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Abstract  - This paper deals with the tactical plan- 
ning of the search efforts for a moving target. I t  refers 
deeply to the work of Brown- Washburn, related to the 
multi-step search of a Markovian target. However, this 
meaningful work is not optimally applicable to tactical 
situations, where the target may move accordingly to 
the observations of the possible searcher indiscretions 
(eg. active modes). On  the one hand, the probabilistic 
Markovian model is too restrictive fo r  describing such 
target motion. I n  this paper, a more suitable model- 
ing of the target move is presented (semi-Markovian 
model). O n  the other hand, it is necessary to involve 
the informational context into the planning. These two 
paradoxical aspects make the issue uneasy. W e  intro- 
duce a model for handling the context notions into the 
optimization setting, and apply it to a general search 
example with multiple modes management. 

Keywords: Tactical planning, Dynamic context, 
Modes and resource management, Search game, Ac- 
tive/Passive detection. 

1 Introduction 
The initial framework of Search Theory[l][2][3], in- 

troduced by B.O. Koopman and his colleagues, sets the 
general problem of the detection of a target in a space, 
in view of optimizing the detection resources. A thor- 
ough extension of the prior formalism has been made 
by Brown and Washburn towards the detection at sev- 
eral periods of search[4][5]. These simple but mean- 
ingful formalism were also applied to resource man- 
agement and data fusion issues[6]. But a probabilistic 
prior on the target was required. In addition, a Marko- 
vian hypothesis is necessary for algorithmic reasons. 
While this formalism works well for almost “passive” 
targets, it is inappropriate when the target has a com- 
plex (and realistic) move. In a military context espe- 
cially, the behavior of the “interesting” targets is not 
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neutral and cannot be modeled by a simple probabilis- 
tic prior. A conceivable way for enhancing the prior on 
the target, while involving more properly the complex- 
ity or the reactiveness of the target, is to handle the set 
of the available trajectories, instead of the probabilistic 
assumption. This yieds a minimax game version of the 
Koopman or Brown optimization problems. Our inter- 
est in this paper is to optimize the minimax detection 
of a moving target. However, our work is related in 
many aspects to the Brown’s optimization framework, 
at least to its formalism. For these reasons, the works 
of Brown (and related) will be quickly presented and 
assumed as a prerequisite. In section 2 a general game 
problem is defined involving multi modal strategies for 
both the target and the searcher. The searcher strat- 
egy is determined and then the target strategy. We 
explain the notion of context in section 3 and define 
therefore an original notion of dynamic search game. 
This principle is applied in order to solve a general 
example of search planning in a dynamic context. Fi- 
nally, an example of application is given in section 4. 

The FAB Algorithm (Brown-Washburn): The 
objective is to detect a target moving in a space E. The 
detection is done within T periods and the search ends 
after the first detection. We define I = ( X I , .  . . , X T )  

the position of the target during the periods 1 , 2 , .  . . , T. 
The target motion is assumed probabilistic and Marko- 
yian, ie. a(11 = ( X k ,  X k + l ) .  For each period k 
a given amount of search effort 4 k  is available. It may 
be distributed along E.  The (local) search effort, ap- 
plied to the point x k  E E at time k ,  is denoted ( P k ( X k ) .  

The set R(q5) of valid choices of cp is thus considered: 

Associated with the local effort, V k ( X k ) ,  is defined the 
conditional probability, P k , z k  ( P k  ( X k ) ) ,  not to detect 
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the target within the period I C ,  when its location is 
indeed x k .  It is assumed, for X k  fixed, that p;,,, < 0 
and that logpk,,, is a convex function. This last 
hypothesis yields the convexity of the problem. It is 
justified by the law of diminishing return. 

The problem is then to find an optimal function 
cp E R(4) in order to minimize P,d(cp) the global prob- 
ability of non-detection. We assume the independence 
of the elementary detections, so that: 

T 

In order to solve this optimisation problem, Brown's 
algorithm is based on a Forward And Backward 
method[4][5], and uses basically the Markovian as- 
sumption relative to a,  so as to drastically reduce 
the computation requirements for the integral (1) and 
related. 

