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Nonparametric Motion Characterization Using Causal
Probabilistic Models for Video Indexing and Retrieval

Ronan Fablet, Patrick Bouthemy, and Patrick Pérez

Abstract—This paper describes an original approach for
content-based video indexing and retrieval. We aim at providing
a global interpretation of the dynamic content of video shots
without any prior motion segmentation and without any use of
dense optic flow fields. To this end, we exploit the spatio-temporal
distribution, within a shot, of appropriate local motion-related
measurements derived from the spatio-temporal derivatives of the
intensity function. These distributions are then represented by
causal Gibbs models. To be independent of camera movement, the
motion-related measurements are computed in the image sequence
generated by compensating the estimated dominant image motion
in the original sequence. The statistical modeling framework con-
sidered makes the exact computation of the conditional likelihood
of a video shot belonging to a given motion or more generally
to an activity class feasible. This property allows us to develop
a general statistical framework for video indexing and retrieval
with query-by-example. We build a hierarchical structure of the
processed video database according to motion content similarity.
This results in a binary tree where each node is associated to an
estimated causal Gibbs model. We consider a similarity measure
inspired from Kullback-Leibler divergence. Then, retrieval with
query-by-example is performed through this binary tree using
the maximum a posteriori (MAP) criterion. We have obtained
promising results on a set of various real image sequences.

Index Terms—Maximum likelihood estimation, motion-based
indexing, nonparametric motion analysis, query-by-example,
spatio-temporal cooccurrences, statistical modeling, video
databases.

I. INTRODUCTION AND RELATED WORK

I MAGE sequence archives are at the core of various applica-
tion fields such as meteorology (satellite image sequences),

road traffic surveillance, medical imaging, or TV broadcasting
(audio-visual archives including movies, documentaries, news,
etc.). An entirely manual annotation of visual documents is no
longer able to cope with the rapidly increasing amount of these
video data. In addition, the efficient use of these databases re-
quires a reliable and relevant means to access visual informa-
tion. This implies indexing and retrieving visual documents by
their content. A great deal of research is currently devoted to
image and video database management [1], [5], [10]. Neverthe-
less, it remains hard to identify the relevant information for a
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given query, due to the complexity of image and scene interpre-
tation.

Furthermore, new needs appear for tools and functionalities
concerned with efficient navigation and browsing within videos
[8], [12], with the classification of video sequences into different
genres (sports, news, movies, commercials, documentaries, etc.)
[44], with the retrieval of examples similar to a given video
query [17], [20], [30], or with high-level video structuring such
as macro-segmentation [38], [45]. Such applications require the
combination of content-based video descriptions with the defi-
nition of an appropriate measure of video similarity.

As far as content-based video indexing is concerned, the pri-
mary task generally consists in segmenting the video into ele-
mentary shots [5], [9], [47].1 This stage is usually associated
with the recognition of typical forms of video shooting such as
static shot, panning, traveling or zooming [9]. At a second stage,
it appears necessary to provide an interpretation and a repre-
sentation of the shot content. In that context, dynamic content
analysis is of particular interest. Two types of approaches are
usually considered for characterizing dynamic content in video
sequences. A first class of approaches, based on parametric or
dense motion field estimation, includes image mosaicing [22],
[27], segmentation, tracking and characterization of moving el-
ements in order to determine a spatio-temporal representation
of the video shot [13], [21], [22]. The description of the motion
content may then rely on the extraction of pertinent qualitative
features of the entities of interest, such as the direction of the dis-
placement [22], or on the analysis of the trajectories of the center
of gravity of the tracked objects [14]. However, these techniques
turn out to be unsuitable for certain classes of sequences with
complex dynamic contents such as the motion of rivers, flames,
foliage in the wind, crowds, etc. Furthermore, as far as video
indexing is concerned, the entities of interest may not be single
objects but rather groups of objects, particularly when dealing
with sport videos. No tool currently exists to automatically ex-
tract these kinds of entities. Therefore, in the context of video
indexing, it seems appropriate to adopt a global point of view
that avoids any explicit motion segmentation step.

The unsuitability of parametric or dense motion field estima-
tion leads us to consider a second category of methods for mo-
tion-based video indexing and retrieval. The goal is to interpret
dynamic contents without any prior motion segmentation and
without any complete motion estimation in terms of parametric
motion models or optical flow fields. Preliminary works in this
direction have led to the extraction of “temporal texture” fea-
tures, [7], [17], [34], [37], [42]. Motion of rivers, foliage, flames,

1Henceforth, for convenience, the term “sequence” will be used to designate
an elementary shot.
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or crowds, for instance, can indeed be regarded as temporal tex-
tures. In [37], temporal texture features are extracted from the
description of surfaces generated by spatio-temporal trajecto-
ries. In [34], features issued from spatial cooccurrences of the
normal flow field are exploited to classify sequences either as
simple motions (rotation, translation, divergence) or as temporal
textures. In our previous work concerned with motion-based
video classification and retrieval [7], [17], we considered global
features extracted from temporal cooccurrence distributions of
local motion-related measurements, which proved more reliable
than normal velocities. In this paper, we introduce a nonpara-
metric probabilistic modeling of the dynamic content of video
shots evaluated by these temporal cooccurrences. This modeling
allows us to design an original, coherent and efficient framework
for both motion-based video indexing and motion-based video
retrieval.

The remainder of the paper is organized as follows. Section II
outlines the general ideas underlying our work. Section III de-
scribes the local nonparametric motion-related measurements
that we use. In Section IV, we introduce our method based on
the statistical modeling of the spatio-temporal distribution of
the motion-related quantities computed from a video sequence
and the associated estimation scheme. Section VI deals with
the application to content-based video indexing. This involves
the design of a hierarchical video classification scheme and
of an appropriate video similarity measure based on the
Kullback–Leibler divergence. Both tools are then exploited to
satisfy queries by example within a statistical framework. In
Section VII, we report experimental results of video classifi-
cation and retrieval examples over a set of video sequences.
Section VIII contains concluding remarks.

