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Abstract: This paper deals with search for a target following a Markovian movement or a
conditionally deterministic motion. The problem is to allocate the search efforts, when search
resources renew with generalized linear constraints. The model obtained is extended to resource
mixing management. New optimality equations of de Guenin’s style are obtained. Practically, the
problem is solved by using an algorithm derived from the FAB method. c© 2002 Wiley Periodicals, Inc.
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1. INTRODUCTION

Search theory is the discipline which treats the problem of how best to search for an object
when the amount of searching efforts is limited and only probabilities of the object’s possible
position are given. Search theory came into being during World War II with the work of Koopman
and his colleagues [8] in the Antisubmarine Warfare Operations Research Group (ASWORG).
Since that time, search theory has grown to be a major discipline within the field of operations
research. An important literature has been devoted to this subject, interested reader may consult
various extensive surveys [2], introductory texts [11], and books [7, 9, 13, 18]. Even quite recently,
a meaningful contribution has been done by Hohzaki and Iida [5] in the area of double-layered
search optimization. The problem we investigate here share some viewpoints with [5] even if the
algorithmic treatment is fundamentally different. More precisely, we consider search optimization
in a continuous framework which allows a greater flexibility (especially for a Markovian target)
and avoids enumerative optimization.

The situation is characterized by three pieces of data:

i. The probabilities of the searched object (the ‘‘target’’) being in various possible
locations.

ii. The local detection probability that a particular amount of local search effort
should detect the target.

iii. The total amount of searching effort available. The problem is to find the optimal
distribution of this total effort, i.e. which maximizes the probability of detection.
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Solving such problems requires to optimize the processing of optimization problems involving
large numbers of variables, e.g., 3600–12,600 for our examples. Decisive improvements have
been made for finding search strategies that maximize the probability of detecting a moving
target within a fixed amount of time periods. In particular, Brown [3] has proposed an iterative
algorithm in which the motion space and the time frame have been discretized, and the search
amount available for each period is infinitely divisible between the grid cells of the target motion
space. In this approach, the search effort available for each period is bounded above by a constant
that does not depend on the allocations made during any other periods.

Even if the general formalism of search theory will be of constant use subsequently, we shall
consider now a specific problem. In the framework of ‘‘classical’’ search problems, the amount
of search effort available at each period is bounded above by a fixed and known value. For a
multiperiod search, the final result (the global probability of detection) is tightly related to the
sequence of successive search amounts. Thus, optimizing the sequence of search amounts is quite
challenging. However, it is not possible to optimize separately the sequence of search amounts and
the search plans (i.e., the distribution of elementary search efforts). Here we shall consider general
constraints relative to this sequence. These constraints may take into account specifications relative
to the renewal of search resources (see Section 3) as well as general operational requirements,
including multitype resource management. Such associated optimization problem is the object of
recent developments. For instance, in [5], Hohzaki and Iida also considered generalized constraints
(e.g., the total amount of search efforts). This work appears to be a great advance for solving such
combined problem. However, their method strongly departs from ours. Indeed, dealing with
continuous search variables allows us to solve a very large optimization problem in a Brown–de
Guenin framework. Thus, combinatorial difficulties are greatly reduced. Another difference is the
type of constraints we consider. For instance, Hohzaki and Iida [5] deal with direct (fixed) bounds
on constraints defined at three levels:

• Space and time level: Each local resource for a given cell and a given period is
bounded.

• Time level: the (weighted) sum of the local resources for a given period is
bounded.

• Global level: the (weighted) sum of all local resources is bounded.

However, a large part of our contribution is centered around the simultaneous optimization of both
the sequence of search amounts according to a linear conditioning (temporal optimization) on the
first hand and the spatial distribution of search efforts for each time period (spatial optimization)
on the other. Moreover, our viewpoint is quite versatile and permits to handle renewable and
multi-mode resources [19].

In our method, the general optimality equations are derived by means of a method largely in-
spired from classical search theory (namely de Guenin’s equations), though they are considerably
more complicated (see Section 2.2). An original algorithmic approach has been used for solving
the optimization problem. It combines theoretical results of Section 2.2 with a study of the dif-
ferential changes of the nondetection probability (see Section 4). In order to render the problem
feasible, the Markovian hypothesis (relative to the target motion) is instrumental, allowing us
to use the Brown’s implementation (see Section 4). Various extensions will then be considered,
namely, extension to mixed resources (Section 5) and inequality constraints (Section 6). Finally,
our methods and algorithms are illustrated by simulation results (see Section 7).
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2. THE SEARCH PROBLEM

2. 1. Search for a Stationary Target

The problem is to detect a target x, lying in a space E, and whose location is characterized by
a (known) probability density α(x). To make this detection, a limited amount of search resource
φ is available. This (total) search effort may be distributed along the whole space E. To describe
the distribution of the search effort, we denote by ϕ(x) the search density allocated to x ∈ E. The
limitations on search resource inferred by φ yields the following condition on the search effort
distribution ϕ(x):

∫
E

ϕ(x) dx ≤ φ. (1)

When the local search effort ϕ(x) is applied to location x, if the target is at x, then the probability
of nondetection of the target is px(ϕ(x)), a conditional probability. This probability may depend
upon x. For x fixed, px decreases with the effort used and then p′

x < 0. We suppose the detection
follows the rule of decreasing return, so that p′

x increases strictly with ϕ. According to these
notations, our problem is to find the search effort distribution ϕ under the condition (1) in order
to minimize Pnd(ϕ), the global probability of nondetection:

Pnd(ϕ) =
∫

E

α(x)px(ϕ(x)) dx. (2)

As the probability of nondetection decreases with the increase of search effort, the optimal solution
is obtained by means of an entire use of the efforts. The condition (1) becomes

∫
E

ϕ(x) dx = φ. (3)

From (2), (3) and from the positivity of density ϕ, the de Guenin’s equations (4) are obtained
(refer to [4] for a proof). They give optimality conditions on ϕ, scaled by a scalar term η < 0, i.e.,

{
α(x)p′

x(ϕ(x)) = η if α(x) > η/p′
x(0),

ϕ(x) = 0 else.
(4)

Using inversion of p′
x in (4), a function ϕη is obtained, defined by

{
ϕη(x) = p′

x
−1
(

η
α(x)

)
if α(x) > η/p′

x(0),
ϕη(x) = 0 else.

Since p′
x is strictly monotonic increasing, ϕη increases uniformly (i.e., for each x ∈ E) with η

and
∫

E
ϕη(x) dx increases. Then ϕη will satisfy (3) for only one value of η. Once the convenient

value ηo of η has been obtained (e.g., by means of a bisectional search), the optimal function ϕ
is ϕηo

.
It is remarkable that this method allows to optimize a great number of variables [i.e., eachϕ(x),

for x ∈ E]. This massive optimization is made feasible, since the unknown function ϕ is linked
to one single scalar variable, say the dual variable η. This very fast method, tracing back to the
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seminal work of Koopman and de Guenin, has been extended by Brown and Washburn to deal
with multiperiod search for a Markovian moving target. It will be of constant use subsequently.

2. 2. Search for a Moving Target

Our objective is to detect at one (or more) time-period a target moving in a given space E
(assuming stationarity for each period). The detection is done within T time-periods and the
search ends after the first detection. We define ~x = (x1, . . . , xT ) the position of the target during
the time-periods 1, 2, . . . , T . We assume that the target motion is probabilistic and Markovian.
Because of the Markovian property, the probabilistic density α(~x) = α(x1, . . . , xT ) of the target
trajectory may be written as a product of elementary densities, i.e.:

α(~x) =
T−1∏
k=1

αk(xk, xk+1). (5)

For each time-period k a given amount of search effort φk is available. It may be distributed along
the search space E. The (local) search effort, applied to the point xk ∈ E at time k is denoted
ϕk(xk). So, at each time period, the following (equality) constraint (6) is commonly considered
in the search theory literature:

∀k ∈ {1, . . . , T},
∫

E

ϕk(xk) dxk = φk. (6)

Associated with the local effort ϕk(xk), we call pk,xk
(ϕk(xk)) the conditional probability not

to detect the target within the time period k, when its location is indeed xk. We still assume that
the detection follows the law of diminishing return. Thus for xk fixed, p′

k,xk
< 0 and p′

k,xk
is

strictly increasing. The convexity of each functions pk,xk
is not sufficient however, to ensure the

convexity of the whole problem. It is moreover assumed that log pk,xk
is a convex function, and

this hypothesis yields the convexity of the problem (refer to Appendix D for more clarifications
and justifications).