The work of Brown is easily extendable to problems 
with multiple modes/types of detection resources and 
multiple running modes for the target. This is accom- 
plished by adding a type index p E (1,. . . , r }  to the 
search variables (eg. pi, 4;) and a target state pa- 
rameter a to the target prior (eg. a [ Z , Z ] ) .  The non 
detection functions are also affected (eg. pi;::). The 
definition of the set R(4) is changed this way: 

The global non detection probability appears then as 
follows (S is the set of states): 

Based on this multi-type formalism, Dambreville and 
Le Cadre proposed a linear extension of the search 
constraints[6], in order t o  handle the temporal behav- 
ior of the various detection resources and their inter- 
action (data fusion). Again, the objective functional 
is given by 2 but the valid choices of cp are now given 
by the constraint set R(A, $): 

An algorithmic solution of this problem have been 
given by Dambreville and Le Cadre in [6]. This al- 
gorithm makes use again of the Markovian assumption. 

In the subsequent section, a new type of target prior 
is considered and we will consider the game aspects of 
the ploblems introduced here. Thus, the definitions of 
R(4) and R(.4,$) should be kept in mind. 

2 Game on moving target 
2.1 Problem Setting 

A target is moving in a space E ,  during T periods 
of search. Each period of search is represented by the 
suffix k E { 1,. . . , T} .  The position of the target during 
the period k is denoted x k .  Moreover, at each period k, 
the target may be in a particular state U k  E S. The set 
of available target trajectories, denoted T c ET x S', 
is known. There is no other prior about the target 
moving behavior. In general, the set T may be quite 
big. An extensive definition is not possible. However, 
for algorithmic reason, it will be necessary to make 
simplifying hypotheses. A Markovian-like definition is 
thus assumed for the set T: 
Definition 1 Let the sets mk c E2 x S2 be given for 
each k E (1,. . . , T - 1) .  The set of available trajecto- 
ries T is defined by: 

[:] ET U V k E  {1, ..., T - I } ,  Z k , x k + l  
[ c k , g k + l ]  E mk ' 

Our interest focuses on a game between the target and 
the search efforts. A pure target strategy is the choice 
of a trajectory [.',a]. The only constraint put on the 
target is [Z, $1 E T. The target is confronted to several 
types of search resources. These types are numbered 
by the suffix p E { 1 , .  . . , r} .  From now on, we define: 

M = { l ,  ..., r } a n d 7 = { 1 ,  ..., T } .  

A pure search effort strategy is a choice of local re- 
source allocations p[ E for each period IC E 7 
and each resource type p E M .  The set, R7 of the 
valid allocation functions cp is assumed to be convex. In 
practice, we will take R = R(4) or R = R(A,$).  As- 
sociated with the local effort ( P ; ( Z k ) ,  is defined the con- 
ditional probability, pi$: (9; (Zk)), for the resources p 
not to detect the target within the period k, when its 
location is indeed x k  and its state is g k .  It is assumed 
that (pi;::)' < 0 and WE;:: = logpi;:: is a convex 
function for x k ,  g k  fixed. The instantaneous visibility 
parameter wg;;: = -(w$;zt)' is a decreasing function, 
which is an expression of the law of diminishing return. 
The evaluation function Vnd of the game corresponds 
to the global probability of non-detection: 

Since logpg;;: is convex, the function Vnd is convex 
in the variable cp. The aim of the game is to find an 
optimal couple of strategies, which minimize Vnd for 
the searcher and which maximize this value for the 
target. Since the evaluation function Vnd is convex, it 
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has a semi-mixed optimal strategy (a,, cp,), where cp, 
is a pure strategy and cr, is a mixed strategy. Thus cy, 

This probability is obviously Markovian: 

is a probabilistic function on T. Define: T-1 

v [;] E T7 [:] = - pT k = l  n Xmr.(xk,xk+l,ck,ck+l) 7 

P ( T )  = (. E 

where the functions xmk are defined by: 
The whole problem may be summarized as follows: 

a. E arg max 1 cr [:] Vnd ( [ ;] , y o )  di33 , 

cpo E a r g z ; L o ,  [:] Vnd ([:I ,cp) dZd8. 

