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Abstract - The purpose of this paper is to investi- 
gate the planification of a mobile trajectory in order 
to w e  its o m  notion for improving its position esti- 
mation . This optimization pmcedure relies upon two 
basic ingredients: 1) a reference measurement map of 
the area of interest is available before departure. 2) real 
time measurement semors placed aboard the mobile. 
The main objective is to plan a trajectory which mini- 
mizes the localization ermr along the path or/and at the 
arrival area. The general framework of the Markov de- 
cision process coupled with an auxiliary local cost func- 
tion are the basic ingredients of a sub-optimal algo- 
rithm. Quality of the optimization scheme is evaluated 
by deriving the Posterior Cmm.6r-Rao bounds of the 
non linear discrete-time system. 

Keywords: Terrain-Aided Navigation, optimization, 
Markov Decision Process, Posterior Cram&-Ran 
Bounds. 

1 Introduction 
For military or civilian applications, terrain-aided 

navigation (TAN) permits the self-localization of a mo- 
bile without any help of exterior systems (see [l, 2, 31). 
This task can successfully be achieved by correlating 
informations given by onboard sensors at the sequence 
of positions with a reference measurement map previ- 
ously stacked. To a large extent, the di5culty comes 
from the strong nonlinearity of the measurement ver- 
sus position, resulting in divergence of the classic EKF 
position filters. To remedy this problem, Viterbi alga- 
rithm (see [2]) or more recent particle 6lters (PF) (see 
[l, 31) have been developed. They are both feasible 
and reliable. A main property of PF is to reach the 
Posterior Cram&-Ran bounds (PCRB) [4, 51 only in 
a few iterations. The PCRB measures the maximum 
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information which can be extracted from a dynamic 
system when both measurement and state are assumed 
to be random. For TAN, the PCRB is evaluated for a 
given nominal trajectory coupled with an error diffu- 
sion model of the state vector. 

A crucial task for operators is to schedule a path 
maximizing the PCRB collected among it. This off-line 
optimization will indirectly improve the position esti- 
mation of the mobile. A such a priori procedure can he 
formulated within the Markov decision process (MDP) 
framework 161, when the system state is completely ob- 
served. However, if the state is only partially observed 
(e.g. via non-linear scalar measurements), then Par- 
tially observed Markov decision process (POMDP) [7] 
is the general framework. We stress that this frame- 
work is quite general but also very demanding (espe- 
cially for memory requirement). For our problem, the 
MDP framework will be the workhorse for the plan- 
ification tool. Taking into account precision require- 
ments, adaptivity is useless. 

In order to simplify the problem, the optimized path 
is supposed to be a multileg one (sequence of constant 
headings with constant velocity). The reference mea- 
surement map is also regularly gridded, each point of 
the grid corresponds to an end point of one leg. We 
also suppose that the mobile path starts and ends at 
two points of the grid. An example of measurement 
map (Colorado state area taken by landsat) as well as 
a path trajectory is provided in figure (1). We first 
assume that the path optimization problem is equiva- 
lent to finding the best decision sequence maximizing 
an auxiliary convex cost function. Both state and deci- 
sion spaces are supposed to be discrete and finite. For 
the sequel, a decision is assimilated to an elementary 
move of the mobile between two points of the map. 
This cost function tends to represent as well as possi- 
ble the terrain variation information collected during 
the mobile motion. 
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2.1 Markov decision process frame- 
work 

The underlying assumption is that the optimal path 
must be a realization of a Mukov chain driven at each 
time k by the optimal decision which maximizes, over 
a finite time horizon, the expectation of a given cost 
function. 

The general aim of the MDP is to determine the 
sequence of decisions {&(z,,. . . , z k ) } ,  k = 1,. . . , K 
which maximizes a cost function related to the state 
sequence of the Markov chain. S k  denotes the position 
space of the path at time k. Assuming now that the 
state z k - l  is equal to a realization j ,  j E Sk-1 and the 

The rest of the paper is articulated in four parts. 
The second section describes the basic ingredient of 
the MDP processes. Section three introduces a path 
optimization algorithm based on the MDP framework 
in order to incorporate maneuverer contraints. Section 
four is an overview of the PCRB for discretetime non 
linear dynamic system. The PCRB permits to validate 
quality of our result and is followed by conclusions and 
discussions. 