The problem is then to find the functionsϕk in order to minimize Pnd(ϕ) the global probability
of nondetection, under the constraint (6). Since the elementary detections are independent,Pnd(ϕ)
stands as follows:

Pnd(ϕ) =
∫

ET

α(~x)
T∏

k=1

pk,xk
(ϕk(xk))

T∏
k=1

dxk. (7)

For a particular time-period κ,Pnd(ϕ) can also be written:

Pnd(ϕ) =
∫

E

βϕ
κ (xκ)pκ,xκ(ϕκ(xκ)) dxκ,

where

βϕ
κ (xκ) =

∫
ET −1

α(~x)
k /=κ∏

1≤k≤T

(pk,xk
(ϕk(xk)) dxk). (8)
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This shows that, when the search efforts are fixed for all the time periods, except for a given
one denoted κ, the optimization problem may be solved as the following 1-period de Guenin’s
problem:

Minimize: Pnd(ϕκ) =
∫

E
βϕ

κ (xκ)pκ,xκ
(ϕκ(xκ)) dxκ,

subject to:
∫

E
ϕκ(xκ) dxκ = φκ and ϕκ ≥ 0. (9)

Then, the following de Guenin’s conditions are obtained and inverted by the algorithm described
in section 2.1: {

βϕ
κ (xκ)p′

κ,xκ
(ϕκ(xκ)) = ηκ if βϕ

κ (xκ) > ηκ/p
′
κ,xκ

(0),
ϕκ(xκ) = 0 else.

(10)

Brown’s algorithm follows these general guidelines. The distributions of the search efforts
are successively optimized for each time-period (see the following algorithm), the other ones
being fixed. An optimal solution for the multiperiod search is obtained as result of these iterative
one-period optimizations:

1. Initialization, set κ = 1.
2. Apply de Guenin algorithm on βϕ

κ (xκ)p′
κ,xκ

(ϕκ(xκ)) = ηκ and optimize ϕκ.
3. set κ := κ+ 1 mod T (cyclic increment of κ).
4. Return to 2 until convergence.

Convergence requires only a few iterations. A fundamental ingredient of this algorithm is to use
basically the Markovian assumption relative to α, so as to drastically reduce the computation
requirements for the integral (8) (Forward And Backward algorithm [3, 17]). As we shall see
later, this idea will be instrumental for the development of a feasible algorithm for solving the
search problem with generalized constraints.

Until now, the constraints we considered were directly related to the values of φk, the amounts
of resources affected to each search period. The aim of this article is to generalize the multiperiod
search to more flexible constraints. This includes especially simple cases of resource renewal.

3. GENERALIZED CONSTRAINTS

As seen previously, the Brown’s algorithm supposes the time-splitting φ of the constraints to be
known. For example, Brown’s algorithm does not know how to split (optimally) the global amount
of search resources between each period of search. A general formulation of resource time sharing
will be built below and illustrated by two examples. It will be of constant use subsequently.

3. 1. Splitting Nonrenewable Resources

A total amount Φ of search resources, one time only usable, is to be spread over T time periods.
As we want to optimize the probability of detection within the T periods, we have to split Φ into
T period resources φk so that

∑T
k=1 φk = Φ, or, equivalently,

Aφ = ψ, (11)

where A is the row-matrix AR∞ = (1 · · · 1) with T elements, φ is the T -dimensional vector
of search efforts and ψ is the 1-dimensional vector ψR∞ = (Φ). In Section 7, we will refer to
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this matrix as AR∞ and to this vector as ψR∞, where the subscript R∞ indicates nonrenewable
resources.

Extension: A related model is possible, for non-self-renewable resources, which are restored
by external support. Imagine, for example, non-self-renewable resources, which are restored
(externally) every three periods. Constraints are similar to nonrenewable case, but the position
is reset every three periods. Constraints are also of the form φ3k+1 + φ3k+2 + φ3k+3 = Φ, last
constraint being possibly truncated. The following linear constraint is obtained, for T = 8:

 1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 1


φ ≤


 Φ

Φ
Φ


 .

This kind of constraint should not be confused with constraint for self-renewable resources. In
particular, the previous matrix should not be confused with matrixAR3, described in next section.

3. 2. Splitting Self-Renewable Resources

Assume now that we have an amount Φ of search resources self-renewable after some time
periods (time for replenishment, for moving, deployment constraints of detection devices, etc.).
For example, we can assume that resources self-renew after two periods so that the same resource
unit cannot be used simultaneously for two consecutive periods. However, a resource unit becomes
available again two periods after last use. If we make summation of the units, that means for two
following periods k and k + 1 the relation φk + φk+1 = Φ. These relations are equivalent to the
following linear constraints:

Aφ = ψ, (12)

whereA is the band-diagonal matrixAR2 = (aR2(i, j))i,j with T − (2− 1) rows and T columns
defined by { ∀i ∈ {1, . . . , T − 1}, aR2(i, i) = aR2(i, i+ 1) = 1,

aR2(i, j) = 0 else.
(13)

and ψ is the vector ψR2 = (Φ · · ·Φ)t with T − 1 components. In Section 7, we will refer to this
matrix and its corresponding constraint vector asAR2 and ψR2, where the subscriptR2 indicates
2-periods self-renewable resources.

In an analogous fashion, for a resource that self-renews after three periods there is a similar
band-diagonal matrix AR3 with T − (3 − 1) rows and T columns:{ ∀i ∈ {1, . . . , T − 2}, aR3(i, i) = aR3(i, i+ 1) = aR3(i, i+ 2) = 1,

aR3(i, j) = 0 else.

In fact, the above modeling appears sufficiently general to handle a variety of constraints related
to the use of detection resources (see, e.g., [10, 16]).

3. 3. The General Optimization Problem

More generally, the linear formulation

Aφ = ψ (14)
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of period-sharing constraints seems sufficiently versatile to handle a great variety of resource
allocation problems. MatrixA represents the matrix of resource renewal. Object ψ = (ψj)1≤j≤Θ
is the vector of resource constraints. Of course, a reasonable hypothesis is that AX = ψ admits
at least one solution X ≥ 0. This hypothesis is suitable for constraints not over-determining the
variable φ. It is generally the case in practice. Anyhow, this theoretical default will be overcome in
Section 6, where problems with inequality constraints will be treated. Using the above notations,
our optimization problem becomes

Minimize: Pnd(ϕ) =
∫

ET α(~x)
∏T

k=1 pk,xk
(ϕk(xk))

∏T
k=1 dxk, (15)

under constraints: ϕ ≥ 0, φ ≥ 0,
∀k ∈ {1, . . . , T}, ∫

E
ϕk(xk) dxk = φk,

Aφ = ψ.

At this point, it is interesting to place the work of Hohzaki and Iida in our framework. More
precisely, the following optimization problem is considered in [5]:

Maximize: f(ϕk(xk)|1≤k≤T ;xk∈E),
under constraints: 0 ≤ ϕk(xk) ≤ mk(xk), (16)∑

xk∈E ck(xk)ϕk(xk) ≤ φk, (17)∑T
k=1

∑
xk∈E ck(xk)ϕk(xk) ≤ Φ. (18)

Function f represents a general (concave) evaluation function. Target probability α does not
explicitly appears (implicitly defined by f ), which represents a greater degree of generality.
However, our problem formulation (15) is more adapted to massive optimization. We stress that
we will deal with optimization of both the {ϕk(xk)} and of the sequence of search amounts {φk}.
We thus see that these two problems present strong similarities even if the ways to solve them
fundamentally differ. Finally, we will omit the local constraint on search effort (i.e., ϕk(xk) ≤
mk(xk)) from the general presentation. For completeness, it is addressed in Appendix C.

4. NUMERICAL RESOLUTION

4. 1. Algorithm

We shall develop now an original numerical method for solving our optimization problem. We
refer to the formalism introduced in (15). Then, considerA∼ a matrix such that kerA = Im(A∼)
and a vector φ0 satisfying to Aφ0 = ψ. These matrices and vectors may be found by means of
elementary algorithms (e.g., adaptation of Gauss method). As illustration, examples of matrices
A∼

R∞ and A∼
R2 are given below:

A∼
R∞ =




1 0

−1
. . .
. . . 1

0 −1


 and A∼

R2 =




1
−1

...
(−1)T


 .
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We denote p the number of columns of A∼. Then, for each vector φ fulfilling Aφ = ψ, the
property A(φ− φ0) = 0 holds and there is a vector ν ∈ R

p such that

φ = φ0 +A∼ν.