II. PROBLEM STATEMENT

As previously pointed out, the description of shot content
must be combined with the definition of an appropriate mea-
sure of shot similarity to handle video navigation, browsing or
retrieval [5]. Usually, shot content characterization relies on the
extraction of a set of numerical features or descriptors and the
comparison of shot content is performed in the feature space
according to a given distance such as the Euclidean distance
or more elaborate measures [39]. As a consequence, to cope
with video databases involving various dynamic contents, it is
necessary to determine an optimal set of features and the as-
sociated similarity measure. These issues can be tackled using
principal component analysis [31] or some other feature selec-
tion techniques [29]. Unfortunately, the feature space is usually
of high dimension and the distance metric used is likely not to
properly capture the uncertainty attached to feature measure-
ments. Consequently, statistical methods may be a more suit-
able approach, as in addition, they also provide a unified view
for learning and classification. Furthermore, a Bayesian scheme
can then be adopted to properly formalize the retrieval process.
In [43], modeling of DCT coefficients by Gaussian distribution
mixtures is exploited for image texture indexing and the retrieval
operation is formulated in a Bayesian framework w.r.t. the max-
imum a posteriori (MAP) criterion. This statistical approach is

shown to outperform classical techniques using distances in the
feature space.

We follow such a statistical approach in the context of
motion-based video indexing. Our goal is to define a direct
and general characterization of motion information allowing
us to provide within the same framework efficient statistical
tools for video database classification and for video retrieval
with query-by-example. To this end, we have designed a
motion classification (or, more generally, motion activity
classification) method relying on a statistical analysis of
the spatio-temporal distribution of local nonparametric mo-
tion-related measurements. We aim at identifying probabilistic
models corresponding to different dynamic content types. In
recent works [24], [48], a correspondence has been established
between cooccurrence distributions and Markov random field
models in the context of spatial texture analysis. We propose
an extension to temporal textures while introducing only causal
statistical models. More precisely, we consider causal Gibbs
models. Since the exact conditional likelihood function can be
readily computed in this context, this allows us to develop a
general and efficient statistical framework for video indexing
and retrieval with query-by-example.

III. L OCAL MOTION-RELATED MEASUREMENTS

We have to define appropriate local motion-related measure-
ments to be used for classification. Since our goal is to char-
acterize the actual dynamic content of the scene, we have first
to cancel camera motion. To this end, we estimate the domi-
nant image motion between two successive images, which is as-
sumed to be due to camera motion. Then, to cancel it, we warp
the successive images to the first image of the video shot by
combining the elementary dominant motions successively esti-
mated over consecutive image pairs.

A. Dominant Motion Estimation

To model the transformation between two successive images,
we consider a two-dimensional (2-D) affine motion model. A
possible alternative is a 2-D quadratic model involving eight
parameters, i.e., corresponding to the three-dimensional (3-D)
rigid motion of a planar surface. However, it is computationally
more demanding, while not being significantly more suitable in
most situations. The displacement , at pixel , related to
the affine motion model parameterized byis given by

(1)

with and . The estimation
of the dominant parametric motion model is achieved with the
gradient-based multiresolution incremental method described in
[35]. The following minimization problem is solved:

(2)

where , where is
the intensity function in the image at time, is the “dis-
placed frame difference,” is the image grid, is a robust
M-estimator (here the Tukey biweight function). The use of a
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robust estimator ensures the dominant image motion estimation
is not sensitive to secondary motions due to mobile objects in the
scene. Minimization (2) is conducted by an iterative reweighted
least-square technique embedded in a multiresolution frame-
work and involving appropriate successive linearizations of the
DFD expression [35].

B. Local Motion-Related Measurements

To characterize the nature of residual motion in the motion
compensated image sequence, we need to specify appropriate
local motion-related measurements. Dense optic flow fields pro-
vide such local information [32], [41] and have been exploited
for feature-based video retrieval [2], [30]. However, as previ-
ously stressed, the accuracy and relevance of the estimation
cannot always be guaranteed in complex motion situations and,
the computational load required remains prohibitive in the con-
text of video indexing involving large databases. Hence, we
prefer to consider local motion-related measurements directly
computed from the spatio-temporal derivatives of the intensity
function in the compensated sequence.

By assuming intensity constancy along 2-D motion trajecto-
ries, the image motion constraint relating the 2-D residual mo-
tion and the spatio-temporal derivatives of the intensity function
can be expressed as follows [26]:

(3)

where is the 2-D residual motion vector at pixeland
the intensity function in the warped sequence. We can infer

the residual normal velocity in the motion compensated
sequence at pixel by

(4)

Temporal derivative is approximated by a simple fi-
nite difference. Although this expression is explicitly related to
apparent motion, it can be null (whatever the motion magni-
tude), if the residual motion direction is perpendicular to the
spatial intensity gradient. Moreover, the normal velocity esti-
mate is also very sensitive to noise related to the computation of
the intensity derivatives.

