to limit 
the computatioiial load, but not too large in ordcr to 
maintain the detection capabilities of the system. More 
precisely. we calculate the optimal stepsizes uiidcr the 
constraint that, whichever signal s( 8)  we might observe, 
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there exists in our systciii a normed signature u(8 + A 8 )  
such that tlic energy of projection o f  tlie observation on 
this signature remains greater than or equal to 90% of the 
energy of projection or the obscrvation upon zi(8). Then, 
our algorithm consists in: 

subject to: 

(s (O) ,  n(8 + > 0.9(.s(@), ~ ( 8 ) ) ~  

with: 

A 8  = ( A @  or LIey, de; or de,, LIB; or de,) 

8it,,;lx and Hi,,,,,, respectively correspond to the maximum 
and tlie minimum possiblc values of tlic paramcter O , ,  do,' 
is the positive error by which 8, is affected and A f l i  the 
negative one. Then, for a given observed signature, we 
have to solvc an optimisation problem with 2' constraints. 
I n  fact, wc will show that only one of them must be 
verified. 

More precisely, i f  Inf)+A6,,s(8)(2 =,f'(8+ 48) is the 
energy of the prqjection of the signature, that i s  defined 
by the parameter 8 on the basis defined by the parametcr 
8 + d @  and if A 8  is assuincd to be small, a sccoiid ordcr 
expansion yields: 

1 
2 

=,f '(8) + - [Ae]'[lzess(,f ')(e)][A8] (20) 

because the cnergy oftlic projection of the signature, that is 
dcfincd by the parameter 8 on the basis defined by tlie 
parameter 8 is a tnaximum, thus implics that its gradient 
vector at this point is the n u l l  vcctor. 

SO, tIic relatioil In, , ,.lo.s(8)~2/~~7~,s(8)~2 = 0.9 defines 
an cllipsoid centred around 8 and the optimisation probletn 
consists in  finding tlic largcst solid rcctanglc inscribed in 
thc cllipsoid. First, that implics that tlie solid rectangle is 
also cctitrcd around 8, and consequently that AOi = -AO; . 
It can be also inferred that the first vertex tliat reaches the 
ellipsoid when the solid rcctanglc increascs is the onc 
located in the quadrant containing tlic minor axis of the 
ellipsoid, that is to say the eigenvector associated with thc 
largest eigenvalue of the hcss ian  matrix. 

Consequently, i f  this vcrtcx is kept inside the cllipsoid, 
so will tlic others and vcrifying this sole constraint is 
cquivalent to considering tlic 2' initial constraints. This 
is illustratcd in Fig. 2 (for only two parameters). 

This constraint must be simultancously vcriiied for all thc 
signaturc types that we may obscrvc, that is to say, for example, 
for these possiblc values of tlic paramctcrs of tlie targct: 

0 CfA = 500 or 2000 in 
0 velocity = 2 or 8 m/s 
0 course = 0 or 45" 

t(.,>,f = 2500 or so00 s 
0 correlation coefficicnt betwecn the noiscs on the X-axis 
and tlie Y-axis= -0.8 or 0 or 0.8 

The quanti lication stepsizes obtaincd are: 

course: stcps of 30" from 0 to 180'  
0 CPA/v: stcps of 32 s from -2000 to 2000 s 

0 
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0 time of CPA: steps of 20 s from 0 to 5000 s 

That yields a set of about 100 000 bases of projection. 

4 Schematic representation of the processing 

The different tools useful for the detection of oceanic 
electric fields with the GLRT have bccn detailed i n  the 
preceding Sections and it is now possible to summarisc the 
whole algorithm by thc scheme represented on Fig. 3. 

On this schcmc, the signal model E corresponds to (8). It 
is worth luxping in  mind that tlie maximisation is iiiadc by 
choosing the tnaxiinuiii output of the different branches, 
each branch corresponding to a particular valuc of tlie 
parameter vector of the signature model; the nuinbcr of 
branches is consequently determincd by thc parameters' 
stepsizes cvaluated in Scctioii 3.2. 