LikewiseAφ = ψ holds true for all the φ vectors of the preceding form. The basis of the algorithm
is to optimize variations of the independent variable ν for minimizing Pnd(ϕ). More precisely,
define the optimal nondetection probability for a given time-sharing vector φ:

Pnd(φ) = min
ϕ:∀k

∫
ϕk=φk

Pnd(ϕ). (19)

The problem is to optimize the choice of ν so as to minimize Pnd(φ) = Pnd(φ0 + A∼ν). For
this purpose, we will study the differential behavior of Pnd(φ0 +A∼ν) relatively to ν. Moreover,
we will have to take into account the resource positivity constraints.

4. 1. 1. Differential Behavior of Pnd(φ0 +A∼ν)

Assumeϕ be an optimal solution for the vector of search effort φ, and consider a variation dφ of
this vector. There are two (equivalent) ways to define the variation dPnd(φ). The first one is to set
dPnd(φ) = Pnd(ϕ+dϕ)−Pnd(ϕ), whereϕ+dϕ is chosen as the optimal solution for the vector
of search effort φ+ dφ. The second way is to set dPnd(φ) = mindϕ[Pnd(ϕ+ dϕ) − Pnd(ϕ)],
where dϕ accords with the constraints. We elect this second method. From now on, notation
dϕPnd(ϕ) = Pnd(ϕ+ dϕ) − Pnd(ϕ) is used. From definition (7), we have

dϕPnd(ϕ) =
∫

ET

α(~x)


 T∏

j=1

(pj,xj
((ϕj + dϕj)(xj)) dxj) −

T∏
j=1

(pj,xj
(ϕj(xj)) dxj)


 .

A first-order expansion relatively to the product gives the more linear form:

dϕPnd(ϕ) =
T∑

k=1

∫
ET

α(~x)


∏

j /=k

(pj,xj (ϕj(xj)) dxj)




× (pk,xk
(ϕk(xk) + dϕk(xk)) − pk,xk

(ϕk(xk))) dxk,

which can be rewritten in the two following ways, according to definitions (8):

dϕPnd(ϕ) =
T∑

k=1

∫
E

βϕ
k (xk)p′

k,xk
(ϕk(xk)) dϕk(xk) dxk,

dϕPnd(ϕ) =
T∑

k=1

∫
E

βϕ
k (xk)pk,xk

((ϕk + dϕk)(xk)) dxk −
T∑

k=1

∫
E

βϕ
k (xk)pk,xk

(ϕk(xk)) dxk.

(20)

Only last equation is useful for the moment. In this equation, the second member of the subtraction
is constant (ϕ is known as an optimal solution for φ) and only the first sum has to be minimized.
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The minimization of this sum reverts to minimizing each of its members. The minimization of
dϕPnd(ϕ) then reduces to optimizing, for each index k, the variation dϕk so as to minimize the
following 1-dimensional integrals:

∫
E

βϕ
k (xk)pk,xk

((ϕk + dϕk)(xk)) dxk. (21)

The above expression is minimized under the constraint
∫

E
(ϕk +dϕk)(xk) dxk = φk +dφk and

positivity of ϕk +dϕk. This minimization occurs even when ϕ is maintained constant. Assuming
ϕ constant means that βϕ

k is constant too. Then the optimization of dϕk, which is equivalent to
optimizing ϕk + dϕk in (21), reduces to a 1-period search problem of de Guenin. This problem
is clearly solved by means of the de Guenin optimality conditions:

{
p′

k,xk
((ϕk + dϕk)(xk))βϕ

k (xk) = ck if βϕ
k (xk) > ck/p

′
k,xk

(0),
(ϕk + dϕk)(xk) = 0 else.

(22)

However, this equation is related to the optimality equations for ϕ [refer to (10)]:

{
p′

k,xk
(ϕk(xk))βϕ

k (xk) = ηk if βϕ
k (xk) > ηk/p

′
k,xk

(0),
ϕk(xk) = 0 else.

(23)

The rather rough notation ck = ηk + dηk will be used from now on. Variation dηk, which
corresponds to a 1-dimensional optimization, must not be confused with the variation of η obtained
from the global optimization. We stress that the associated optimality equations must be put
together so as to deduce dϕ. Partial derivative of Pnd(φ) is then deduced. But two cases are
distinguished.

A—First Case: φk > 0. The sets defined below are instrumental in the forthcoming develop-
ment:

X = {xk ∈ E/βϕ
k (xk) > ηk/p

′
k,xk

(0)},

Y = {xk ∈ E/βϕ
k (xk) > (ηk + dηk)/p′

k,xk
(0)},

F = {ε ∈ R
−∗, such that the measure of {xk ∈ E/βϕ

k (xk)p′
k,xk

(0) = ε} is positive}.
Because of (22) and (23), X and Y are thus defined so that ϕk(xk) = 0 whenever xk /∈ X and
(ϕk + dϕk)(xk) = 0 whenever xk /∈ Y . It is obvious as well (a basic measure property) that
the sets {xk ∈ E/βϕ

k (xk)p′
k,xk

(0) = ε} have almost always a zero measure. Thus, the set F is
discrete and it will be assumed that the problem is sufficiently regular to ensure that F does not
contain a point of accumulation. A consequence is that the complement F c of F is an open set.
This property will be useful to handle borders X\Y and Y \X . Now, optimality equations are
differentiated by subtracting (23) from (22) and by means of first-order expansion around ϕk(xk)
or ϕk(xk) + dϕk(xk):




∀xk ∈ X ∩ Y, βϕ
k (xk)p′′

k,xk
(ϕk(xk))dϕk(xk) = dηk,

∀xk ∈ X\Y, βϕ
k (xk)p′

k,xk
(0) − βϕ

k (xk)p′′
k,xk

(0)dϕk(xk) = ηk,

∀xk ∈ Y \X, βϕ
k (xk)p′

k,xk
(0) + βϕ

k (xk)p′′
k,xk

(0)dϕk(xk) = ηk + dηk,

∀xk ∈ E\(X ∪ Y ), dϕk(xk) = 0.

(24)
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Some useful results are now established. From de Guenin’s equation (23) [4] follows directly
that ∀xk ∈ X ∩ Y, βϕ

k (xk)p′
k,xk

(ϕk(xk)) = ηk. This, combined with (24), gives

∀xk ∈ X ∩ Y, p′′
k,xk

(ϕk(xk))
p′

k,xk
(ϕk(xk))

dϕk(xk) =
dηk

ηk
. (25)

Let xk ∈ Y \X verifying βϕ
k (xk)p′

k,xk
(0) = ηk be given. From Eqs. (24) are deduced ηk +

ηkp
′′
k,xk

(0)/p′
k,xk

(0) dϕk(xk) = ηk +dηk and then p′′
k,xk

(0)/p′
k,xk

(0) dϕk(xk) = dηk/ηk. Since
ϕ(xk) = 0 by definition of X , a property similar to (25) holds:

βϕ
k (xk)p′

k,xk
(0) = ηk

xk ∈ Y \X
}

⇒ p′′
k,xk

(ϕk(xk))
p′

k,xk
(ϕk(xk))

dϕk(xk) =
dηk

ηk
. (26)

Since F c is open and variation dηk is sufficiently small, the hypothesis ηk /∈ F yields ]ηk, ηk +
dηk[∩F = ∅ and [ηk +dηk, ηk[∩F = ∅. Since F contains no point of accumulation, hypothesis
ηk ∈ F yields ]ηk, ηk + dηk[∩F = ∅ and [ηk + dηk, ηk[∩F = ∅. Thus ever holds

]ηk, ηk + dηk[∩F = ∅ and [ηk + dηk, ηk[∩F = ∅. (27)

In the next section, Eqs. (24), (25), and (26) will be put in the differentiated constraint∫
E
dϕk(xk) dxk = dφk. It appears however that X ⊂ Y when dφk > 0 and Y ⊂ X when

dφk < 0.1 Two cases are then to be considered.

A1—Subcase dφk > 0: In this case X ⊂ Y,X ∩ Y = X and X\Y = ∅. Define:

X̃ = {xk ∈ E/βϕ
k (xk) ≥ ηk/p

′
k,xk

(0)}.

So, X ⊂ X̃ , and since Y \X̃ ⊂ Y \X , the third equation of (24) yields:

∀xk ∈ Y \X̃, dϕk(xk) =
ηk + dηk

βϕ
k (xk)p′′

k,xk
(0)

− p′
k,xk

(0)
p′′

k,xk
(0)

.