As pointed out in [3] and [36], the norm of the spatial image
gradient can represent, to a certain extent, a perti-
nent measure of the reliability of the computed normal velocity.
Furthermore, if the spatial intensity gradient is sufficiently dis-
tributed in terms of direction in the vicinity of pixel, an appro-
priately weighted average of in a local neighborhood can
be used as a relevant motion-related quantity. More precisely,
we consider the following expression:

(5)

where is a small window centered on, its size
the square root of the average of the squared magni-

tude of the spatial gradient within window

(6)

is a predetermined constant related to the noise level in uni-
form areas. This motion-related measurement forms a more re-
liable quantity than the normal flow, yet simply computed from
the intensity function and its derivatives. This local motion in-
formation was successfully exploited for the detection of mo-
bile objects in motion compensated sequences [19], [28], [36]
and motion-based video indexing and retrieval using feature ex-
traction [7], [17]

We also have to cope with the limitations of the gradient-
based image motion constraint (3). This relation is not valid in
occluded regions, over motion discontinuities and even on sharp
intensity discontinuities. In addition, it cannot handle large dis-
placements. Therefore, we adopt a multiscale strategy to com-
pute at a reliable scale and we use an appropriate test
to validate its applicability. More precisely, we build a Gaussian
pyramid of the video frame in consideration and the succeeding
one. At each pixel , we determine the lowest scale for which the
image motion constraint (3) is valid using the statistical test de-
scribed in [25]. Then, is computed at the selected scale.
If for a given pixel the image motion constraint remains in-
valid at all scales, no motion quantity is computed at.

The expression described above for computing ig-
nores information related to motion direction, which prevents us
from discriminating, for instance, two opposite translations with
the same magnitude. However, this is not a real shortcoming,
since we are interested in identifying and classifying the type of
dynamic situations observed in the considered video shot and
not a specific motion value.

The computation of the temporal cooccurrences of the
motion-related measurements requires that these
continuous variables are quantized. By definition, the quantities

are positive and, for a given pixel, is
theoretically less or equal to the greatest actual displacement
magnitude in the window . We could merely apply a linear
quantization within with .
However, we would face two main problems. First, since we
aim at evaluating content similarity between video shots, a
range of quantized motion-related quantities common to all
image sequences has to be selected. As illustrated in Fig. 1,
it does not make sense to directly compare the histograms
of basketball and anchor shots if a linear quantization over

is used, because maximum values greatly differ
between these two shots. Secondly, although we consider a
multiscale strategy combined with a validity test of the image
motion constraint, we may still get spurious motion quantities
in specific situations where the validity test happens to fail.
Although in the first sequence of Fig. 1, it appears
that the really informative part of the histogram is retained
within the range [0,4]. Therefore, we prefer to consider a
linear quantization within a predefined interval [ ]. Ap-
plying this quantization scheme, the direct comparison of the
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Fig. 1. Quantization of motion-related measurementsfv (p)g . We display two examples of quantization of the motion-related quantities for a basketball
shot and an anchor shot. The first column depicts the first image of the processed shot; the middle one the histogram resulting from a linear quantization of
fv (p)g on 16 levels within the interval[0; v ], v = 15:4 in the first example andv = 0:91 in the second one; the last one contains the
histogram resulting from a linear quantization within [0, 4] over 16 levels.

quantized versions of motion-related measurements becomes
relevant. For instance, in Fig. 1, the motion activity is greater in
the basketball shot compared to the anchor shot as confirmed
by the histograms of quantized motion-related values obtained
with .

Let us denote the discretized range of variations for
. Henceforth, we denote the set of the quan-

tized motion-related measurements for theth frame of the
video sequence.

IV. CAUSAL SPATIO-TEMPORAL GIBBS MODELS

A. Causal Gibbs Random Fields

This section is concerned with the description of our statis-
tical modeling framework for the characterization of motion
information within a video shot. Our goal is to associate a
probabilistic model to a sequence of quantized motion-related
quantities. As mentioned in Section II, we consider Gibbs
models expressed in terms of cooccurrences. We previously
exploited cooccurrence statistics for video indexing in [7],
[17]. We have investigated causal probabilistic models for two
reasons. Firstly, the corresponding likelihood functions can be
exactly computed (including normalization constants), which
in turn allows us to properly define a motion-based video sim-
ilarity measure. Whereas the exact computation of likelihood
functions is generally intractable with classical spatial Markov
random fields [23] due to the unknown partition function, it
can be readily obtained with most causal models. Secondly,
we are concerned with the characterization of sequences of
maps of motion-related measurements. The evolution of the
content of such maps is by nature causal along the time axis.
Therefore, it seems pertinent to design a temporally causal
modeling of motion information. It enables to handle temporal

nonstationarities while being sufficient to discriminate motion
classes of interest.

We assume that the sequence of the motion-related quantities
along a given video shot is the realization of
a first-order Markov chain

(7)

where refers to the underlying model to be explicitly defined
later. represents thea priori distribution for the first
map of the sequence. In practice, we will consider no specific
prior, i.e., is uniform. In addition, we assume that the
random variables at time are conditionally inde-
pendent given and that for each of them, the conditioning
w.r.t. reduces to a small subset of measurements around
the location under concern. Thus, we assume that conditional
probabilities factorize as

(8)

where is the image grid and designates the set of sites in
image which interact with site in image . will be
called the temporal neighborhood of siteand is specified in
Fig. 2. We consider a small set of temporal interactions. Each
pair ( ), with , can be characterized by the polar coor-
dinates (see Fig. 2). Let denote the set of the nine
possible polar coordinatescorresponding to the temporal pairs
defined in Fig. 2. Henceforth, we use the term clique to des-
ignate a temporal pair. In practice, we consider three different
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Fig. 2. Causal temporal neighborhood comprising up to nine pairs. Given a pixelp in imagek, we denote� the temporal neighborhood formed by the single
site� at same location asp in imagek � 1, � the set of the five sites represented by symbols� and� and� the whole set of the nine neighbors ofp (symbols
�, � and ). Each kind of neighbor pair is parameterized using polar coordinates as illustrated on the right.

neighborhoods , and (Fig. 2). The simplest case is
just the temporal clique defined by whereas and

refer to the cases with five cliques and nine cliques, respec-
tively.