5 Performance analysis 

5.7 False alarm probability 
Thc definition of thc falsc alarm probability is: 

PI., = ~~rob[max(cner~~il7crsis(t))} > q / H o ]  (2 1) 

where e~e,.gl'_htr,sis(8) is the cticrgy of pro,jectioii of' the 
signal on the basis defined by tlie parameter 8. 

The probability dcnsity function of each cnergy can first 
be calculated. As the noises arc gaussian, it i s  straightfor- 
ward to demonsti-ate that thc quantity (x, ~ ( 0 ) )  is a zcro- 
incan gaussian random variable with a variance equal to: 

1 - 1  2 var = E ( ( z ,  L 1 ( i ? ) ) 2 }  = E((EI'6)Z z )  ] 
= . ' ( 6 ) ~ ~ ' [ c n v u r ( z ) ] ~ .  L(6) = 1 (22) 

Conscqucntly, the probability dcnsity function of each 
encrgy o f  projection is a ccntrcd lchi-2 with om dcgree 
of freedom. 

Howcvcr, the fiilsc alarm probability calculation suffers 
from many fundamental dlawbaclts. Morc precisely, if the 
energies of projection wcrc all itidepcndent, the fakc alarm 
probability would bc easily dctcrniincd by: 

Pi:,\ = ptob[liiax(ene,.gl,~hc/sis( 0)) > j l / H i ) ]  

= I ~ prob[all_ener.fiie.s < I I / / / ~ ) ]  
0 

= 1 - n prob[e /? r /~)~bas is (B)  < ?/ /H[J  ( 2 3 )  
0 
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measured 
signal z - 

J“1 , 

Unfortunately, they arc not indcpcndcnt due to the fact that 
the bases of projection for different values of the para- 
mctcrs are not orthogonal. In order to calculate the PI:,, , it 
would be necessary to determine all the correlations 
between the various energies, that is to say 

(9 
correlations (= n(n - 1)/2). As n = 100 000, this is clearly 
unfeasible. 

It is worth mentioning another approach for calculating 
the PI;,, which heavily relics upon differential gcoinctry 
[lo]. But the major drawback of this method is that it is 
only valid for weak values OS the PIA (< 0.1). So, it is not 
convenient for the calculation of a complete ROC (receiver 
operating characteristics) curve. 

A third approach that could havc enabled Lis to calculate 
the PFA is the Wilks’s thcorem [c)] which dcnionstratcs that, 
if the random vectors zi are independent identically distri- 
buted under both the Ho and H I  hypotheses, then under Ho: 

2 Iog(A(z),_,) + x,’ (24) 

where r is the number of parameters. However, in our 
problem, the samples are not identically distributed under 
H I  because the mean value of each sample is then equal to 
the signature of the target which is a time-varying signal. 

The conclusion is that for such a system, the analytic 
calculation of the false alarm probability seems impossible 
and the only practical solution is to perform Monte Carlo 
simulations. This point has already been identified in 
Friedlander and Porat [15, 161; in order to avoid it, a 
suboptimal version of the GLRT is proposed, consisting in 
splitting the observed data into two sets, the first one being 
used to give an estimate of the signal parameters under Ho 
and the second one to inalte the detection. The main 
drawbacks are that this method is limited to the case of 
white noises and that it results in a decrease of the 
detection probability. 

Fortunately, the determination of the PFA by simulations 
is not a real problcin for LIS bccause thc PFA only dcpcnds 
on the set of bases of projection (which is fixed) and on the 
characteristics of the noises. So, the false alarm probability 
can be determined by simulations during a learning stage 
of the system and then be considered ltnown when the 
detector is operational. 
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decision: 
HO or H I  

5.2 Detection probability 
Surprisingly, the determination of the detection probability 
is less problematic. Our demonstration is detailed in the 
Appendix but we will now present the main results. 