On the other hand, equations (25) and (26) may be cast into:

∀xk ∈ X̃, dϕk(xk) =
dηk

ηk
× p′

k,xk
(ϕk(xk))

p′′
k,xk

(ϕk(xk))
. (28)

Now, dφk =
∫

E
dϕk(xk) dxk and dϕk(xk) = 0 outside X ∪ Y [fourth equation of (24)], and

since E = X̃ ∪ (Y \X̃) ∪ E\(X ∪ Y ), we have

dφk =
dηk

ηk

∫
X̃

p′
k,xk

(ϕk(xk))
p′′

k,xk
(ϕk(xk))

dxk +
∫

Y \X̃

(
ηk + dηk

βϕ
k (xk)p′′

k,xk
(0)

− p′
k,xk

(0)
p′′

k,xk
(0)

)
dxk.

1This result is intuitively obvious. To show it, consider the function ϕk,ηk obtained by inverting de Guenin’s
equation (23) [4]. As ever seen, such function increases uniformly with ηk.
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The first element of this sum is a first-order infinitesimal. Now, the cellsxk ∈ Y \X̃ are those which
verify bounds ηk < βϕ

k (xk)p′
k,xk

(0) < ηk + dηk. Since ]ηk, ηk + dηk[∩F = ∅ from (27), there
is no level {xk ∈ E/βϕ

k (xk)p′
k,xk

(0) = ε}, ε ∈]ηk, ηk + dηk[, with positive measure, included in

Y \X̃ . Thus, the set Y \X̃ is negligible. On the other hand, the bounds ηk < βϕ
k (xk)p′

k,xk
(0) <

ηk + dηk involve also

xk ∈ Y \X̃ ⇒ 0 <
ηk + dηk

βϕ
k (xk)p′′

k,xk
(0)

− p′
k,xk

(0)
p′′

k,xk
(0)

<
dηk

βϕ
k (xk)p′′

k,xk
(0)

.

Then, the second integral in the sum is defined over a negligible set, Y \X̃ , and the integrand is a
first-order infinitesimal term. The second integral is negligible, thus yielding up to a second-order
infinitesimal

dφk =
dηk

ηk

∫
X̃

p′
k,xk

(ϕk(xk))
p′′

k,xk
(ϕk(xk))

dxk. (29)

Using (28) together with (29), dϕk stands as follows:

∀xk ∈ X̃, dϕk(xk) = dφk

p′
k,xk

(ϕk(xk))
p′′

k,xk
(ϕk(xk))

/∫
X̃

p′
k,xk

(ϕk(xk))
p′′

k,xk
(ϕk(xk))

dxk. (30)

Now, the kth component of dPnd(ϕ) appearing in Eq. (20) takes the following form:∫
E

βϕ
k (xk)p′

k,xk
(ϕk(xk)) dϕk(xk) dxk =

∫
X̃

βϕ
k (xk)p′

k,xk
(ϕk(xk)) dϕk(xk) dxk

+
∫

Y \X̃

βϕ
k (xk)p′

k,xk
(ϕk(xk)) dϕk(xk) dxk.

The second integral concerns a negligible set together with a first-order infinitesimal integrand.
Again, this integral can be neglected. Now, βϕ

k (xk)p′
k,xk

(ϕk(xk)) = ηk whatever xk ∈ X .

Otherwise, for xk ∈ X̃\X hold both ϕk(xk) = 0 and βϕ
k (xk)p′

k,xk
(0) = ηk. Thus βϕ

k (xk)
p′

k,xk
(ϕk(xk)) = ηk whatever xk ∈ X̃ , so that

∫
E

βϕ
k (xk)p′

k,xk
(ϕk(xk)) dϕk(xk) dxk = ηk

∫
X̃

dϕk(xk) dxk

= ηk

∫
X̃

p′
k,xk

(ϕk(xk))

p′′
k,xk

(ϕk(xk))
dφk

∫
X̃

p′
k,xk

(ϕk(xk))

p′′
k,xk

(ϕk(xk))
dxk

dxk

= ηk dφk. (31)

A2—Subcase dφk < 0: In this case, Y ⊂ X,X ∩ Y = Y and Y \X = ∅. We have

dφk =
dηk

ηk

∫
Y

p′
k,xk

(ϕk(xk))
p′′

k,xk
(ϕk(xk))

dxk +
∫

X\Y

(
p′

k,xk
(0)

p′′
k,xk

(0)
− ηk

βϕ
k (xk)p′′

k,xk
(0)

)
dxk. (32)
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The cells xk ∈ X\Y are those for which inequalities ηk > βϕ
k (xk)p′

k,xk
(0) ≥ ηk + dηk hold

true. It follows that

xk ∈ X\Y ⇒ 0 >
p′

k,xk
(0)

p′′
k,xk

(0)
− ηk

βϕ
k (xk)p′′

k,xk
(0)

≥ dηk

βϕ
k (xk)p′′

k,xk
(0)

.

Thus, the integrand of the right integral of (32) is infinitesimal. Furthermore,X\Y is a negligible

set, since [ηk + dηk, ηk[∩F = ∅ [refer to (27)]. Then, the right integral,
∫

X\Y
(

p′
k,xk

(0)

p′′
k,xk

(0)
−

ηk

βϕ
k

(xk)p′′
k,xk

(0)
) dxk, is a second-order infinitesimal, and so

dφk =
dηk

ηk

∫
Y

p′
k,xk

(ϕk(xk))
p′′

k,xk
(ϕk(xk))

dxk. (33)

Reminding (25) and since Y = X ∩ Y, dϕk is given by

∀xk ∈ Y, dϕk(xk) = dφk

p′
k,xk

(ϕk(xk))
p′′

k,xk
(ϕk(xk))

/∫
Y

p′
k,xk

(ϕk(xk))
p′′

k,xk
(ϕk(xk))

dxk.

The kth component of dPnd(ϕ) may be rewritten as a sum of two contributions, i.e.,∫
E

βϕ
k (xk)p′

k,xk
(ϕk(xk)) dϕk(xk) dxk =

∫
Y

βϕ
k (xk)p′

k,xk
(ϕk(xk)) dϕk(xk) dxk

+
∫

X\Y

βϕ
k (xk)p′

k,xk
(ϕk(xk)) dϕk(xk) dxk.

As previously, integration on X\Y may be neglected. Since βϕ
k (xk)p′

k,xk
(ϕk(xk)) = ηk for

xk ∈ X , and Y ⊂ X , we can write∫
E

βϕ
k (xk)p′

k,xk
(ϕk(xk)) dϕk(xk) dxk =

∫
Y

ηk dϕk(xk) dxk

= ηk

∫
Y

p′
k,xk

(ϕk(xk))

p′′
k,xk

(ϕk(xk))
dφk

∫
Y

p′
k,xk

(ϕk(xk))

p′′
k,xk

(ϕk(xk))
dxk

dxk = ηk dφk. (34)

B—Second case: φk = 0. Numerous problems stem from the nullity of φk. First, we could
remark that ϕk = 0, so that Eq. (23) makes no sense, although it is exact. Another difficulty
is that we must restrict to nonnegative variations of φk and ϕk. The variation of ϕk, associated
with the variation dφk of φk, will be denoted δϕk rather than dϕk.2 Moreover, δηk will denote
the variation of ηk. It is then easy to show that δϕk and δηk are same order infinitesimals. These
variations will be related to the minimum value:

η0
k = min

xk∈E
(βϕ

k (xk)p′
k,xk

(0)). (35)

2In this case it is not ensured that variations of φk and ϕk are of the same order of magnitude.
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From this definition follows

∀xk ∈ E, βϕ
k (xk) ≤ η0

k

p′
k,xk

(0)
.

From de Guenin’s equation applied to η0
k + δηk, the following implication stems (recall that

ϕk = 0):




η0
k+δηk

p′
k,xk

(0)
< βϕ

k (xk) ≤ η0
k

p′
k,xk

(0)
⇒ βϕ

k (xk)p′
k,xk

(δϕk(xk)) = η0
k + δηk,

βϕ
k (xk) ≤ η0

k+δηk

p′
k,xk

(0)
⇒ δϕk(xk) = 0.