We also assume that is expressed as
the exponential of a sum of local Gibbsian potentials. It can be
written as follows:

(9)

where is the potential for the tem-
poral clique . Model is then defined by poten-
tial values . Pixel is the temporal
neighbor of for clique in the considered neighborhood
(see Fig. 2) and designates the local nor-
malization constant. This normalization is given by

(10)
The considered statistical models will be referred as “causal
spatio-temporal Gibbs” models. Let us point out that they are
not usual Gibbs models, which are equivalent to Markov models
[23], since the considered neighborhood configuration is not
symmetric.

For notation convenience, will denote the constant
potential for a given clique. Similarly, the uniform model
for which is specified by the constant potential
function for all cliques denoted .

Contrary to the case of general Markov random fields [23],
such a causal modeling provides an exact expression of the joint
distribution as a product of local transition probabilities

(11)

Thus, for given and potentials , is entirely
known, which provides us with a general statistical framework
for motion-based video classification and retrieval as described
in Section VI. Following [24] and [48], we can now rewrite the
causal expression (11) using the temporal cooccurrence mea-
surements attached to the cliqueas follows:

(12)

where is the global normalization factor given by

(13)

and is the cooccurrence matrix
for the clique type defined as

(14)
where denotes the Kronecker delta function. The dot product
between cooccurrence matrix and potentials is defined
as follows:

(15)

This statistical framework for motion information modeling
in image sequences can be claimed as nonparametric in two
ways. Firstly, from a statistical point of view, our approach
is nonparametric in the sense that the conditional likelihood

is not assumed to follow a known
parametric law (e.g., Gaussian). Secondly, from a measurement
point of view, the definition of quantities does not refer
to 2-D parametric motion model. We think these quantities
thus capture motion information in generic enough way to
characterize the motion activity.
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B. Maximum Likelihood Estimation of Potentials

Given a realization of , the causal temporal Gibbs model
defined by its potentials
can be estimated using the maximum likelihood (ML) criterion

(16)

where the log-likelihood function is given by

(17)

We hereafter assume that is uniform. From (12), we
get:

(18)

Setting to zero the first-order derivatives of the log-likelihood
function w.r.t. potential values provides the fol-
lowing equations to be simultaneously solved by the ML model
estimate:

(19)

with .
This naturally confirms that significant potentials of model

correspond to high cooccurrence values, as the model
will give the highest probabilities to the configurations associ-
ated to the greatest cooccurrence values. We exploit this prop-
erty to reduce the model complexity in Section V-C. In practice,
the maximization in (16) is carried out using a classical conju-
gate gradient procedure as detailed in Algorithm 1.

Algorithm 1—Maximum likelihood estimation of

model potentials 	M = (	a
M(�; �0))a2A;(�;� )2� by

applying a conjugate gradient technique to

criterion (16)

� Step 1: Initialization

1) k = 0

2) Initialize the Gibbs model M0

3) Initialize the ascent direction d0 � 0

� Step 2:

1) k  � k + 1

2) Compute the gradient rLFM (x)

3) Update the ascent direction dk

dk = rLFM (x) +
krLFM (x)k2

rLFM (x)
2 dk�1

4) Search for the coefficient �k which veri-

fies

�k = arg min
�

LFM (x)

where M� stands for the model with potentials

	M = 	M + �dk

5) Update model potential

	M = 	M + �kdk

� Step 3: repeat step 2 until: krLFM (x)k1 < 

where  is a predefined constant.

It is worth mentioning that the log-likelihood function
may have several local minima w.r.t. , whereas

the existence of a unique global minimum is guaranteed in
the case of exponential models [24]. Hence, it is important to
define an appropriate optimization scheme. As described in the
next section, we have adopted an incremental strategy, in terms
of model complexity, which has proven robust and accurate
enough.

V. MODEL ESTIMATION

This section details how the potential values which explic-
itly specify the causal Gibbs models are estimated. Besides, we
describe a scheme to reduce model complexity after potential
estimation.

A. Estimation of the Simple Temporal Model

When using the simple temporal clique model for which
, the model under consideration is in fact equiv-

alent to a product of independent Markov chains. If the
unique potential is constrained to verify

(20)

then the transition probabilities amount to

(21)
Thus, this simple temporal model provides a characterization of
the temporal aspects of motion content whereas spatial aspects,
captured by the more complex spatio-temporal causal Gibbs
models, are not explicitly modeled. However, the use of only
one clique makes easier the computation and the maximization
of the likelihood function

For simple temporal model, the likelihood function is then
simply given by:

(22)

where, for sake of concision, the mention of the unique clique
type is dropped (e.g., stands for ). The
availability of this simple exponential formulation presents sev-
eral interests. First, it makes the computation of the likelihood

for any sequence and model for which
feasible and simple. Second, all motion information exploited
by these models is contained in the cooccurrence distributions.
In particular, in order to evaluate the likelihoods
w.r.t. different models ’s for a given sequence, it is
not necessary to store the entire sequence. We only need
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to compute and store the related temporal cooccurrence dis-
tributions . The evaluation of the conditional likelihoods

is then simply achieved by exponentiating products
, whereas, in the general case, it is required to

store the sequence of mapsto compute the normalization
constant .

From equation (19), we get the following ML estimate of the
only temporal model for a given sequenceof local motion-
related quantities

(23)

Similarly to the computation of the likelihood , the ML
model estimation only requires the evaluation of the temporal
cooccurrence distribution .

B. Estimation of the Extended Temporal Models

Let us now consider the case of the extended temporal neigh-
borhoods or (see Fig. 2). To perform the ML estimation,
we adopt an incremental strategy, sketched in Algorithm 2. First,
we determine a ranking of the different cliques according to their
relevance in the model. For each , we evaluate the ML es-
timate of the specific model with potentials set as constant
for all cliques other than

(24)

Exactly as for the ML estimation of only in previous sub-
section, the ML estimated potential is given by:

(25)

under normalizing constraint

(26)

We can rank cliques according to the values of the
likelihoods of the sequence of motion-related quantitiesw.r.t.

with
(27)

The incremental estimation of the model is then carried out
as follows. At step from 1 to , it consists in estimating the
model that maximizes the likelihood under the
constraint

(28)

This maximization is achieved using the conjugate gra-
dient ascent described in Algorithm 1 with initialization

. Finally, at iteration , we obtain the ML

estimate defined on the whole temporal neighborhood
structure under consideration.