Xmb (Q 7 xk+l , Q , ck+i) = 1 if 

Xmr. (Zk,  ~ + l ,  ck, ~ + i )  = 0 else. 
a @ ( T )  T 

(3) Define also the corrected detection functions p ( w )  by 
scaling their associated visibility factors with w:  The strategy cpo may also be defined alone: 

cpo E arg z i g  Vnd ([s, $1 7 9) . (4) 

This last equation shows that the determination of cp, 

Vp E M ,  V k  E 7, V [ X ~ , C T ~ ]  E E x S, Vcp E Et+, 
peLl''k (cp) = exp ( -w x wi;:: (9)) . 

is possible without finding a,. It is a good thing, be- 
cause, for complexity reasons, it is uneasy to manipu- 
late a, explicitly. Actually, a, may not be Markovian, 
although T has such property. 

2.2 Avoiding the maximization 

Then the inner minimization of equation ( 5 )  appears 
clearly as a Brown-like optimization problem, where 
the target follows the uniform probabilistic prior aU 
and the resources run with the scaled visibility factors. 
The whole problem is rewritten as follows: 

The very known following approximation of the ~ Q X :  
cp, E lim qdw) , 

w 3 0 0  

max(a1,. . . , U M }  = w++m lim (5 where: 
m=l 

runs uniformly for all M-uplets a' = (a l ,  . . . , U M )  of a ydw) E arg min 1 
set A, as soon as this set A is bounded. A minimization 
made on A may thus be inverted with the limit: 

cy,E] n$'~~'"* ((pi(zk)) dZd8. 

The functions y(w) are computable by means of the 
algorithm of Brown-Washburn when 72 = E($) or by 

min maxjal,.  . . , u M }  = lim min u z  . means of the algorithm of Dambreville-Le Cadre when 
R = 72(A,$).  It is easy then to derive from ( 6 )  an 

ZEA w++m ZEA 

algorithm for computing a minimax optimum 90: 

VcR E T x S T  
k P  

(6)  

( m r 1  ) 
It is as much easy to derive some minimizers as a limit: 

1. Initialization of cp, and of parameters. In partic- M 
arg min &A max(u1, . . . , a M  1 3 w++m lim arg min ZcA UW, . ular w is set to a positive value; 

m=l 

Applying the same inversion to the equation (4), it is 
possible to choose an optimal strategy cp, as follows: 

2. Compute dw) by n-"S of a Proper algorithm. 
Use the current value of cp, as initialization; 

5. Return to 2 until convergence. 
( 5 )  

Algorithm: Let cy, be the uniform distribution on 
T: This algorithm runs satisfactorilly. Owing to the com- 

puter limits due to the real number encoding, the pa- 

imate maximal value 2000. However, it is not a great 
restriction and the results are sufficiently precise. 

[2, zl E T, cyU[z, $1 = - l , where pT = J ,  dzd$ , rameter w was limited in our algorithm to the approx- 
PT 

V[Z,,] $!T,cy,[Z,8]=0. 
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2.3 Computing a target strategy 
It is of course uneasy to compute ao(Z,3) entirely, 

since the set T may be huge and complex. And it may 
be that a, is not Markovian. However, it is possible 
to describe the sequence of the marginals of the tar- 
get strategy, conditionally to the already covered path. 
More precisely, refering to the actual trajectory: 

accomplished by the target at  the period k, it is suf- 
ficient to compute the optimal move of the target for 
the current period k, that is the conditional marginal 
a o ( x k ,  ' J k l O k ) .  Such 1-dimensional function is practi- 
cally easily handable. It will be obtained from a theo- 
retical (but practically unfeasible) construction of the 
whole strategy a,,. Now, the main difficulty for a theo- 
retical definition of a. comes from the linearity on a of 
the global detection probability to be optimized: the 
variable a disappears from the optimality equation ob- 
tained by variational means on a. Now, we will show 
how to overcome this difficulty by optimizing approx- 
imated games, which are convex on cp and concave on 
a. New evaluation functions V$)(o, cp) are proposed: 