2 Problem formulation 

[~zz(tk),~z(t~)rry(tk)i~z(t~)lT, where (rz(t.drry(td) 
Let us define the state vector by z(tk) 

denotes the mobile position at time t,+ and 
U,(&), wz(tk) its velocity. As mentioned previously, 
the position is supposed to be one of the map grid 
point. If we denote by Nz and Ny respectively the 
cardinalities of points gridding the map in both axis, 
the cardinality of the position set is N,N,. For 
the example of figure (l), we have N, = Nu = 
16. The velocity vector [ ~ . ( t k ) , t ~ ~ ( t k ) ] ~  takes only 
8 different values in the set {-llV(tk)l l ,O, IlV(t,+)\l} x 

velocity modulus at time t k  l .  The position denoted 
g(tk) is depending from state vector via the follow- 
ing (observing) relation u(tk) Bz(tk), where B = 

[ : : ] . In order to simplify notations, we 

will use for the sequel the underscript k to design time 
index t k ;  for example z ~ :  stands for z ( t k ) .  

{ - - l l~ ( t~ ) l I ,o3  llV(t~)ll}\{o} x W9 where Ilv(tk)ll is 

'Corresponding to the vertices and the axis lengths of a 
square centered at the origin 

1. the realization j of the state z k  drawn according 
to pj ; (d)  = Pr(zk = i l z k -1  = j, dk-1 = d )  and 

2. the cost of the transition from state j to state i 
under decision d is denoted cj;(d) .  

A 

Using the Bellman principle of optimality, the MDP 
problem may be solved by the following recursions [8, 
61: 

k = 2 , .  . . , K ,  i E S k .  The sequence {&(i)}, k = 
1,. . . , K ,  i E Sk represents the decision plan. This 
plan can be interpreted as the sequence of decisions 
which globally maximizes the cost function. However 
it may happens that it is impossible to find a path 
starting at a desired point and ending at a specific 
point and satisfying specific: constraints (e.g. length, 
maneuvers, etc.). 

Due to operational considerations, we assume for the 
sequel that for each decision dk we can associate only 
one ending state, i.e. each decision d k  represents a 
deterministic basic m m  from j to i. Equation (1) is 
simplified as follows: 
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k = 2 ,... ,K, i E Sb. 
We can also remark that decision &(i) is taken 

in the set Dk--l(i), independently of the decision 
G-l(j) E D+z(j), j E S k - I  previously estimated. 
The last remark is quite important, for instance for 
long time horizon k. In this case, it may he possible 
to obtain a "bang-bang" decision plan between k ,  k + 1 
and k + 2, i .e.  going from state j to state i and then 
returning in state j (see figure (4)). This possibly oc- 
curs if q,(d) and cjj(d'), d E Dk-](i), d' E Dk(j) are 
important compared to other costs in different state 
area. In this occurrence, maneuvering constraints are 
generally violated. 

3 A modified MDP algorithm 
for TAN 

In order to render decisions G(i) dependent of the 
previous decisions taken at time k - 1 ,  the following 
modification in the MDP algorithm recursion is prc- 
posed: 

(3) 

j*  

lows: 

& - , ( i ) , k  = 2,. .. ,K, i E S k .  
In practice, equation (3) can be reformulated as fol- 

(4) 

k = 2,. . . , K ,  i E Sk and d' = Dk-*(j*). 6(d,d') is 
a matrix defining the authorized decisions whom can 
he taken at time k - 1 versus the previously decisions 
taken at time k - 2. 

3.1 A practical issue for the modified 
MDP algorithm: maximization of 
the local energy 

For a concrete issue of the modified MDP algorithm, 
we must define four following quantities: 

1. the set of the state Sk, 

2. the set of decisions Dk-l(Z), i.e. the catalog of 
the elementary moves associated with the state i ,  

3. the authorized transition decision matrix 6(d,d'), 
d E Dk-l(i),d' E Dk-z(j') a i d  

4. the cost of each hasic moves c,,(d). 

