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Abstract

The principal deficiency of image-based visual servoing
is that the induced (3D) trajectories are not optimal and
sometimes, especially when the displacement to realize is
large, these trajectories are not physically valid leading to
the failure of the servoing process. Furthermore, visual con-
trol needs a matching step between the features extracted
from the initial image and the desired one. This step can be
problematic (or impossible) when the camera displacement
between the acquisitions of the initial and desired images is
large and/or for complex scenes. To resolve these deficien-
cies, we couple an image interpolation process betweenN
relay images extracted from a database and an image-based
trajectory tracking. The camera calibration and the model
of the observed scene are not assumed to be known. The
relay images are interpolated in such a way that the corre-
sponding camera trajectory is minimal. First a closed form
collineation path is obtained and then the analytical form
of image features trajectories are derived and efficiently
tracked using a purely image-based control. Experimental
results obtained on a six DOF eye-in-hand robotic system
are presented and confirm the validity of the proposed ap-
proach.

1 Introduction

Image-based visual servoing is now a well known con-
trol framework [10], [13]. In this approach, the reference
image of the object corresponding to a desired position of
the robot is generally acquired first (during an off-line step),
and some image features are extracted. Features extracted
from the initial image are matched with those obtained from
the desired one. These features are then tracked during the
camera (and/or the object) motion, using for example a cor-
relation based method. An error is obtained by comparing
the image features in the current image and in the reference
one. The robot motion is then controlled in order to min-
imize the error (using for example a gradient descent ap-
proach). Since the error is directly measured in the image,
image-based servo has some degrees of robustness with re-
spect to modeling errors and noise perturbations. However,

sometimes, and especially when the initial and desired con-
figurations are distant, the trajectories induced by image-
based servo are neither physically valid nor optimal due to
the nonlinearity and potential singularities in the relation
from the image space to the workspace [1]. Furthermore,
when the camera displacement between the acquisitions of
the initial and desired images is large and/or when the ob-
served scene is complex, the matching step can be difficult
and even impossible (for example when no joint features
could be detected in the considered images).

Dealing with the first problem, path planning in the
image-space is a promising approach. Indeed, if the ini-
tial error is too large, a reference trajectory can be designed
from a sequence of images. The initial error can thus be
sampled so that at each iteration of the control loop the er-
ror to regulate remains small. In [11], a potential switching
control scheme and relay images that interpolate initial and
reference image features using an affine approximation are
proposed to enlarge the stable region. In [12], a trajectory
generator using a stereo system is proposed and applied to
obstacle avoidance. An alignment task for a 4 DOF robot
using intermediate views of the object synthesized by im-
age morphing is presented in [22]. A path planning for a
straight-line robot translation observed by a weakly cali-
brated stereo system is performed in [19]. In previous work
[16], we have proposed a potential field-based path plan-
ning generator that determines the trajectories in the im-
age of a set of points lying on an unknown target. To in-
crease the stability region, Cowan and Koditschek describe
in [3] a globally stabilizing method using navigation func-
tion. However, none of these previous works is dealing
with optimality issues. In [23], a numerical framework for
the design of optimal trajectories in the image space is de-
scribed and applied to planar mobile robot with a one di-
mensional camera. In [17], we give an analytical solution
to optimal path planning in the image space (with respect to
minimum camera acceleration criterion) between two given
images.

Classical visual servoing techniques make the assump-
tions on the link between the initial image and the desired
one. If the initial and desired images are very different
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and/or the scene is complex, the steps of finding and match-
ing joint image features (abbreviated SFMJF) are uneasy,
and even sometimes impossible if no features belongs to
both images. In such a case, the servoing can not be real-
ized. To cope with this deficiency, we propose to use a set
of relay images (such that between two successive images,
SFMJF are feasible). This set of relay images is automat-
ically extracted from an image database obtained and in-
dexed off-line. When the SFMJ have been realized between
each pair of successive relay images, the visual servoing
process can be applied between the successive relay images
until the last image. However, such a process is not satisfac-
tory since the camera velocity is null at each transition. To
improve the behavior of such a visual-based control scheme,
we address the problem of finding realistic image trajecto-
ries (i.e corresponding to physically valid camera motion)
and corresponding to a minimal camera path betweenN
given relay images. The obtained image trajectories can
then be efficiently tracked using a purely image-based con-
trol scheme.