The new games considered are minimax on V ( w ) :  

An optimal solution (ao,cpo) of the main game is ob- 
tained as a limit of the various approximations: 

Solving the approximated game: 
of saddle points are obtained by variational means: 

The equations 

(8) 
The first equation reduces to: 

It is interesting to characterize the trajectories [Z, Z] 
with positive probabilities. The result (9) is proven: 

[Z,Z] E T * a[.',3] > 0 (9) 

proof: Assume a an optimal strategy. Let [Z,?] and 
[d, 4 be two trajectories of T such that a[Z, 71 = 0 and 
a[d, 4 > 0. Let dt be a positive variation and let & be 
the perturbation of a defined by: 

-++ &[Z, 71 = a[?, 71 + dt , &[d, 61 = a[d, 4 - dt , { &[2,3] = 0 , else. 

Since & E P(T), the inequality V$)(a, cp) 2 I&'(&, cp) 
holds true. By simplifying the variational decomposi- 
tion of V$)(a,  cp) - U$)(&, cp) then holds: 

-0;' n &::: (cpg ( c k  )) dt 2 0 * 

k , p  

Since 0T5 = +CO, the previous inequality is obviously 
contradictory. The equivalence (9) is then deduced. 
000 

The probability a is then entirely defined by the first 
optimality equation: 

By replacing this optimal value of a in the second equa- 
tion of (8), the following condition is obtained: 

This last equation appears also as the optimality con- 
dition of the optimization problem: 

These optimization problems were encountered in sec- 
tion 2.2. Applying the algorithm presented previously 
in this section, we will be able to compute ~ ( ~ 1 .  Then, 
dw) will be deduced. 
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Convergence to the main game: Now, we intend 
to check that the sequence of the approximated game 
minimax converges to minimax solutions of the main 
game. Assume (a(03), cp'")) to be such limit: 

From the optimality of (a(w), q(,)) holds: 

From the continuity of V n d  and V$', and from the 
convergence ~ $ 1  + v n d ,  it follows: 

va E P(T) ,  Vnd (a(=? ,(a)) 2 Vnd (a,  v(m))  , 

vcp E R, Vnd (a(m),,cm,> I Vnd (a(%) * 

Thus, (cy(O3),cp(O0)) is a minimax of the main game. 
At last, a method for optimizing both a. and p0 is 
summarized bellow: 

where: 

In particular, by considering a. E lim, a("), we obtain 
a o ( l 0 k )  as a limit of the functions: 

In fact, the strategy a o ( z k ,  U k l O k )  will be computed 
at each period I C .  In order to do that, it is first neces- 
sary to compute the coming optimal search strategies 
( O { W ) P ( l t k , p  for w + 00. This is done by a FAB-like al- 
gorithm. The computations of the integrals is done by 
a downward method. Defining, for every S c ET x ST,  
the set T ~ S  by: 

rks= { [ x k , c k ]  / 3[y',d E $ 7  [ y k , < k ]  = [ z k , c k ]  

the following computation of Q o ( ( O k )  is established: 

Deriving a practical target strategy: As yet dis- 
cussed before, it is not possible to compute entirely a,, 
but the conditionaI marginals are sufficient in practice. 
Considering O k ,  the trajectory already accomplished 
by the target at period IC defined in (7), we define: 

its set of ,possible path completions. The conditional 
probability a o ( x k ,  U k l O k )  is defined as follows: 