The set Sk is assumed to be independent of time in- 
dex, i .e. SI,  = S. The set of decisions Dk-l(i) is also 
assumed time independent, i.e. D k - ~ ( i )  = D(i)  and 
defined by the 8 adjacents neighbor states j whom con- 
duct to the state i .  If state i do not have any ancestor 
j E 5' -e.g. border case of the map for example- the as- 
sociated decision is 0. Then D(i)  = D = {0,1,. . . , 8 } .  
The total number of legs, which grid the map is R = 
8(N,-2)(Nu-2)+10((Nz - 2) +(Nu - 2))+12. The 
top of the figure (2) shows the NINu states and the R 
admissible decisions where N, = Nu = 3 for this ex- 
ample. 

The cost function must take into account the in- 
formation variation between two adjacent states. In 
[9, 101, the mutual information is chosen to define the 
local cost function. Another possibility is to compute 
the entropy of the time series collected between state j 
and i .  However, we chose to compute the local energy 
of the time series collected from j to i .  

3.1.1 A local measurement of the energy as 
cost function 

Each legs for all admissible decision between state 
j to state i is regularly discretized in P points; data 
are retrieved by a bilinear interpolation from the map 
and stacked in the matrix Z ( P  x R )  as showed in the 
middle of figure (2). 

For each column r = 1,. . . , R of Z ,  the local energy 
denoted E, is computed as follows. 

where a is given by 

(6)  

Bottom of the figure (2) shows values of E,, T = 
1 , .  . . , R and k = 1. As expected, we can see that the 
local energy is proportional to the local variation of the 
map. 

3.1.2 An efficient way to reduce memory bur- 
den and time computations 

Assuming that for each decision D(i) ,  a unique state 
j can be associated with i, an original data structure 
can be deduced in order to improve algorithm perfor- 
mance. Two matrices must be computed a priori, says 

1009 

Authorized licensed use limited to: UR Rennes. Downloaded on July 16, 2009 at 06:59 from IEEE Xplore.  Restrictions apply.



- m  - 
c m  

P 
a 

L ,m 
?a 

I IO ( ( 1 0  El 24 s M - R.M Figure 3: Recursions of the niodified MDP algorithm. 

I : I  
d = 8  I j ( i , d )  I t.. I j ( i ,  d )  

Tahle 1: Matrix I of elements j ( i , d )  E Sk-1. This 
matrix represents all admissible previous states j at 
time k - 1. 

Tahle 2 Matrix C = {cj , (d)}  associated with the ma- 
trix I. 

2 and C ,  both are (8 x N,N,). In the f is t  hand, the 
matrix I represents for all i E S, the admissible previ- 
ous states j E S associated with the decisions d E D. 
( j ( i ,  d )  = 1 , .  . . , NzN, ) if state j is admissible or 0 
if not. In the second hand, the C matrix components 
are the local energy costs computed with relation (5). 
If the state j ( i , d )  is not admissible, i .e.  j ( i , d )  = 0, 
the cost is assumed to be null. Tables (1,2) show the 
structure of the two matrices. A third matrix denotes 
6, ( 8  x 8 )  is also required and defined by the following 

6 =  

d\d’ 1 2  3 4 5 6 7 8 
11 1 1 0 0 0 0 0 1  

1 1 1 0 0 0 0 0  
0 1 1 1 0 0 0 0  
0 0 1 1 1 0 0 0  
0 0 0 1 1 1 0 0  
0 0 0 0 1 1 1 0  
0 0 0 0 0 1 1 1  , i 1 0 0 0 0 0 1 1  

(7) 

This matrix reflects the authorized decision d at time 
k - 1 allowed versus decisions d‘ at time k - 2. If 
6(d,d’) = 1, V{d,d’} E D2, we retrieve the classic 
MDP algorithm. The table (3) shows the pseudo-code 
of the modified MDP algorithm for TAN applications. 

This new algorithm can he easily extended; for ex- 
ample: 

if startfend area are no more one point of the grid; 

to discard states associated with unauthorized mea 
of the map; 

to optimize with more realistic basic moves given by 
a maneuverer’s catalog defined by operator. 

The last three points represent the main contribution 
of this algorithm. 