The first line of this equation is of no interest, here. However, it may be noticed that βϕ
k (xk)

p′
k,xk

(0) = η0
k up to a first order infinitesimal, whenever η0

k+δηk

p′
k,xk

(0)
< βϕ

k (xk) ≤ η0
k

p′
k,xk

(0)
. The kth

component of dPnd(ϕ) appearing in Eq. (20) may thus be simplified:

∫
E

βϕ
k (xk)p′

k,xk
(ϕk(xk)) δϕk(xk) dxk =

∫
E

βϕ
k (xk)p′

k,xk
(0) δϕk(xk) dxk

=
∫

βϕ
k

(xk)≥ η0
k
+δηk

p′
k,xk

(0)

βϕ
k (xk)p′

k,xk
(0) δϕk(xk) dxk

=
∫

βϕ
k

(xk)≥ η0
k
+δηk

p′
k,xk

(0)

η0
k δϕk(xk) dxk

= η0
k

∫
E

δϕk(xk) dxk = η0
k dφk. (36)

Calculation of dddPndndnd(φφφ): Let us define the vector V with T components by

{
Vk = ηk when φk > 0
Vk = η0

k = minxk∈E (βϕ
k (xk)p′

k,xk
(0)) when φk = 0 (37)

Variation dPnd(φ) may be rewritten as

dPnd(φ) =
∑

k

∫
E

βϕ
k (xk)p′

k,xk
(ϕk(xk)) dϕk(xk) dxk = Vt dφ (38)

Now, let us consider ν ∈ R
p and φ = φ0 + A∼ν. Suppose moreover that the resource positivity

constraints are satisfied for ν. Let dν be a vectorial infinitesimal variation of ν so that resource
positivity constraints for ν + dν still hold. The infinitesimal variation for φ is thus dφ = A∼dν,
and we deduce

dPnd(φ0 +A∼ν) = VtA∼ dν. (39)
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4. 1. 2. Broad Lines of the Algorithm

Our algorithm involves the gradient projection method of Rosen. Recall that the gradient projec-
tion method is an iterative minimization method, which relies upon a suitable choice of variation
direction, the gradient projection d, which ensures the convergence (to a local minimum). This
direction choice only depends on the values of gradient components and on the position relatively
to the constraints borders. Rosen gradient projection method will not be detailed here; the reader
may refer to [1]. Our method is converging to a global minimum for the same reasons that ensure
convergence of the Brown’s algorithm:

• convexity of Pnd.
• convexity of the constraints domain.
• Pnd is strictly decreasing at each iteration.

In our own algorithm, the first step is to initialize φ0 and A∼. Using the calculation (39) of
dPnd(φ0 +A∼ν), Rosen method is applied so as to minimize Pnd(φ0 +A∼ν) under constraint
φ0 + A∼ν ≥ 0. Of course, this algorithm will encapsulate some execution of Brown method in
order to compute the function Pnd(φ0 +A∼ν) and the optimal spatial sharing ϕ associated with
it. The complete algorithm is outlined below:

1. Compute A∼ and φ0; initialize ν;
2. Set φ = φ0 +A∼ν;
3. Use Brown’s algorithm to find the optimal spatial sharing ϕ associated with φ.

Now, the optimal dual variable η is also computed;
4. Compute dPnd(φ0 +A∼ν) by applying (39);
5. Compute the gradient projection d according to Rosen method. This computa-

tion involves the previously defined gradient dPnd(φ0 + A∼ν) and the status
of variable ν with respect to the constraint φ0 +A∼ν ≥ 0;

6. Choose a variation step ∆t;
7. Update ν, i.e. ν := ν + ∆td;
8. Return to 2 until convergence.

The choice of ∆t in step 6 has not been explained so far. One theoretical choice (but not the best)
for ∆t, which ensures convergence, is the one that minimizes Pnd(φ) along the direction d. In
other words, ∆t = arg minθ≤θmax

Pnd(φ0 + A∼(ν + θd)), where θmax is a bound preventing
to exceed the constraints. Finding this optimal ∆t will require some additional execution of the
Brown’s algorithm.

To end with this section, it is important to remark that this theoretical algorithm is greatly
underoptimized. First of all, it is actually not necessary to compute an optimal ∆t to ensure
practically the convergence. Otherwise, there is no necessity to have a complete convergence of
Brown’s algorithm in step 3. Satisfactorily, the algorithm has been tested with the use of only one
cycle of Brown’s algorithm. Finally, we evaluated that our algorithm’s speed was proportional to
Brown’s one with a (rough) factor from 2 to 50 (complex examples).

À la Brown implementation: Practically, a major problem we have to face with our and also
with Brown’s algorithm stems from the fact that the computation of the function βϕ

κ requires a
huge amount of computation time. Calculating this function needs integrating on the (T − 1)-
dimensional space ET−1, for each element of E. If we consider as a time unit, u, the integration
on E, the computation time of βϕ

κ is of an uT order. Practically, the parameter u is rather large
which means that this (direct) approach is clearly infeasible. In order to overcome this difficulty,
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the idea of Brown will be again instrumental. More precisely, the Markovian property of α can
drastically reduce the computation requirements (FAB method). So, let us define the function
vectors Uϕ and Dϕ in the following recursive way:

Uϕ
1 (x1) = 1 and Dϕ

T (xT ) = 1,

Uϕ
k+1(xk+1) =

∫
E

αk(yk, xk+1)pk,yk
(ϕk(yk))Uϕ

k (yk) dyk,

Dϕ
k−1(xk−1) =

∫
E

αk−1(xk−1, yk)pk,yk
(ϕk(yk))Dϕ

k (yk) dyk. (40)

Computing Uϕ
k knowing Uϕ

k−1 or computing Dϕ
k knowing Dϕ

k+1 requires a time of the order of
u2. Altogether, computing all Uϕ and Dϕ require 2Tu2. Assuming Uϕ and Dϕ available, then
we compute βϕ as a simple product:

βϕ
k (xk) = Uϕ

k (xk)Dϕ
k (xk). (41)

A refinement allows to spare even more computation time. Usually, since ϕ is changed, we have
to computeUϕ andDϕ again. But we can remark that, when only ϕκ is changed,Uϕ

k andDϕ
l stay

unchanged for k ≤ κ and l ≥ κ. These properties are used in order to reduce the computation
of βϕ and of Brown’s algorithm. This is one of the ingredients, which permits us to optimize a
such massive number of variables (12,600 for some of our examples), the other argument (refer
to Section 2.1) being that these variables depends on the small dimension vector η.

4. 2. Generalized de Guenin’s Equations

It is now easy to apply the previous calculation of dPnd(φ) and establish generalized de
Guenin’s equations (involving conditioning on dual variable η). When optimal solution is reached,
the variation dPnd(φ) = Vtdφ is nonnegative, for each valid variation dφ, i.e., checking
Adφ = 0. But there are also positivity constraints, which impose dφ satisfies dφk ≥ 0, whenever
φk = 0. Define also the projection Matrix Pφ by

{
Pφ

k,k = 1, for each k ∈ {1, . . . , T} verifying φk > 0,
Pφ

i,j = 0, else.
(42)

The optimality condition on Pnd(φ) then becomes

∀dφ, [(I − Pφ)dφ ≥ 0 and Adφ = 0] ⇒ Vtdφ ≥ 0. (43)

To establish a necessary optimality conditions on η, a property weaker but more suitable than (43)
is used:

∀dφ, [(I − Pφ)dφ = 0 and Adφ = 0] ⇒ Vtdφ ≥ 0.

Assume conditions (I − Pφ)dφ = 0 and Adφ = 0 hold true. It comes then that Vtdφ
≥ 0. Moreover, if the two conditions are verified for dφ, they are also verified for −dφ, that
is, (I − Pφ)(−dφ) = 0 and A(−dφ) = 0. For this reason, the inequalities Vt(−dφ) ≥ 0 and
Vtdφ ≤ 0 are simultaneously valid. Hence, we have

∀dφ, [(I − Pφ)dφ = 0 and Adφ = 0] ⇒ Vtdφ = 0.
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This may be also rewritten:

V ∈ (Ker(I − Pφ) ∩ Ker A)⊥.

In other words, V ∈ Ker(I−Pφ)⊥+ KerA⊥, or equivalently V ∈ Ker Pφ+ ImAt. It is obvious
that Pφ(Ker Pφ+ Im At) = Im(PφAt), thus yielding PφV ∈ Im(PφAt). In fact, referring to
definition (37), the projected part of PφV corresponds to the active dual variables ηk, where
φk > 0. More precisely, PφV = Pφη and Pφη ∈ Im(PφAt). Of course, the nonactive part of
the dual variables, i.e., (I − Pφ)η, will stay undefined. Property 1 is then deduced.

PROPERTY 1: Let ϕ be an optimal solution. Define φk =
∫

E
ϕk, for 1 ≤ k ≤ T . Define by

(42), the projection Pφ associated with positives indices of φ. For each k, verifying φk > 0, there
is an active parameter ηk so that

βϕ
k (xk)p′

k,xk
(ϕk(xk)) = ηk, if βϕ

k (xk) > ηk/p
′
k,xk

(0),

ϕk(xk) = 0, else.

These active parameters ηk are given by means of vector Pφη satisfying to

∃µ, Pφη = PφAtµ.