Algorithm 2—Incremental strategy for model

potential estimation

� Step 1: Initialization

1) l = 1

2) Sort clique set A = fa1; . . . ; ajAjg according

to relation (27)

3) Estimate model potentials 	
M

considering

only the first clique a1 (relation (25) )

� Step 2:

1) l  � l + 1

2) Introduce the new clique al

3) Initialize model potentials 	M with

	
M

4) Use the conjugate gradient procedure (de-

tailed in Algorithm 1) to estimate potentials

	
M

with cliques a1; . . . ; al

� Step 3: repeat step 2 until l = jAj

C. Model Complexity Reduction

When considering cliques (i.e., ) with levels of
quantization (i.e., ) for the local motion-related mea-
surements, potential values
have to be estimated. Typically, and , , or
. The number of potential values rapidly increases with the

number of considered cliques. As far as video indexing is con-
cerned, it is crucial to supply parsimonious content representa-
tions while keeping the characterization of the video content ac-
curate enough. To this end, we aim at reducing the global model
complexity while retaining the most pertinent information in the
selected model. Two aspects are considered.

1) Modification of the Range of: Some quantization levels
may seldom appear in the sequence of local motion-related
quantities . In that case, the potentials associated with these
quantization levels are less important as stressed by relation
(19). To select the relevant quantization levels, we compute the
number of occurrences of each level in the sequence.
For each level with an occurrence number lower than a given
threshold, potential values
are set to (a very low value in practice), which corresponds
to a null probability of the local configurations including
measurement . These potentials are let unchanged in the
whole estimation process.

2) Selection of Informative ML Potential Values:The
second phase of complexity reduction intervenes after ML pa-
rameter estimates are computed and is two-fold. First, for each
clique, we store only pertinent potential values of the global
estimated model while setting the other ones to a constant
value. Second, we eliminate cliques that bring negligible
information. This model complexity reduction can be regarded
as a pruning procedure applied to the set of potential values
of the ML estimate of the causal Gibbs model. To achieve
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this, we resort to likelihood ratio tests to specify the amount
of information to be kept. For both aspects of complexity
reduction, we compute the ratio of the likelihood of sequence

w.r.t a proposed reduced model over the likelihood of
w.r.t.

(29)

This ratio is compared to a user-specified threshold . This
threshold allows us to specify the tolerated error between the
ML estimate of the Gibbs model and the reduced model actually
stored. can be viewed as an evaluation of the
precision loss occurring if we substitute for .

We now describe in more detail the incremental complexity
reduction strategy. It is composed of two successive steps: a first
step to select the informative model potentials for each clique as
described in Algorithm 3 and a second step to select the perti-
nent cliques as detailed in Algorithm 4.

Algorithm 3—Selection of the informative

potentials of ML estimated model M for a

given clique a

� Step 1: Initialization

1) Sort estimated potential values

f	a

M
(�; �0)g(�;� )2� w.r.t cooccurrence values

f�a(�; �0jx)g(�;� )2�

2) Initialize the potentials of the reduced

model M�: 	M � 0

� Step 2:

1) Introduce one-by-one sorted potential

values 	a

M
(�; �0) in the potentials 	a

M

2) Compute the likelihood ratio LRx(M
�;M)

by relation (29) considering only the simple

temporal model with clique a

� Step 3: repeat Step 2 while LRx(M
�;M) < �LR

Concerning model potential selection for a given clique,
(19) shows that the largest potential values of ML estimate
correspond to high cooccurrence values. For a given clique
, potential values are one-by-one introduced in

a model (initially, ), according to their corre-
sponding value in the cooccurrence matrix with the
highest values being introduced first. At each step, we compute
the likelihood ratio (29). As soon as this ratio exceeds ,
we consider the selected potential values as representative of
the ML potential estimate associated to the sequence.

Let denote the reduced model consisting of the potentials
selected after this procedure has been applied to each clique.

Algorithm 4—Selection of the informative

cliques for the ML estimated model M

� Step 1: Initialization

1) l = 0

2) Sort clique set A = fa1; . . . ; ajAjg according

to relation (27)

3) Compute the reduced model potentials M by

selecting the informative potentials for each

clique a (see Algorithm 3)

� Step 2:

1) l  � l + 1

2) Define the reduced model Ml using relation

(30)

3) Compute the likelihood ratio LRx(M
l;M)

using relation (29)

� Step 3: repeat step 2 while LRx(M
l;M) < �LR

Then, the selection of the representative cliques, as detailed
in Algorithm 4, relies on the ranking defined
in Section V-B. We consider the different reduced models

such that

.

We compute the likelihood ratios and stop at
step where the ratio exceeds . The cor-
responding reduced model is finally selected as the model
attached to the sequence.

VI. M OTION-BASED VIDEO CLASSIFICATION AND RETRIEVAL

We now discuss the application of our modeling framework
to motion-based video classification and retrieval. Considering
a set of video sequences, we are interested in retrieving ex-
amples in this database similar, in terms of motion content or
more generally of motion activity, to a given video query. The
general idea is to define an appropriate similarity measure be-
tween image sequences and to determine the closest matches ac-
cording to this similarity measure. As far as feature-based tech-
niques are concerned, the retrieval process generally makes use
of classical distances in the feature space such as the Euclidean
or Mahanalobis distances, [30], [31]. In our case, we first ben-
efit from our statistical modeling of motion activity to define an
appropriate similarity measure w.r.t. motion content. We then
exploit this similarity measure to achieve a hierarchical classifi-
cation over a video set. In a third step, we tackle video retrieval
with query-by-example formulated as a Bayesian inference task.