3 Planning in a dynamic context 
During its move, the target will select specific run- 

ning modes (eg. more or less furtive mode) in order to 
lower the detection capabilities of the search resources. 
For example, a quick move may speed up the escape 
of the target but otherwise, it makes the target more 
visible. Similarly, an active search resource is more e€- 
ficient against furtive targets but it is easily located 
by the target and may result in an escape strategy for 
the target. Otherwise, a good combination of active 
and passive resources make possible the development 
of trapping strategies. Since we are optimizing the first 
detection of the target, it is reasonable to consider that 
the searcher has no additional information about the 
target during the search process. Such blindness does 
not hold for the target, which may obtain some addi- 
tive informations about the active resources currently 
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used by the searcher (dynamic context). More pre- 
cisely, it is plausible that the active resources positions 
are known by the target. In particular, we define: 

vc {1, ...,?.}, 

the set of the types visible by the target. The aim of 
the present section is the study of search games, under 
such dynamic contexts. 

An (almost) general view: Let be given a general 
search game described by V([Z ,  a], p), its evaluation 
function, and R, T, its constraint sets on the respective 
variables. We point out that the function V may con- 
tain multiple occurences of the variables ?, .‘, cp, and 
may be rewritten V ( { [ Z ,  Z], p}iE3). These occurences, 
i, generally correspond to specific situations in the de- 
tection and are also a built-in source of context. For 
example, a one-detection problem’, Vld, contains many 
occurences of the variables, distinguished here by (i): 

The occurence i corresponds here to the information 
“the target is detected at period i”. Such contextual 
information is accompanied by a change of the prior 
on the target (xi is known when the target is actually 
detected at period i). This example explains how the 
built-in context evolves during the detection, and how 
it interacts with the problem formulation. In addition 
to the build-in context, some context ingredients also 
result for each period k from the “visible moves” of 
the players. This is particularly true in multiple-mode 
problems with active detection modes, p f ( , ,E~ , l~k .  

The previous example has introduced the notion of 
context. To handle the context in the search planning, 
the strategy needs to be a function of the contexts. 
A target strategy is ( A k l k ) ,  a T-uplet of in-E x S- 
valued functions depending on target-known (proba- 
bilistic) contexts, denoted *k. More precisely, a reali- 
sation [ z k ,  Q] of Ak (*k) will represent the future target 
move for the current search period IC. A strategy for the 
searcher is (F[Ip,k), a (T x r)-uplet of in-R+ -valued 
functions depending on searcher-known (probabilistic) 
contexts, denoted *: (here, a vector of contexts is even 
used for each period). A realisation ’pi of F[(*pk) will 
represent the future target move for the current search 
period k and the type p. The contexts * and * may de- 
pend on the previous or current strategies of the target 

E 

‘For a simple presentation, only one mode for the target and 
the searcher is considered. 

~ 
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and of the searcher, but also on the occurence position i 
(buid-in context). In addition the contexts contain (in- 
dependent) probabilistic components, denoted and C. 
For the (one-mode, furtive) one-detection problem, * 
and * are defined as follows: 

In particular the definition of *k specifies that the prior 
on the target changes whenever a previous detection 
of the target happened at the period i < IC. For a 
no-detection problem, there are no built-in context. 
Nevertheless, taking into account the possible visible 
search strategy, the context is defined as follows: 

*k = ( c p f / p E v , l ~ k ;  O k ; G )  and *f = ( ’ p f l p , l < k ;  C:) . 
The definition of *k specifies that the target knows 
the visible searcher moves even for the current period. 
The probabilistic components, < and C, are needed to 
simulate instantaneous mixed strategies. 