Our work is based on the assumption that, as the observed 
signal is embedded in noise, the energy of projection will 
not be a maximuinJor the real value of the parameters but 
rather for a value 8 close to the real value. Then, we can 
expand the energy of projection up to the second order: 

I H ~ Z I ’  =,r(i> = . f ( ~ >  + [tj - ~]‘ [gr:r tc t i ( .~) (~) l  

+ ! [ ~  - O]‘[heLss(,f)(0)][6 ~ O ]  (25 2 

and we then find that its maximum value is given by: 

I 
supJ.(i) =. f ’ (O)  - z [grati(,f’)(8>]‘[he.s.s(,f’)(B)]-’ 

H 

x [P”:rtcd(.f)(O)l (26 
Now, calculations presented in the Appendix give that: 

Then, we show that: 
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with p= 3. Now, by demonstrating tlie fact that this 
random variable is iudependent of j ( 0 )  which is thc 
square of a gaussian random variable equal to: 

( z ,  U )  = K + u ' x - l h  (30) 
wc arrive at the conclusion that the probability density 
function of the maximum of the projection energies is a 
non-central Itlii-2 with I + p  = 4 degrees of ficcdom: 

s~p,J'(Cj) = sup In,~l' = 2 log(A(~),,_h) + x:(K2) ( 3  1 )  

This result is the same a s  the oiics givcti by Kendall and 
Stuart [ 171 and also Zhu and Haykin [ I  I ]  but its validity is 
no longer litnitcd to the case of indepcndcnt identically 
distributed sainplcs and we have cstablishcd that this 
assumption is not required as long as the SNlZ remains 
strong enough. This result cnablcs us to compute thc 
operational cliaractcristics of the dctcctor. This point will 
be devclopcd in Section 6. 

H n 

5.3 Cramer-Rao lower bounds (CRLBI 
The calculation of the Cramer-Kao Lower Bounds (CRLB) 
of the estimators reqiiircs the deterinination of the Fisher 
information matrix FIMo: 

E ( ( 6  - O ) ' ( t )  - 0))  ? F f M , '  

with: 

I n  (32), pe(z )  is the probability density fimction of the 
observation z conditionally to thc parameter 8. The sign 
'greatcr than or equal to' means that thc diffcrcnce between 
the two matrices is non-negativc definite. 
Under the assumption of a normal obscrvation: 

( ( z  - Ku(0)), ( z  - Ku(O)))] ( 3 3 )  

so that: 

and finally: 

5.4 Performance of the estimators 
The behaviour of an  estimator is fully determined by the 
Imowledgc of its probability density function. In general, 
the CRLB is riot necessarily rcaclicd. 

First, classical theorems that dcmonstrate the asymptotic 
normality and consistency of tlie maximiini liltclihood 
estimator require the assumption of independent identi- 
cally distributed samples. As the signature of the targct is a 
time-varying signal, this hypothesis is not verified. 

Some results also enable tlie gcncralisation of tlie pre- 
vious theorems to the case of time-varying probleins [8], 
but the signal must have an infinite duration. However, for 
thc electrical signatures, after a certain time, when the 
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targct is far enough away, they become identically equal to 
zero, rcgardless of the value of the parameters of the target. 
So, they do not apply to our problem. 