A. Statistical Similarity Measure Related to Motion Activity

Given video shots characterized by statistical models of mo-
tion activity, we have to evaluate the degree of similarity of their
contents. We have defined a similarity measure based on the
Kullback-Leibler (KL) divergence [4], [6]. Let and be
the two sequences of motion-related measurements associated
to videos and and, and the two estimated
models on them using the method from the previous section.
Considering an approximation of the KL divergence detailed in
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the Appendix and using the exponential form (12) of the likeli-
hood function , the KL divergence of law

w.r.t. law can be approximated by

(31)

Expression (31) quantifies the loss of information occurring
when considering instead of to model the motion
distribution attached to .

In the case of the simple temp oral model defined in Sec-
tion V-A, this reduces to

(32)
In order to deal with a symmetric similarity measure, the sim-

ilarity measure between elements and is
defined by

(33)
Note that this similarity measure is not a metric since it does not
satisfy the triangular inequality. However, it can be easily com-
puted and interpreted, since it involves logarithms of likelihood
ratios.

B. Hierarchical Motion-Based Indexing and Retrieval

For efficient retrieval in large databases, it is necessary to
structure the target video set beforehand. We focus here on hi-
erarchical representations that have been successfully exploited
for browsing or retrieval in still image database [12], [31],
[40], [45]. Such indexing structures rely on binary trees. The
tree nodes will correspond to subsets of shots of the processed
video database. To achieve this hierarchical structuring, either
top-down [40] or bottom-up [31] strategies can be adopted. As
pointed out in [11], bottom-up techniques seem to offer better
performance in terms of classification accuracy. In fact, since
top-down methods consist in successively splitting the nodes of
the tree from the root to the leaves, an element misclassified at
the top of the hierarchy will appear in an undesirable branch of
the final binary tree. Therefore, we retain bottom-up clustering
and more particularly, we consider an ascendant hierarchical
classification (AHC) procedure [15].

We also need to define the similarity measure between
clusters of videos used in the ascendant hierarchical classifica-
tion scheme. For two clusters and , is defined by

(34)

We can now construct an ascendant hierarchical classification
based on . It proceeds incrementally as follows. At a
given iteration, a pair is formed by merging the closest clus-
ters according to . If a cluster is too far from all the

others, i.e., , it is kept alone
to form a single cluster. is a given threshold. For two clus-
ters and , can be expressed as the
product of two likelihood ratios and is comprised in [0, 1] (re-
lations (33) and (34)). Therefore, we set where

is a threshold in [0, 1]. This Threshold quantifies the informa-
tion loss we tolerate in terms of accuracy of description of mo-
tion distributions when substituting models attached tofor
those attached to and conversely. Typically, . The
merging procedure starts at the level of individual shots, which
form the leaves of the tree and is iterated until no new cluster
can be built.

For retrieval purposes, a motion activity model has to be at-
tached to each newly created cluster. In the case of the simple
temporal Gibbs model, since it is directly determined from tem-
poral cooccurrence measurements, the activity model associated
with the cluster formed by merging two clusters can be straight-
forwardly estimated using relation (23). Indeed, for the set of se-
quences comprised in the new cluster, the corresponding cooc-
currence measurements can be directly determined as the sum of
the cooccurrence measurements computed for each sequence of
the new cluster. When merging two clustersand , we first
compute the cooccurrence matrix as the sum of the
cooccurrence matrices and and then, exploiting
relation (23), we estimate the potentials of the Gibbs model as-
sociated with the new cluster formed by the union ofand .
On the other hand, such a simple updating is no longer possible
for the extended temporal Gibbs models. We could use the in-
cremental estimation scheme described in Section V-B. How-
ever, it would be computationally demanding when handling
large hierarchical structures with numerous nodes. Therefore,
we prefer not to estimate the model associated with the union
of two clusters to save computation and rather to select either

or as the model representative of the new cluster re-
sulting from the merged nodes and . We select the model
that maximizes the likelihood computed for the motion-related
quantity sequence issued from the union of all the sequences
from of the two clusters and . Even if we thus do not
compute the exact model for the new cluster, we believe that the
selected model still provides a pertinent characterization of the
motion content of the new cluster. Indeed, the two merged clus-
ters are supposed to be similar in terms of motion content.

C. Probabilistic Retrieval

As in [43], the retrieval process is formulated as a Bayesian
inference issue. Given a video query, we aim at determining
the best match in the stored set of video sequences ac-
cording to the MAP criterion

(35)

The distribution allows us to formulatea priori knowl-
edge of the video content relevance over the database. It can
be inferred from semantic descriptions attached to each type of
video sequence. This distribution could also be learned from rel-
evance feedback during the retrieval process [33]. Indeed, the
likelihood of the different possible replies could be weighted
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Fig. 3. Set of the 20 video shots used in the motion-based hierarchical classification of Fig. 4. For each video, we display the median image of the shot.

according to some evaluation of former retrieval operations per-
formed by the user. In the remainder however, we will in fact
incorporate noa priori (distribution is taken uniform, i.e.,

). Furthermore, criterion (35) also supplies a ranking
of the elements according to , which quan-
tifies how relevant the selection of w.r.t. the motion content
of query is. In our case, to each elementof the database,
a causal Gibbsian model is attached. We compute the se-
quence of motion-related measurementsfor video query
and the likelihood is expressed using . Then, we
obtain

(36)

Let us stress that we do not need to estimate a model for the
query.