It is noteworthy that, for a discrete (in space) version of this problem, Property 1 is recovered
from the Kuhn Tucker theorem.

5. EXTENSION TO MIXED RESOURCES

A target moving in space E is to be searched. The search being split in T periods, we denote
α(~x) the density probability of the target trajectory. The resources used for the search are of r
different types, associated with the nondetection functions (pρ

k)1≤k≤T ;1≤ρ≤r. We denote ϕ =
(ϕρ

k)1≤k≤T ;1≤ρ≤r the corresponding (local) effort functions and φ = (φρ
k)1≤k≤T ;1≤ρ≤r the

vector of (global) efforts. These two variables are associated together as usual:

∀k ∈ {1, . . . , T},∀ρ ∈ {1, . . . , r},
∫

E

ϕρ
k(xk) dxk = φρ

k.

Assuming the hypothesis of independence of searches, the following value of the nondetection
probability is obtained:

Pnd(ϕ) =
∫

ET

α(~x)
T∏

k=1

((
r∏

ρ=1

pρ
k,xk

(ϕρ
k(xk))

)
dxk

)
.

A linear constraint is again considered, but this time concerns also type indices ρ:

Aφ = ψ,

where A is a matrix with T × r columns and ψ is a vector.
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Our aim is then to optimize ϕ under constraints in order to minimize Pnd(ϕ), yielding

Minimize: Pnd(ϕ) =
∫

ET α(~x)
∏T

k=1

((∏r
ρ=1 p

ρ
k,xk

(ϕρ
k(xk))

)
dxk

)
,

under constraints: ϕ ≥ 0, φ ≥ 0,
∀k ∈ {1, . . . , T},∀ρ ∈ {1, . . . , r}, ∫

E
ϕρ

k(xk) dxk = φρ
k,

Aφ = ψ.

(44)

The general algorithm for solving this optimization problem is presented in Appendix A. The
concept is now illustrated by two typical examples.

Multitype resources: Consider a search for a target on a spaceE involving two types of resource;
e.g., nonrenewable resources (denoted a) and 3-period self-renewable resources (denoted b). The
two types of resources are assumed to work simultaneously and independently. Assume the search
duration to be T (periods). We call Φa and Φb the amounts of available resources for each type
a and b. In the same way ϕa and ϕb represent the function of (local) search effort for the types
a and b, and variables φa and φb the (global) search efforts respectively associated. Then, our
multitype optimization can be solved by means of the following extended problem:



r = 2, p1 = pa, p2 = pb, ϕ1 = ϕa, ϕ2 = ϕb, φ1 = φa, φ2 = φb,

A =
(
Aa 0
0 Ab

)
and ψ =

(
ψa

ψb

)
,

where

Aa = AR∞ = (1 · · · 1), ψa = (Φa),

Ab = AR3 =




1 1 1 0 · · · 0
. . .

0 · · · 0 1 1 1


 , and

ψb =




Φb

...
Φb


 .

Multimode resources: Only a single type of resource (with matrix and vector constraints Ao

and ψo) is available. However, this resource can run in two different ways or operating modes.
The first mode, denoted c, is characterized by elements ϕc, pc, and variable φc. The second mode,
denoted d, is characterized by elements ϕd, pd, and variable φd. Describing the sharing of the
resources between mode c and mode d, the following relation holds:

Aoφo = ψo with ∀k ∈ {1, . . . , T}, φo
k =

∫
E

(ϕc
k + ϕd

k)(xk) dxk = φc
k + φd

k.

This leads us to consider the following extended problem:

{
r = 2, p1 = pc, p2 = pd, ϕ1 = ϕc, ϕ2 = ϕd, φ1 = φc, φ2 = φd,
A = (AoAo) and ψ = ψo.
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6. INEQUALITY CONSTRAINTS

So far, only equality constraints have been considered (see, e.g., Section 3). In fact, the equality
constraint,Aφ = ψ, in (15) is somewhat restrictive, especially in cases where it may be profitable
to keep some resources unused so as to use them more efficiently in later periods. For this reason,
it could be of interest to optimize under inequality constraint,Aφ ≤ ψ. A second (theoretical) ad-
vantage of inequality constraint is the possibility of overdetermined constraint, that is, it becomes
feasible to use matrix and vector A and ψ such that AX = ψ has no solution. The theoretical
weakness considered in Section 3.3 is thus overcome. Now, cases, where constraintsAφ ≤ ψ and
φ ≥ 0 are even so incompatible, corresponds to ill-posed problems. The problem for inequality
constraint is

Minimize: Pnd(ϕ) =
∫

ET α(~x)
∏T

k=1 pk,xk
(ϕk(xk))

∏T
k=1 dxk,

under constraints: ϕ ≥ 0, φ ≥ 0,
∀k ∈ {1, . . . , T}, ∫

E
ϕk(xk) dxk = φk,

Aφ ≤ ψ.

(45)

Such inequality constraints may be translated into equality ones by means of slack variables. More
precisely, let us denote Θ the row number of the (constraint) matrixA; then inequality constraints
Aφ ≤ ψ revert to considering equality constraints (Aφ + φp = ψ) by adding Θ slack variables
φp

1, . . . , φ
p
Θ (satisfying also to the positivity constraints φp

k ≥ 0) to each row ofAφ = ψ. Denoting
by IΘ the Θ-dimensional identity matrix, the preceding optimization problem becomes (details
in Appendix B):

Inequality constraints → Equality constraints,

Aφ ≤ ψ → (A IΘ)
(
φ
φp

)
= ψ,

φ ≥ 0 →
(
φ
φp

)
≥ 0,

(46)

Pnd(ϕ) =
∫

ET

α(~x)
T∏

k=1

pk,xk
(ϕk(xk))

T∏
k=1

dxk

and

(∫
E

ϕk(xk) dxk

)
1≤k≤T

= φ stay unchanged. (47)

Roughly the algorithm is unchanged, except theAmatrix which is replaced by (A IΘ). However,
we stress that, sinceϕp has no physical meaning (slack variables), the components of V associated
with the variables φp are zeroed [calculation of dPnd(φ)].

7. RESULTS

The space search E is a square of 30 × 30 cells. Target’s trajectories are simulated within the
following general scheme: a start position, a motion component, and (possibly) a final position.
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The target starting position is represented by s, an uniform density in the 10 × 10 square with
top-left vertex on the point (5, 5), i.e.,

s(x1) =
1

100
if (5, 5) ≤ x1 ≤ (14, 14),

s(x1) = 0 else.

The density of the (possibly) final target location is uniform in the 10 × 10 square with top-left
vertex on (16, 16), and is denoted f :

f(xT ) =
1

100
if (16, 16) ≤ xT ≤ (25, 25),

f(xT ) = 0 else.

At each time-period the (Markovian) target motion is an uniform diffusion (toward down and
right) represented by the function m on the 2D motion vector:



m(0, 0) = m(3, 3) = 3

14 and m(2, 3) = m(3, 2) = 2
14 ,

m(0, 3) = m(3, 0) = m(1, 3) = m(3, 1) = 1
14 ,

m(xk+1 − xk) = 0, else.

3 0 0 1
0 0 0 1
0 0 0 2
1 1 2 3

For example, the density (α(~x)) of a target trajectory (e.g., for a 4-time-period scenario) could
take the following form:

α(~x) = Z × s(x1)m(x2 − x1)m(x3 − x2)m(x4 − x3)f(x4).

It represents a down-right diffusion diverging at the beginning from the starting square and finally
converging back to the final square. The value Z represents a normalization term. The test results
of the algorithm are divided into three sections. In the first one, we shall examine the effects of
the form of the nondetection functions pk,xk

(only uniform functions over xk will be considered).
In the second one, example with mixed resources will be presented (pk,xk

nonuniform). Finally,
inequality constraints are examined in the last one.

7. 1. Effects of the Detection Function p

Throughout this section we shall consider a unique modeling of the target motion and a 4-time-
period search. The target trajectory distribution function is

α(~x) = s(x1)m(x2 − x1)m(x3 − x2)m(x4 − x3). (48)

Only one type of resource is used. The nondetection function of this resource is independent
of spatial location, that is, ∀k,∀xk ∈ E, pk,xk

= π. We shall compare results obtained by an
exponential (nondetection) function, π(ϕ) = exp(−ωϕ) with ω = 1, and a nonexponential one,
π(ϕ) = 1/(ϕ+1)2. Note that the function log π verifies for both cases the convexity hypothesis.
Exponential functions are widely used even if restricting assumptions are underlined (detection
without waste; refer to Appendix D).
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Exponential function: Under this assumption, the whole effort can be entirely affected to the
more interesting time-period without waste. This behavior is illustrated by the following example.
Here, resources are not renewable (A = AR∞ and ψ = ψR∞; see Section 3.1), and the total
effort is Φ = 20. The splitting of search efforts between the consecutive periods is illustrated by
Table 1. We can see that the essential of search effort is brutally put on the first periods where
the density of this diffusive target is most concentrated. A similar result is obtained whatever the
value of Φ.