The minimax optimization on A and F results di- 
rectly from the game without context. It is necessary, 
however, to precise which are the constraints to apply 
on A and F .  .One (recursive) method is to consider 
that A (resp. F )  maps to T (resp. R), from any re- 
alisation of the context. This will be denoted A w ‘IT 
(resp. F H R). A couple (A,, F,) of optimal minimax 
strategies under context is then defined by: 

(13) 
Otherwise, the strategies may be defined separately: 

F, E arg min ~ ~ ~ E E E C V  ( A k ( * k ) ( k ’ ~ ~ ( * P k ) I k , p )  
F x R  A-T 

(14) 
Property 1 There are two probabilistic parameters < 
and C, which yield a (pure) solution to the game G:. 

proof: Let (A,,F,) a couple of mixed minimax 
strategies of the ”deterministic” game G!. The con- 
texts * and * will refer to G!. Set & = A, and 
Ckp = F,. Define the strategies Â  and $ of G: by: 

A ^ k ( * k , C k )  = (tk)k (*k) and @(*[,G) = (G): (*[I . 
It is easy to check the following equalities: 
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Similarly holds: 

F - R  min Et E< V ( 2 k  (*k 9 <k I k 7 Fkp (*E 7 e:) 1 k , p )  = 

F++R min (AO,k(*k) lk?  F[(*; ) lk ,p)  ' 

Since (A,,, F,,) is a (mixed) saddle point for G:, it fol- 
lows then that (2, F) is a pure saddle point for G:. 
DUO 

This proof shows that a mixed strategy may always be 
simulated by a probabilistic switch of pure strategies. 
We now denote +, whenever there is an onto mapping 
s so that Y = s ( X ) .  
Property 2 Let [I, 0, cl, c 2  be probabilistic parame- 
ters such that + and &,k + & , k .  Assume 
there is a pure solution to the game Gii. Then, there 
is a pure solution to the game G;;. 

proof (partial): Define the onto mappings r and 
s such that 52,k = r k ( & , k )  and = Let 
(A,,,  F,) a solution of G:. Simply define (&, go) by: 

&,k(*k ,&,k)  = A o , k ( * k , T k ( & , k ) )  , { $&(*;, e&) = Fo(*;, s;(cf,k)) . 

It is easy to check that (A,, go) is a solution to G::. 
DUO 

Thus, the use of sufficiently general and wide proba- 
bilistic parameters ensure the existence of a pure solu- 
tion. This hypothesis is made in the sequel. 

The no-detection case: 
the following inequality then hold: 

Since V n d  is convex on F ,  

E€ Vnd (Ak (*2) I k , E& (*;) I k , p )  L 
EC E< Vnd ( Ak (*; ) I k , F[ (*; I ~ c , ~ )  > 

where *' denote a *-context defined outside Ec (it does 
not depend on C). Since *' contains less information 
than a *-context defined inside Ec, it follows: 

A-T max J q X z d  (Ak ( * 5 >  I k , FLY*;) I k , p )  I 
m m  EEECVlLd (Ak (*k) I k , Fkp (*;I I k , J  7 
A++T 

F-R  min A-T m a  E € v ~ ~  ('qk(*;)lk, E~F,P(*;)~,,~) 5 

min max Ec~cl/',d ( A  (*k) I k, F ~ P  (*;) I ~ , ~ )  . 
F-U A-T 

This signifies that an optimal strategy Fo may be cho- 
sen independently of any probabilistic parameter 5. 
The definition of F, reduces to: 

po E arg F H R  min A-T m - = ~ c ~ ~ d  ( A ~ ( * ~ ) I , , F , P ( * ; ) ~ ~ , , )  . 

Now, for a given F and [Z, 31 E T, it is always possible 
to choose A - T such that A k ( * k ) l k  = [Z, 81 whatever 
the value of [, and it follows then: 

A-T max E€ Vnd ( Ak (*k 1 I 7 Fkp (*; 1 1 k , p )  2 

[B,U]ET m_ax Vnd (wl,q*;)lk,p) . 

Since *; does not depend on A or [Z,:], the reversed 
inequality trivially holds true. Hence: 

Fo E %p&[ggund (rcal,Fkp(*;)Ik,p) . 