In addition, we can take advantage of the hierarchical
representation of the video database mentioned in the previous
section to satisfy a video query. When dealing with large
databases, solving criterion (36) exhaustively is quite time
consuming. Therefore, we exploit the constructed binary tree
to obtain a suboptimal but efficient solution of criterion (36). If
obtaining the best match is not guaranteed, this can be viewed
as a trade-off between reply accuracy and search complexity.
The retrieval process is carried out through the binary tree from
the root to the leaves as follows. To initialize, we select the best
node at the root of the search tree according to

(37)

At each step , given a parent cluster , we select the best child
node according to the MAP criterion

(38)

This procedure is iterated until a given maximal number of ele-
ments in the selected cluster is reached.

VII. RESULTS

We have evaluated the whole proposed framework for motion
activity modeling, content-based video indexing and content-
based video retrieval, on a database containing samples of real
videos. We have paid particular care to choose examples that
are representative of various motion situations. The database
includes temporal textures (samples of fire and sequences of
river), video shots exhibiting significant motion activity such as
sports videos (basket, horse riding, …), rigid motion situations
(cars, train, …) and sequences with a low motion activity. We
have built a database of 150 sequences of zero images derived
from zero video shots (elements from the same video shot are
not temporally adjacent). A sample of frames from this video
set is provided in Fig. 3.

The experiments reported in this section have been performed
using parameter values set as follows. In the motion-related
measurement stage, we set and . These
values seem to be suitable based on previous work [7], [17],
[20]. For the model complexity reduction stage, we set

. Finally, we set (i.e., ), in the hierar-
chical structuration of the database.
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The goal of this section is to illustrate the interest of the de-
signed statistical motion modeling with different neighborhood
structures for video indexing and retrieval. We do not aim at sup-
plying a complete experimental comparison of the different ver-
sions of the motion activity modeling introduced in this paper.
We report an example of motion-based hierarchical classifica-
tion using neighborhood and we describe different retrieval
operations with query by example using neighborhood.

A. Model Complexity Reduction

In a first step, we have estimated the causal Gibbs model at-
tached to each element of the database for the neighborhood
(see Section IV). For the processed database, we finally only
kept from 5% to 20% of the 1280 potential values (here,

, and ) of each ML model attached
to each video shot after the model complexity reduction phase.
We report here two examples of model complexity reduction
respectively for shots and with the temporal
neighborhood . The median images of these two sequences
are displayed in Fig. 3. Video is a static shot of an an-
chor person in a news program. The motion activity is very low
and only potential values related to low values of motion mag-
nitude are kept. This leads to 5% of the estimated ML potential
values being retained and only one clique out of the five ini-
tial ones. The second example involves substantial
motion activity. The stored Gibbs model is more complex, with
two selected cliques and 10% of the estimated potential values
being retained.

B. Statistical Hierarchical Motion-Based Classification

To provide a comprehensive visualization of the statistical
hierarchical motion-based classification described in Sec-
tion VI, we have performed a classification on the subset of
20 sequences displayed in Fig. 3. It contains: two shots of
anchor person in news programs, and , with
a very weak motion activity; two other examples of low motion
activity, hall and Concorde; four examples of rigid motion
situations corresponding to road traffic sequences,
and and airport sequences,landingandtake-off; ten
sport video sequences involving shots of rugby games,
and , hockey games, , and ,
basketball games, , and
and windsurfing, and ; finally,
two samples of temporal textures with high motion activity,fire
andriver.

For this experiment, we exploit extended temporal models
corresponding to . The unsupervised hierarchical classifica-
tion obtained, shown in Fig. 4, correctly separates the different
kinds of dynamic contents. Traffic sequences, and ,
airport videos,landingandtake-offand low motion activity situ-
ations, , , hall andConcorde, constitute a sep-
arate cluster in which relevant subclusters have been created as-
sociated to these two types of motion content. In addition, all
sport video shots are properly grouped. In this last group, perti-
nent subgroups have also been identified such as the one com-
prising the three basketball sequences displaying very high mo-
tion activity and the one with the three hockey shots.

C. Statistical Motion-Based Retrieval With Query-by-Example

For the retrieval experiments performed over the base of
150 videos, we have considered simple temporal models with
neighborhood . Fig. 5 describes the results of four experiments
of retrieval operations with the query-by-video example. The
first query is a news program which consists of a static shot of
an anchor person. A rigid motion situation (airplane take-off)
is proposed as the second query. The third and fourth retrieval
operations concern sport videos. The third query is a global view
of the game field, whereas a close-in shot of a basketball player
tracked by the camera constitutes the last example. We locate
the three best replies according to the computed log-likelihood
values (asgiven in relation (38)).Forall theconsidered
queries, the retrieval process supplies relevant replies. In partic-
ular, when considering the two examples involving sport videos
with an important motion activity, the close-up situation is well
discriminated from the other ones. To evaluatea posteriorithe
relevance of the replies, we have also estimated the model
associatedwiththequeryandwereport thevaluesofthedistance

given by relation (33) between and the different
retrieved models . The ranking supplied by log-likelihood
values is confirmed by the values of distance for each reply.

To carry out a more quantitative evaluation of our motion-
based retrieval system, we have analyzed the relevance of the
replies retrieved when considering in turn each element of the
video database as a query. To this end, we need to definea priori
classes w.r.t. motion content. We consider four classes which
seemed to be relevant as illustrated by the classification exper-
iment reported in Fig. 4. More precisely, class (I) refers to low
motion activity contents, class (II) to rigid motion situations,
class (III) to wide-angle shots and close shots of sport games,
class (IV) to temporal texture samples. It should be stressed that
the evaluation of retrieval performances w.r.t. semantic classes
is necessarily somewhat subjective. For evaluation purpose, we
consider two measures. First we count how many times the
query shot appears as the best answer. Let us note that this is
not guaranteeda priori since the retrieval process is conducted
through the hierarchical representation of the database and not
by way of to an exhaustive search. For the processed video data-
base, the first retrieved answer is the query shot 76% of the time.
Within the remaining 24%, i.e., 36 video samples, the best reply
belongs to the samea priori class for 30 queries.