Nonexponential function: In such case, the whole effort cannot be entirely affected at the same
time period without significant waste (see [16]; refer also to Appendix D). We present three
results. The first one using A = AR∞ and ψ = ψR∞, where total effort Φ = 200. The two other
ones using A = AR2 and ψ = ψR2 (2-period self-renewable resource; see Section 3.2), with
total effort Φ = 100, respectively Φ = 10. Table 2 illustrates, for the three scenarios, the splitting
of search effort at each time period (φ1, φ2, φ3, φ4). For the sake of comparison, the optimal
probability Pnd is provided. The significant resources are still concentrated on the periods with
the highest target density. But the period-splitting is smoother, although the effort still tends to be
concentrated on the first time periods. The splitting is more contrasted when the total amount of
resource is small (second and third example: φ1 and φ3 increase from 73% of resources to 87%).
Figure 1 presents the spatial distribution of the search effort, for the last example. We notice a
surrounding strategy for the distribution of search efforts on the first periods.

7. 2. Mixing of Resources

From now on, all the nondetection functions will be exponential. In this section, we present a
search example with multiple resources. Moreover, the nondetection functions will be depending
on the space location and on the type ρ of search resource (but independent of time k), so that
pρ

k,xk
(ϕ) = exp(−ωρ

xk
ϕ). For each example, the total search duration is 7 periods. The target

distribution corresponds to a diffusion from the start position:

α(~x) = s(x1)
6∏

k=1

m(xk+1 − xk). (49)

Table 1. Exponential function.

A Φ φ1 φ2 φ3 φ4

AR∞ 20 20 0 0 0

Figure 1. Self-renewable resources; A = AR2, Φ = 10; nonexponential function.
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Table 2. Nonexponential function.

A Φ φ1 φ2 φ3 φ4 Pnd(ϕ)

AR∞ 200 112 50 25 13 7.7%
AR2 100 73 27 73 27 9.1%
AR2 10 8.7 1.3 8.7 1.3 71%

Figure 2. Type 1; nonrenewable resources; A = AR∞, Φ = 100.

Two different resources are used. The first resource (ρ = 1) is a nonrenewable one with
constraint matrix A = AR∞ and total resource Φ = 100. The second resource (ρ = 2) is a
3-period self-renewable resource with constraint matrix A = AR3 (see Section 3.2) and total
resource Φ = 50. The visibility factor of the first resource, i.e., the exponential parameter ω1

xk
,

is decreasing from the right-down bottom of the search space E, as shown in the 8th (from
left) picture of Figure 2. The visibility factor of second resource, say ω2

xk
, is decreasing from

the left-down bottom of the search space E, as shown in Figure 3. A practical example of this
situation may be detection by fixed sensors, where the search efforts correspond to the duration
of the looks in a given cell (electronically steered array) and visibility factors ωxk

are related to
physical parameters (cell range, propagation, etc.). The optimal splitting of the two resources is
presented in Table 3. Figures 2 and 3 represent respectively the spatial sharing of the first and
second resources for each period (see the first seven pictures).

The second resource splitting is 50, 0, 0, 50, 0, 0, 50. This result appears quite natural since it
gives the higher amount of resource. Moreover, the target spread tends to focus the search on the
first period, as the gradient associated with ω2

xk
reinforces the search on the central part of the

diffusion. The behavior of the first resource is more surprising. The most important detections
occur at the first periods (search amounts 82 and 2.8 for periods 1 and 2), but there is again
detection (search amount 15 for period 7) at the end. There are two explanations of this fact. First,
a conflict occurs between the target spread and the gradient associated with ω1

xk
. The first one

tends to enforce the detection at the beginning of the movement, while the second enhances the
detection when target approaches to the down-right bottom. On the other hand, the second resource
spreads the splitting of the first one, since it reinforces detection occurring at the beginning, the
middle, and the final periods. It is also remarkable that the search areas of the different resources
are well distinct and complementary. Their locations depend on the gradient associated with ωρ

xk

(down-right for the first type and down-left for the second). Again, surrounding strategy occurs
on the first periods, although it is shared between the two resources.

Figure 3. Type 2; self-renewable resources; A = AR3, Φ = 50.
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Table 3. Mixed resources.

A Φ ρ φρ
1 φρ

2 φρ
3 φρ

4 φρ
5 φρ

6 φρ
7 Figure

AR∞ 100 1 82 2.8 0.2 0 0 0 15 2
AR3 50 2 50 0 0 50 0 0 50 3

Table 4. Inequality compared with equality (constraints).

A Inequality Φ φ1 φ2 φ3 φ4 φ5 φ6 Pnd(ϕ) Figure

AR3 No 50 21.1 7.8 21.1 21.1 7.8 21.1 81% 4
AR3 Yes 50 32.3 10.2 7.5 7.5 10.2 32.3 79.9% 5
AR∞ No 100 32.3 10.2 7.5 7.5 10.2 32.3 79.9% 5
AR∞ Yes 100 32.3 10.2 7.5 7.5 10.2 32.3 79.9% 5

7. 3. Inequality Constraints

The four trials presented here concern a diffusion movement, on 6 periods, with a spread from
the starting position followed by a convergence toward the final position:

α(~x) = Z × s(x1)

(
5∏

k=1

m(xk+1 − xk)

)
f(x6). (50)

The nondetection function is constant in time and space (pk,xk
= π). The first example concerns

a single resource, which self-renews after 3 periods (A = AR3), under equality constraints. The
total amount of resource is 50. The scenario for the second example is identical, but inequality
constraints are used. The third and fourth examples involve a single non renewable resource
(A = AR∞), which total amount equals 100. Equality and inequality cases are both tested. The
four problems are then quantitatively equivalent. Results are given in Table 4 and are spatially
presented in Figures 4 and 5.

First, it is remarkable that the solutions are symmetric (φ1 = φ6, φ2 = φ5, and φ3 = φ4).
This is not surprising since functions f and s are mutually symmetric and the constraint matrices

Figure 4. Self-renewable resource without inequality constraints; A = AR3, Φ = 50.

Figure 5. Self-renewable resource with inequality constraints; A = AR3, Φ = 50.



Dambreville and Le Cadre: Detection of a Markovian Target 139

Table 5. Inequality compared with equality: Large target spread.

A Inequality Φ φ1 φ2 φ3 φ4 φ5 φ6 Pnd(ϕ)

AR3 No 50 45 0 5 45 0 5 75.7%
AR3 Yes 50 50 0 0 0 0 50 60.7%

and vectors preserve this symmetry. Thus, the optimal solution (or the set of optimal solutions)
is symmetric. The symmetry of the problem equalizes the degree of freedom of the three last
examples, so that the Pnd(ϕ) values are identical. The splitting (32.3, 10.2, 7.5, 7.5, 10.2, 32.3)
is coherent with the nature of the movement (a spread followed by a convergence). In the first
example, sums of three consecutive φk must be equal to 50, because of equality constraint with
AR3. In this case, the full optimal time sharing is forbidden, since 10.2 + 7.5 + 7.5 < 50. Thus,
the first example is forced to a suboptimal solution, where a significant amount of resources
(21.1) is put on the middle of the movement (periods of maximal target diffusion). Otherwise,
surrounding appears for each examples at the beginning period—as well at the final period!
Such final surrounding is somewhat upsetting, but it corresponds to the wait for the far incoming
trajectories, when the final converging movement occurs.

The earlier example shows that equality constraints is almost as good as inequality constraints
(81% versus 79.9%). But that is true only when, as in the example, the target spread is very weak.
We consider now a final example with a (very) diffusive target. The target distribution includes
start and final positions. Probabilities on intermediate periods are uniform, and all periods are
independent:

α(~x) = 900−4 × s(x1)f(x6). (51)

Optimal solutions are presented in Table 5 (the solution asymmetry results from the nonunicity
of the solution). The more striking point of these results is the great difference between the two
probabilities (75.7% versus 60.7%). In term of detection probability, it gives 24.3% versus 39.3%.
Improvement is thus considerable.