An example is presented in figures (3,4,5). The two 
first one display decision plans versus time of the mod- 
ified and the classic MDP algorithm respectively, with 
N ,  = N u  = 10 and K = 14. Corresponding optimized 
mobile trajectories are also plotted on the map. In 
the third one (fig. 5) optimized paths are compared 
on a real situation. We can see that maneuvering con- 
straints are now satisfied by using modified MDP. 
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3) Back-tracking ;. - . 
d K -  4 ;';a(;>) K 

For k = K - 1.. . . . I  

Table 3 Modified MDP algorithm for TAN. 

Figure 4 Recursions of the classic MDP algorithm. 
The corresponding estimated path is displayed. 

4 Overview of the Posterior 
Cramer-bo Bounds 

In the previous section, an original algorithm has 
been described which aim is to plan the mobile path 
maximizing an additive auxiliary cost function based 
on the local energy. However, our initial objective is 
to improve the estimation of the mobile position which 
may he achieved by using various methods, e.g. parti- 
cle filtering. Performance of all these algorithms can be 
compared with the PCRB associated with the dynamic 
system and a given nominal trajectory. This path can 

Figure 5: Outputs of Classic/Modified MDP a l p  
rithms. 

he the output of the previous optimization step. 

lowing non-linear dynamic system: 
We assume TAN systems are modeled with the fol- 

x 1  = w1 

x k + l  = * k Z k + U k + W k  (8) 1 %k = H k ( X k ) f V k .  

State x k  dimension is d = 4, measurement Z k  dimen- 
sion is denoted m. * p s  represents the transition ma- 
trix of the linear state equation and H k ( x k )  is the 
observation matrix. This last one is nothing else the 
measurement available via the reference map (possi- 
bly vectorial). The term u k  is the system control 
(mobile maneuvers). For our case, the control se- 
quence U 1 : k  4 {ul,. . . , u k }  is deduced from the out- 
put sequence ITzk & {i;, . . . , ii} of the optimization 
step. Assuming that velocity modulus is constant from 
one leg to another and a constant sampling interval 
T = ( t a t 1  - t t ) ,  Vk = 1, ... ,K the law u k  is com- 
puted as f0Uows: 

r 0 1 

and 
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We denote the state sequence collected from depar- 
ture to time k by X1:k p {q, . . . , zk} and the associ- 
ated measurement sequence by 21:s b {r i ,  . . . , zk}. 

In equation (8), wl,  wk and VI are respectively ini- 
tial, current state process noise and the measurement 
noise process. 

' 0:' 4 {-A% [In b b + ~ l z k ) ) ] }  

Di2 E.I. {-A",:' [ln(P(zk+iI~d)]} 

0:' 4 E., {-A%+~ i ln (~(zk+i l~k)) l )  = 0 T z  

DE2 E.I. {-A::$; [ln@(zk+~lzk))l} 

, &+I A E~k+,.zL+l {--A%:: l lnb(zk+iI~k+i))l} 
4.1 Posterior Cram&-Rao bounds 

The PCRB measures the minimum mean square er- 
rors of any unbiased estimator when both measure 
ment Z and states X are two random processes. This 
approach departs from of the classical Cram&-Rao 
where the state is considered unknown but determin- 
istic 111, 121. The PCRB is evaluated as the in- 
verse of the Fisher information matrix (FIM) denoted 
F (X, 2). For atering case modeled by equation (8), 
the FIM is computed for every time increment and de- 
noted Fk   XI:^, Z I : ~ ,  U 1 : k ) .  As U 1 : k  is deterministic 
(constructed according to optimization outputs), the 
FIM ( associated to a nominal trajectory) simply reads 
Fk   XI:^, Z I : ~ ) .  