Secondly, we have evaluated the relevance of the second re-
trieved answer in terms of correct classification w.r.t. thea priori
motion activity classes described above. The results obtained
with simple temporal Gibbs models are given in Table I. For
classes (I), (II), (III) and (IV), the rate of correct classification
is mostly within the range 89% to 100%. These results also re-
veal the limitations of the evaluation of our retrieval system in-
volving query by example w.r.t. semantica priori classes. For
instance, we obtain a misclassification rate of 11% for class
(II) which involves rigid motion situations. The corresponding
video shots do actually involve rigid objects, but these are close
to the camera and undergoing large displacements. Thus, they
could appear as more similar to the close shots of sport games
than to rigid motion situations such as the traffic sequences in-
volved in the classification experiments illustrated in Fig. 4.
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Fig. 4. Motion-based statistical classification: obtained motion-based hierarchical classification for the set of 20 video sequences presented in Fig. 3 withD =

2:3 (� = 0:1). At each leaf of the tree, we report the name of the video sequence. For the other nodes of the tree, we display the maximum intra-cluster distance
evaluated using expressionD of relation (34).

However, this evaluation should be considered as a first valida-
tion of our approach. We plan to evaluate it on a larger database.

D. Discussion

Promising results have been obtained using the statistical
nonparametric motion models introduced in this paper both for

motion classification and for motion-based video retrieval on a
video database involving various types of motion activity. We
have not tackled the issue of selecting the causal spatio-tem-
poral neighborhood structure. Note that there are unfortunately
no labeled video databases and protocols available in order to
carry out objective performance comparisons between different
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Fig. 5. Results of retrieval operations involving three replies. For each replyn, we give the valueLF of the log-likelihoodln (P (x )) corresponding to
video queryq. To evaluate a posteriori the relevance of the replies, we have also estimated the modelM associated to the queryq and we report the values of the
distanceD (n; q), given by relation (33) betweenM and the different retrieved modelsM .

methods in the field of content-based video indexing and
retrieval.

However, in order to evaluate the influence of the choice of
the neighborhood structure on the achieved global motion char-
acterization, we addressed a different motion recognition task
in another work [16]. In that case, a ground-truth was avail-
able to compute rates of correct and false classification and we
were able to compare statistical motion activity models associ-
ated with different neighborhood structures. We refer the reader
to [16] for further details on these experiments. For the consid-
ered motion recognition task, spatio-temporal neighborhoods

and did not bring substantial improvements compared to the
simple temporal model, while the latter is far less complex and
time consuming regarding the computation of likelihood func-
tions and the ML model estimation.

VIII. C ONCLUSION

We have described an original method for the global charac-
terization of motion content in video sequences, which is able
to handle a very large range of dynamic scene contents. We rely
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TABLE I
EVALUATION OF THE PERFORMANCE OF

THE RETRIEVAL SYSTEM W.R.T. AN A PRIORI CLASSIFICATION OF THEVIDEO

BASE OF150 ELEMENTS. CLASS (I) REFERS TO LOWMOTION ACTIVITY , CLASS

(II) TO RIGID MOTION SITUATIONS, CLASS (III) TO WIDE-ANGLE SHOTS AND

CLOSE SHOTS OFSPORTVIDEOS, CLASS (IV) TO TEMPORAL TEXTURE

SAMPLES. WE SUPPLY THE CLASSIFICATION RATES FOR THESECOND

RETRIEVED ANSWER OBTAINED WHEN CONSIDERING IN TURN EACH

ELEMENT OF THE DATABASE AS A QUERY. FOR INSTANCE, WITHIN THE 18
ELEMENTS OFCLASS II, 89% AND 11% WERE RESPECTIVELYASSIGNED TO

CLASSES(II) AND (IV)

on a statistical modeling of the distribution of local motion-re-
lated measurements using nonparametric causal Gibbs distribu-
tion fitted at the ML sense. In addition, we have designed an
efficient model complexity reduction scheme based on likeli-
hood ratios. This statistical modeling leads to a general statis-
tical framework for motion-based hierarchical classification of
a video database and motion-based retrieval with query-by-ex-
ample according to the MAP criterion.

In future work, we plan to validate our approach on a larger
video database. In that context, as pointed out in [11], the hier-
archical indexing structure can be regarded as a relevant alter-
native to retrieval with query-by-example, since it allows users
to navigate the database according to their interest. Multiscale
causal Gibbs model will be also investigated. Ongoing work
aims at using this novel approach of motion modeling and char-
acterization to automatically segment entities of interest in the
shot and to satisfy partial queries [18]. It could also be useful to
extract shots of interest in video sequences with a view to cre-
ating video summaries.

APPENDIX

APPROXIMATION OFKULLBACK –LEIBLER DIVERGENCE

In this Appendix, we give details of a Monte-Carlo approxi-
mation of the KL divergence (39). Considering two probability
distributions and , the Kullback-Leibler (KL) divergence

is defined by

(39)

It can be viewed as the expectation of the log-likelihood ratio
w.r.t. distribution . In our case, if we consider an ele-

ment of the processed video database, the sequence of motion-
related quantities represents a sample associated with the dis-
tribution modeled by . More precisely, for each

, the transition probability from to
is governed by the causal Gibbs model . If we consider
two elements and of the video database, their associated
models and and the sequences of computed mo-
tion-related quantities and , then, the KL divergence

is approximated as the average of the log-
ratio of the transitions probabilities from to

computed respectively w.r.t. and

(40)

Due to the causal nature of the model, it comes to approximate
the KL divergence by the log-ratio of the like-
lihoods of the sequence of motion-related quantitiesunder
models and , respectively

(41)

Using the exponential formulation of law , we then obtain
relation (31).
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