8. CONCLUSION

Our aim was to solve the problem of spatial and temporal splitting of (possibly) renewable
resources. In order to develop feasible optimization methods, the formalism and the algorithm
of Brown–de Guenin have played again a central role, allowing us to obtain a whole variety of
algorithms, solving problems of increasing difficulty. These algorithms are robust (convergence
ensured) and fast since computation requirements are of the same order as Brown’s. Moreover,
they seem sufficiently general to handle numerous problems of sensor and resource managements
arising in complex systems of detection (e.g. sonar, radar, infrared), involving various types of
sensors and operating modes. These points have been considered in a general setting. For specific
applications, more work has to be done; however our approach seems sufficiently open and
versatile to deal with numerous practical search problems.

APPENDIX A
ALGORITHM FOR SEARCH INVOLVING MIXED RESOURCES

In (44), the constraint Aφ = ψ yields the equivalent parameterization φ = φ0 + A∼ν. The optimization method
will combine this parameterization with the differential behavior of Pnd(φ) = min

ϕ:∀k∀ρ
∫

ϕ
ρ
k
=φ

ρ
k

Pnd(ϕ) to make
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an iterative approximation of the minimum. The differential of Pnd(φ) is simply expressed by means of the associated
variation vector V, i.e., dPnd(φ) = Vtdφ. The new algorithm follows the same guidelines as before; alternatively
choosing a suitable variation ∆φ of φ according to dPnd(φ) and to the parameterization, and then running a Brown’s
process for function ϕ. FAB principle will still be used for computing integrals. The presentation of following results is
voluntary concise (details are omitted).

Optimality conditions: Let κ and % be two particular value of k and ρ indexes. Defining

βϕ
κ,%(xκ) =

(
ρ /=%∏

1≤ρ≤r

pρ
κ,xκ (ϕρ

κ(xκ))

) ∫
ET −1

α(~x)
k /=κ∏

1≤k≤T

((
r∏

ρ=1

pρ
k,xk

(ϕρ
k
(xk))

)
dxk

)
, (52)

we obtain

Pnd(ϕ) =

∫
E

βϕ
κ,%(xκ)p%

κ,xκ (ϕ%
κ(xκ)) dxκ. (53)

When the search efforts are fixed for all indexes (k, ρ) except for the index (κ, %), the problem is in the de Guenin’s
optimization scheme i.e.:

Minimize: Pnd(ϕ%
κ) =

∫
E
βϕ

κ,%(xκ)p%
κ,xκ (ϕ%

κ(xκ)) dxκ,

subject to:
∫

E
ϕ%

κ(xκ) dxκ = φ%
κ and ϕ%

κ ≥ 0.
(54)

This optimization yields the following conditions of de Guenin:{
βϕ

κ,%(xκ)p%′
κ,xκ (ϕ%

κ(xκ)) = η%
κ if βϕ

κ,%(xκ) > η%
κ/p

%′
κ,xκ (0),

ϕ%
κ(xκ) = 0 else.

(55)

Using notation η0
k,ρ = minxk∈E βϕ

k,ρ
(xk)pρ′

k,xk
(0), the vector V is now defined by{

V%
k

= ηρ
k

when φρ
k
> 0,

Vρ
k

= η0
k,ρ when φρ

k
= 0.

APPENDIX B
INEQUALITY CONSTRAINTS

As previously seen and adding slack variables, inequality constrained problems revert to consider the following one
(with equality constraints):

Minimize: Pnd(ϕ) =
∫

ET α(~x)
∏T

k=1 pk,xk
(ϕk(xk))

∏T

k=1 dxk,

subject to: ∀k ∈ {1 · · ·T},
∫

E
ϕk(xk) dxk = φk,

(AIΘ)
(

φ
φp

)
= ψ and

(
φ
φp

)
≥ 0.

(56)

The algorithm is the same as usually, but the fictitious periods associated to φp are not directly considered. In the Brown’s
process, only the function ϕ is obtained by means of the de Guenin algorithm (a function ϕp should have no sense). The
other difference comes from relaxing the parameterization of φ, that is, φ = φ0 + (AIΘ)∼ν. The calculation of the
associated variation vector V is changed in consequence, yielding{

Vk = ηk when φk > 0 and 1 ≤ k ≤ T,
Vk = η0

κ when φk = 0 and 1 ≤ k ≤ T,
Vk = 0 when T < k ≤ T + Θ.

(57)

APPENDIX C
LOCAL SEARCH CONSTRAINTS

In this section, we outline an extension of our approach when we have local constraints for each cell and weighting
coefficient in the resource use. Weighting does not change the problem fundamentally, but adding local constraints modify
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the basic de Guenin’s algorithm as well as the associated variation vector V. Only here lie some difficulties. The new
problem (equality constraint version, easily extensible to inequality case) is set in the following terms:

Minimize: Pnd(ϕ) =
∫

ET α(~x)
∏T

k=1 pk,xk
(ϕk(xk))

∏T

k=1 dxk,

under constraints: ∀k ∈ {1, . . . , T}, ∀xk ∈ E,ϕ1
k(xk) ≤ ϕk(xk) ≤ ϕ2

k(xk), (58)

∀k ∈ {1, . . . , T},
∫

E
ck(xk)ϕk(xk) dxk = φk, (59)

Aφ = ψ. (60)

Functions ϕ1 and ϕ2 are constants of the problem, which define lower and upper local bounds for each cell. It is usual
to choose ϕ1 nonnegative. Function c is a weighting function with positive values. It is noteworthy that the constraint
φ ≥ 0 are changed into

∀k ∈ {1, . . . , T},
∫

E

ϕ1
k(xk) dxk ≤ φk ≤

∫
E

ϕ2
k(xk) dxk. (61)

Here are derived (without proof) new de Guenin equations, and the new calculus of vector V, which are the main
ingredients of our algorithm. For κ ∈ {1 . . . T}, de Guenin equations stand as follows:


βϕ

κ (xκ)p′
κ,xκ

(ϕκ(xκ)) = ηκcκ(xκ) if ηκcκ(xκ)
p′

κ,xκ
(ϕ1

κ(xκ))
< βϕ

κ (xκ) < ηκcκ(xκ)
p′

κ,xκ
(ϕ2

κ(xκ))
,

ϕκ(xκ) = ϕ1
κ(xκ) if βϕ

κ (xκ) ≤ ηκcκ(xκ)/p′
κ,xκ

(ϕ1
κ(xκ)),

ϕκ(xκ) = ϕ2
κ(xκ) if βϕ

κ (xκ) ≥ ηκcκ(xκ)/p′
κ,xκ

(ϕ2
κ(xκ)),

(62)

where

βϕ
κ (xκ) =

∫
ET −1

α(~x)
k /=κ∏

1≤k≤T

(pk,xk
(ϕk(xk)) dxk).

Vector V is then defined by


Vk = ηk,

Vk = η1
k = minxκ∈E (βϕ

k
(xκ)p′

k,xκ
(ϕ1

k(xκ))) when φk =
∫

E
ϕ1

k(xκ) dxκ,

Vk = η2
k = maxxκ∈E (βϕ

k
(xκ)p′

k,xκ
(ϕ2

k(xκ))) when φk =
∫

E
ϕ2

k(xκ) dxκ.

(63)

The whole algorithm then runs as it has been described in the main part of this contribution.

APPENDIX D
CONVEXITY OF logPk,xk

When search efforts vary from ϕ to ϕ+ dϕ, the nondetection probability may be rewritten:

pk,xk
(ϕ+ dϕ) = pk,xk

(ϕ)pk,xk
(dϕ|ϕ),

where pk,xk
(dϕ|ϕ) represents the elementary probability of nondetection for a new effort dϕ, knowing that ϕ resources

have already been in use. It is assumed in this paper that pk,xk
(dϕ|ϕ) is constant or increases withϕ. The last case means

that resources concentration lowers the detection power of these resources: detection holds with waste. On the other hand,
the first case means that the detection power of the resources does not depend on their concentration: detection holds
without waste. This hypothesis is commonly used in the literature. Now, writing pk,xk

(dϕ|ϕ) = 1 −ωk,xk
(ϕ)dϕ, the

following is obtained:
dpk,xk

pk,xk

= −ωk,xk
(ϕ) dϕ.

It follows
d log pk,xk

dϕ
= −ωk,xk

(ϕ). Increaseness hypothesis made on pk,xk
(dϕ|ϕ) yields the decreaseness of

ωk,xk
(ϕ). Then the convexity of log pk,xk

holds.
Denote Wk,xk

= log pk,xk
. Then, the elementary nondetection probability for a trajectory ~x is given by

T∏
k=1

pk,xk
(ϕk(xk)) = exp

(
T∑

k=1

Wk,xk
(ϕk(xk))

)
.

The convexity of this product and then the convexity of the problem is deduced, since exp is increasing and convex.
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