The paper is organized as follow. In Section 2, we
recall some fundamentals. In Section 3, a closed-form
collineation path betweenN relay collineations matrices is
obtained. In section 4, the caseN = 1, corresponding to
the classical framework in visual servoing, is studied. In
Section 5, we describe our approach when relay images are
used.

2 Fundamentals

2.1 The collineation matrix

Consider two views of a scene observed by a cam-
era. A 3-D pointX with homogeneous coordinatesX =
[X Y Z 1]T is projected under perspective projection to a
point x in the first image (with homogeneous coordinates
measured in pixelx = [x y 1]T ) and to a pointxf in the
second image (with homogeneous coordinates measured in
pixel xf = [xf yf 1]T ). It is well known that there exists a
projective homography matrixG related to a virtual plane
Π, such that for all pointsX (belonging or not toΠ) 1:

x ∝ Gxf + τg(t) (1)

where the matrixG is called the collineation matrix,τ is
a constant scaling factor null if the target point belongs to
Π andg(t) represents the epipole in the current image that
is the projection in the image at timet of the optical center
when the camera is in its desired position. More precisely:

g(t) = Kb(t) (2)

whereb(t) is the translation vector between the current and
desired camera frame (denotedF andFf respectively) and

1x ∝ Gxf ⇐⇒ αx = Gxf whereα is a scaling factor

K is the classical non singular matrix containing the intrin-
sic parameters of the camera. From the knowledge of sev-
eral matched points, lines or contours [6, 2], it is possible
to estimate the collineation matrix and the epipole. For ex-
ample, if at least four matched points belonging toΠ are
known,G can be estimated by solving a linear system. Else,
at least eight points (3 points to defineΠ and5 outside ofΠ)
are necessary to estimate the collineation matrix by using
for example the linearized algorithm proposed in [14]. As-
suming that the camera calibration is known, the Euclidean
homography can be computed up to a scalar factor:2

H ∝ K+GK (3)

The Euclidean homography can be decomposed into a rota-
tion matrix and a rank1 matrix [7]:

H = R +
b
df

nfT (4)

whereR represents the rotation matrix betweenF andFf ,
nf is the unitary normal to the virtual plane expressed in
Ff anddf is the distance fromΠ to the origin ofFf . From
G andK, it is thus possible to determine the camera mo-
tion parameters (i.e the rotationR and the scaled translation
bdf = b

df ) and the normal vectornf [7]. If the camera is

not perfectly calibrated (i.êK is used instead ofK), then,
the parameters which can be estimated are [14]:

R̂ = δKRδK+ (5)

n̂fT =
nfT δK+

‖nfT δK+‖ (6)

b̂df = ‖nfT δK+‖δKbdf (7)

whereδK = K̂+K.

2.2 The rotation group SO(3)

The groupSO(3) is the set of all3 × 3 real orthogonal
matrices with unit determinant and it has the structure of a
Lie group. On a Lie group, the space tangent to the identity
has the structure of a Lie algebra. The Lie algebra ofSO(3)
is denoted byso(3). It consists of the3×3 skew-symmetric
matrices, so that the elements ofso(3) are matrices of the
form:

[θ] =


 0 −θ3 θ2

θ3 0 −θ1

−θ2 θ1 0




One of the main connections between a Lie group and its
Lie algebra is the exponential mapping. For everyR ∈
SO(3), there exists at least one[θ] ∈ so(3) such thate[θ] =
R with (Rodriguez formula):

R = e[θ] = I +
sin ‖θ‖
‖θ‖ [θ] +

1 − cos ‖θ‖
‖θ‖2

[θ]2 (8)

2K+ denotes the inverse ofK
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where‖θ‖ is the standard Euclidean norm. Conversely, if
R ∈ SO(3) such that Trace(R) 6= −1 then:

[θ] = log(R) =
θ

2 sin θ
(R − RT ) (9)

whereθ satisfies:

θ = ‖θ‖ = arccos
(

1
2

(Trace(R) − 1)
)

(10)

If Trace(R) = −1, log(R) can be obtained noticing that
θ = ±πu whereu is a unit length eigenvector ofR associ-
ated with the eigenvalue1.
Another important connection betweenso(3) and SO(3)
involves angular velocities. IfR(t) is a curve inSO(3),
thenṘRT andRT Ṙ are skew-symmetric, and hence ele-
ments ofso(3). The elementω of so(3) such that:

[ω] = RT Ṙ (11)

corresponds to the angular velocity of the rigid body.