The optimal contextual strategies are equiva- 
lent to an optimal non-contextual strategy : 

Then, the contextual strategy A,  is defined as a semi- 
contextual saddle point: 

A o  E a r g y s E < V n d  ( A k ( * k ) l k , ' P o )  

'Po E argminEgVnd ( A 0 , k ( * k ) l k , ' P )  { rpf= 

In these equations, & ( * k ) l k  may be replaced by any- 
thing else. It is thus obvious that the contextual 
strategy A,  is equivalent to the non-contextual 
strategy described by a,. Intuitively, the visible 
resources cp$ for p E V are the only external informa- 
tion gained by the target. When the searcher plays 
optimally, this information is yet deductible from the 
planned searcher strategy, which is a pure strategy. 
Then, no external information or context is needed, 
and it is sufficient to use a planned strategy for the 
target. But the situation is different, if we admit that 
the searcher use suboptimal strategies. 

4 Results 
We present here an example for a two-type non- 

contextual game. The search space E is a set of 20 x 20 
cells. The number of search periods is T = 7. The tar- 
get moves from the 5 x 5 top-left sub-square down to 
the 10 x 10 down-right sub-square of E. The set of al- 
lowed movements is especially oriented down-right and 
is uniform with the start position and the start period. 
More precisely, the set T is characterized by: 

(171) I 5 1  I (575) 7 

VZ E T, (11,11) L 57 I (20320) , I vlc E (1, * * * ,613 (Q+1 - 4 E m , 
where m is a set of 2D motion vector. In our example, 
the set m is composed by the pairs ( i , j )  of integers 
labeled by a star * in the following table: 
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The number of available target trajectories is, in this 
case, about 90000000. The two resource types are 
named a and b. The visibility functions for these 
resources are taken linear and are thus of the form 
wkp,,,(cp) = WE,$, x cp. The visibility coefficients W E  
and wk are respectively represented in figure 1 and 2. 
Low values for ~ k p , + ~  correspond to dark cells whereas 
bright cells represent high values. 

wl" w; w; wqa wga ws" w; 

Figure 1: Visibility Parameter for the type a 

w; w; w: w: w; w: w: 

Figure 2: Visibility Parameter for the type b 

The minimax optima are given in figure 3 for type a 
and in figure 4 for type b. Interpretation of such re- 
sults is uneasy. However, there is a splitting of the 
detection between the two resource types, according 
to their respective visibility parameters. Particularly, 
the resources a tend to be used in the center of the 
space, while the resources b are more concentrated on 
the borders of the target move. At last, a comparison 
of the results can be done with a Brown's optimiza- 
tion solution. In the case of a Brown's optimization of 
the resources, and for a target with a diffusive Marko- 
vian probabilistic prior, the obtained optimal sharing 
functions cp present some surrounding behavior. In the 
present case, the functions cpo are almost not surround- 
ing. In other word, it seems that the target strategy 
avoids the surrounding of the searcher. 

5 Conclusion 
Our aim was to solve a spa.tia1 resource allocation 

problem for a moving target, including the manage- 
ment of several modes and types. In this framework, 

v:,, v:,z v:,3 v:,4 v:,5 v:,6 v:,7 

Figure 3: Minimax optimum for the type a 

v:,1 cp:,z v:,3 4 4  cpb,,5 v:,G v:,7 

Figure 4: Minimax optimum for the type b 

we intended to enhance the target behavior represen- 
tation. A set modeling of the target trajectories ap- 
peared much more realistic than a simple probabilistic 
model. This model resulted in games between the tar- 
get and the searcher. We solved these game by an 
approximating method. The principle of this quite 
general method allows to translate the minimax op- 
timization into one-sided optimizations. At last, we 
defined a general formalism to handle the dynamic 
context evolution into the search planning. Using this 
model, we proved the equivalence of the contextual and 
non-contextual game, when the evaluation function is 
convex and no information about the target is obtained 
until detection. This work should be enhanced soon for 
solving more complex cases. 
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