Nevertheless, if we assume that the SNR is strong 
enough, it is possible to establish the normality and the 
consistency of our estimator by using the results of our 
calculation of the detection probability. In fact: 

[6 - 01 = - [he~s ( . f ' ) (0 ) ] - ' [gmd( f ' ) (# ) ]  (36) 

and under the hypothesis of a strong enough SNR, we have: 

... -- 

So, it is straightforward to deduce that: 

So, we scc that the MLE estimator has a rather 'classical' 
behaviour despite non-stationarity and time-limitcd 
signals, 

6 Simulations 

In Fig. 4, the results of Monte Carlo simulations (for the 
signals represented in Fig. I )  are presented and cotnparcd 
with their theoretical counterpart. The left-hand sides of 
Figs. 4u, h and c represent the histograms of the estimators 
for a targct whose kinematic parameters are given in the 
figure caption. Thcir theoretical probability density func- 
tions (pdt) (which are iiormal functions centred on the true 
values of the parameters and with variances equal to 
the CRLB) are also plotted in tlie right-hand sides of 
these Figurcs. I n  Fig. 4 4  we present the ROC curve 
obtained by simulation, for a far away target in order to 
iiialtc the curve easier to read, and compare it with the 
'theoretical/ simulation' curve for which the detection 
probability was analytically calculated and the false 
alarm probability was determined by simulation. 

Good agreement betwccn tlie theoretical results and the 
simulations is obtained, both for detection and estimation, 
with a very low SNR (see Fig. I ) .  Thc estimators are 
almost optimal, they reach the Cratiier-Rao lower bounds, 
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Fig. 4 Pei;jiwniai?ce of the .\J * x1etn 
C'PA = 800 in; V =  5 m/s; / ictrt l= 90"; J J  = SO .Am; i, = 100 in: z = I90 111; h = 200 in; aiid u2 = 0.0 I s/m 
u I-listograin and thcoretical pdf of thc estimator of thc hcading 
h Histogram and theorclical pdf of thc cstiiiiator o f thc  tiinc of C'fY 
c Histogram and theorctical pdf of thc cstiinator o f  CPA/v 
t l  ROC CIII'VC 

they are gaussian and consistent, the C f A / v  estimator 
exccpted, which is affected by a small bias. 

This bias can be justified by the fact that tlic dependency 
of our physical model upon tlic single ratio CfA/v  (and not 
upon both CPA and v )  implies greater horizontal distances 
coiiiparcd with the vertical distances. In our simulations, 
with a CPlI distance equal to 600 m and a watcr depth equal 

to 200 m, this assumption is not completely realistic and 
the shape of the signature depcnds on both CPA and v. 

The theoretical detection probability also presents a 
good agreement with the simulation results; the error is 
always lcss than 10% and cven less for sinal1 values of the 
false alarm probability (which will be tlic case for an 
operational system). 
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7 Conclusions 

This work has shown the potentialities o r  a detection/ 
localisation system based on the application of the GLKT 
on the obscrvation collected on a vectorial U E P  sensor. 
Spatio-temporal processing has been directly incorporated 
in the physical modcl of the target signatiircs and a realistic 
performance analysis has been dcveloped. Due to particu- 
lar assumptions, classical results for perforinance analysis 
do not hold; this leads LIS to consider a specific k ” n r l i  
which is general and applicable to inany other problems. 
Original results have been established. They enable us to 
accurately predict tlic behaviour of our system both for 
dctectioti and estimation. These approximations are valid 
under mild hypotheses. 

Good detection and estimation capabilities for 0111‘ 

system have bccn deiiionstratcd, both in theory and simu- 
lations. Tlic theory has becti presented in a unified forin- 
alism and gave results which might be instruinental in the 
development of a multise~isor system. 
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9 Appendix 

Our calculation of thc dctcction probability follows the general 
guidelines ofVillier [ IO] .  Our calculation slightly diffcrs from 
that of Villicr [ 101 and constitutes a generalisation to the case 
of a multi-dimensional vector of parameters. 