The FIM (kd x kd) is defined as follows: 

F~ ( x ~ : ~ ,  z l :~ )  -E {AZ:; ~ I n w ~ : ~ ,  Z~+J)I} 

where the Laplacian operator A$ (d x d) is defined by 

I a2 a2 I 

The PCRB denoted Pk (d x d) is the right lower block 
matrix of the matrix Fk   XI,^, Z1:k). Using the Schur 
block inversion matrix lemma [13], an elegant recursive 
expression of the PCRB can be derived (see 14, 51): 

and 

4.1.1 Evaluation of n k + 1  for TAN applications 
The main difficulty in the computation of the PCRB 

for TAN applications comes from the evaluation of 
For the daily case, given a reference map and 

eventually a measurement covariance error map, &+I 

must be evaluated numerically by intensive Monte 
Carlo runs. Notice also measurements z k  and mea- 
surement covariance matrices R k  depend only of the 
current position i.e. yk. IIk+l is evaluated.in three 
steps for every time increment k: 

1. Generate M samples says z;+~ according to the 
equation (8). At k = 1, the first M samples xi 
are drawn according Q,. Out-ranging samples are 
eliminated in the evaluation of &+I. 
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2. For each previous samples, compute covariance 
matrices Ri+l (using bilinear interpolation). 

3. Evaluate numerically, for each sample, the lc- 
tal gradient Vek+l [HT ( z ; + ~ ) ]  with the step 

The PCRB recursion of the equation (12) is simplified 

[hz,h,l. 

as: 

k = 1,. . . , K - 1. Computation of equation (16) will 
permit us to judge the quality of the a priori optimiza 
tion algorithm based on the local energy cost function. 

A direct globally optimization of (16) can't be real- 
ized either with a dynamic programming point of view 
or branch & bound algorithm. The reason is there is 
not any principle of comparaison available for (16), i.e. 
iff(A) % f ( B )  and C + 0 f (A + C) b f(B + C).  

4.2 Example of planification 
In the following example, results of the optimization 

procedure for the two MDP algorithms are presented. 
The covariance matrix of the Gaussian state noise prc- 
cess is defined by (see [14, 61 for details) 

where U' = 1000 mlh and T = 0.1 h. The initial 
covariance state is 

where up,= = u~," = 500 m, 
The covariance of the measurement process is s u p  

posed to be uniform on the available map and equal to 
R k  = 40% of the total standard variation of the map. 
N, = Ny = 15 and K = 18 for the simulations. For 
the computation of the PCRB, M = 500 Monte-Carlo 
trajectories have been generated. In order to compare 
quality of our optimization, a random path has been 
also generated. The fignre (6) shows the three paths. 
The initial confidence ellipsoid is also displayed. 

= u",~ = 0.01 m/h. 

Figure 6: A random path and outputs of the modi- 
fiedlclassic MDP algorithms. 

The figure (7) shows the PCRB computed on the 
three paths. Upon fignre is the PCRB on the posi- 
tion gk and bottom fignre is the PCRB of the velocity. 
The position's PCRB of the random path is increased 
when the path is located near a flat area. In only few 
legs, the position PCRB collapses from 500 m to 10 
m of precision. This is a piece of evidence how the 
measurement can dramatically improve the precision 
of the mobile position, even if this value (10 cm) seems 
to be the asymptotic precision for this given scenario. 
If operators desire a quickly accurate localization, the 
optimized path should converge as soon as possible to 
the ultimate value. 

As expected, position PCRB of the optimized paths 
are very stable around the asymptotic PCRB. The fig- 
ure (8) shows the trace of 3';' divided by the cumule 
tive distance versus time k. The function can be inter- 
preted as the optimization efficiency 'during the path. 
The last ratio measure how fast the PCRB diminish 
versus the distance already covered since departure. 

We can see for both optimized paths that the opti- 
mization efficiency is very low compared to the random 
path. This means optimized paths improved the local- 
ization of the mobile since departure. 

5 Perspectives and conclusions 
This paper presents an original method based on 

a MDP algorithm to solve scheduling path problem 
for TAN systems. The main contribution of this the 
algorithm is to integrate very easily maneuverer con- 
traints and authorized basic moves. The optimization 
is based on the maximization of a local energy function 
which measures the terrain elevation variation's. Per- 
formance of the optimization algorithm is evaluated 
by means of the PCRB and validates our approach. 
However, direct and global maximization of the PCRB 
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Figure 7: Posterior Cramh-Raa bounds along the 
three trajectories. 

Figure 8: Instantaneous efficiency of the optimization. 

seems unfeasible by means of ”standard” control algo- 
rithms, this is the r e w n  why suboptimal algorithms 
have been developed instead. Future directions in this 
work concern the use of simulation methods for jointly 
approximating the PCRB and the best sequence of con- 
trols. 
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