Our work is based on thc assumption that, as thc obscrvcd 
signal is embedded i n  noise, the energy of projection will 
not be a iiiaxiinuiii for the real value of the parameters but 
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rather for a value 6 close to the real value. Then, wc can 
expand the energy o f  projection up to the second order: 

/ p 7 $ Z / *  =.f(6, =. f (O)  + [i - O ] ‘ [ p t l c r ( . f ) ( e ) ]  

1 
2 + - [i - e]‘[hess( , f ) (e)][ i  - e] (40) 

Differcntiating (40), it appears that the iilnction ,f(6) is a 
inaximuin for: 

[i - (31 = -[hess(f)(e)l-’[gr.ccd(,f)(B)l (41) 
Substituting tlie value given by (41) in  (40), we have: 

I 
2 

supj’( 6) =,f( e )  - - [ grad(.f)( 8)]‘[/zess(,f)( e)]-’  
0 

x [ s r 4 f ’ ) ( m  (42) 
Using the general propcrties of prqjectors, and more 
precisely the fact that ( n o z ,  II~Z) = (z, L’,Jz), wc call 
write that: 

[ grad(,f’)( e)] = [fif’ud ( 1 nfJ z I ’> ] = [firclfr( ( n,Jz, “Oz))] 

= [b’ l lCld( (Z ,  “ o z ) ) ]  (43) 

with: 

So, replacing z by s + b  whcre s=Kz~(8 )  is the obscrvcd 
signature and h the noise in which it is embedded, we have: 

We can siniilarly calculate the expression of the hessian 
matrix: 

L 

Now, using thc equality llull = 

(u ,  $) = Zf‘Z 

and again differentiating (47): 

, we obtain: 

1 au - = o  ao; (47) 

Differentiating tlie exprcssion of the projcctor ( I  7) also 
gives: 
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from which it can be inferred that: 

I an, ~ "cc' --I 
U ' X -  iJ0, aoi 

so that: 

(51) 
an, au 
ao, i30, 

- L l = -  

Now, differentiating the projector to the second order 
yields: 

Froin (51), we deduce that: 

and thcn: 

(54) 

From (47) and (SI) ,  it can be inferred that: 

and froin (54): 

Now, assuming that thc SNR is not too weak, further 
approximations are realistic which consists in neglecting 
in (45) the third tcrin and only keeping the first term in 
(46). Using (55) and (56) ,  it leads to the following 
approximations: 

and: 

The hcssian matrix has then thc behaviour of a determi- 
nistic matrix and the maximum of the energies of projec- 
tion can be simply viewcd as a sum of two random 

variables. It just remains to derive their probability density 
function. F O ~  the first one, f ( ~ , , >  = ln,(,s + b>12, it is 
straightforward to show that: 

/(e) = (z, I1(8))* = ( s  + h,  u(0))2 

= ( K  + (b ,  n(e)))2 + &K2) (59) 

For the second random variable, we .just have to note that: 

[ g r M , /  )(a 

and then, it clearly appears that: 

1 
- [ ~ r . i ~ ( . ~ ~ ( ~ ) ~ ' [ ~ z ~ s s ~ f ' ) ( ~ ) ~ - ' [ g r ~ ~ ~ ~ ~ ) ( ~ ) ~  + 1; (61) 

with p = 3. Now, we only have to prove the independence 
OS the two random variables. 

I;irst, ,/(O) is the square of a gaussian randoni variablc 

(62) 

equal to: 

(z, u )  = K + 1 1 ' P b  

and the gradient is a gaussian random vector equal to: 

So, tlie calculation of tlie correlation bctwecn f (  0) and each 
component of the gradient vector gives: 

So ( z ,  u )  and each component of [grad(J')(O)] are uticor- 
related. As they are also normal, they arc independent. 

Thc conclusion is that the probability density function of 
the maximum of thc projection energies is a non-central 
khi-2 with 1 + p  = 4 degrees of freedom: 

sup,f'(i) = s~~pli)zI'= 2 log(A(z),_i)) + x; (K2)  ( 6 5 )  

This rcsult is the same as the one givcn by Kendall and 
Stuart [17] and also Kay [lX] but its validity is no longer 
limited to the case of independcnt idciitically distributed 
samples and we have established that this assumption is not 
required as long as thc SNR reniaiiis strong enough. 

0 0 
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