3 Collineation matrix path

Assume that a set ofN +1 relay imagesI = {I0 · · · IN}
have been acquired and that some image features can be
extracted and matched between two successive images (re-
fer to Fig. 1). Assume also that from the extracted im-
age features, the collineation matricesGi,i+1 between im-
agesIi andIi+1 can be computed. The collineation matrix
Gi,N αK(Ri+bdf i)K+ (refer to (3) and (4)) between im-
agesIi andIN can easily be obtained noticing that :

Gi,N = Gi = Gi,i+1Gi+1,i+2 · · ·GN−1,N (12)

Given a set of N + 1 collineation matricesG =
{G0,N · · ·GN−1,N ,GN,N} associated to a set ofN + 1
time parameters{t0 · · · tN−1, tN}, we want a continuous
and piecewise differentiable matrix functionG(t) such that
G(ti) = Gi for i ∈ {0 · · ·N} corresponding to a minimal
length camera trajectory. This problem can be formulated
as follow (problemPM):

Find G(t) minimizing Ji =
∫ ti+1

ti
UT Udt

for i = 0 · · ·N and with U = [ωT vT ]T where ω is
defined by (11),v = ḃ, and with boundary conditions:
G(ti) ∝ Gi, G(ti+1) ∝ Gi+1.
The solution of the problemPM can be obtained using clas-
sical optimal control formalism and it is given by [15]:

G(τ) ∝ (1 − τ)Φi−1 + τΦi + (Gi−1 − Φi−1)Γ (13)

whereτ = t−ti−1
ti−ti−1

and:




Γ(θi, τ) = Ke([θi]×τ)K+

Φi = Kbdf infT

K+

(14)

CN
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Figure 1: Interpolation of N images

with [θi]× = log(RT
i−1Ri). By introducing the equations

(5), (6) and (7) in (13), it can be shown that the path given by
(13) is not affected by error on camera intrinsic parameters
(the proof can be found in [15]).

4 Example: N=1

We assume now that the initial image (I0 at time t =
0) and the desired image (I1 at time t=1) corresponding to
the initial and desired robot positions are available. We as-
sume also that some image features can be extracted and
matched. This framework is the classical one in visual ser-
voing. From the extracted image features the collineation
matrix, at time t=0,G0, can be computed. When the de-
sired configuration is reached (at time t=1) the collineation
matrix is proportional to the identity matrix:G1αI (corre-
sponding toR1 = I andbdf1 = 0). In this case the path of
the collineation matrix is given by (refer to (13) and (14)):

G(t) ∝ (1 − t)Φ0 + (G0 − Φ0)Γ (15)

where : Γ(θ0, t) = Ke([θ0]×t)K+ and Φ0 =
Kbdf0nfT

K+ with [θ0]× = log(RT
0 ). The parametersn,

bdf0 andRT
0 are obtained fromG0 using [7]. Note, once

again, that the obtained path is not affected by camera cali-
bration errors [18]. The image trajectories can be obtained
and followed using an image based control as described in
the next sections.

4.1 Trajectories in the image space

In order to control efficiently a robot using vi-
sual data, we have to determine the trajectories of
some image features in the image space. More pre-
cisely, we want to perform smooth trajectoriess∗(t) =
[x∗

1(t) y∗
1(t) · · · x∗

n(t) y∗
n(t)]T of n projected points in

the image between a given start points∗(0) =
[x∗

1(0) y∗
1(0) · · · x∗

n(0) y∗
n(0)]T and a given desired point

s∗(1) = [x∗
1(1) y∗

1(1) · · · x∗
n(1) y∗

n(1)]T (refer to Figure
2). We denotex∗

i (t) = [x∗
i (t) y∗

i (t) 1]T the vector of ho-
mogeneous coordinates expressed in pixel of the projection
of a 3-D pointXi in the current desired image (at timet).
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Figure 2: Features trajectories in the image

We define vectorhi = αi(t)x∗
i (t) such that:

hi(t) = αi(t)x∗
i (t) = G(t)x∗

i (1) + τig(t) (16)

whereαi(t) is a positive scaling factor depending on time,
τi is a constant scaling factor null if the target point be-
longs toΠ. After that the initial collineation has been es-
timated, the optimal path of the collineation matrix can be
computed as described previously. The initial value of the
epipole,g(0) = g0, can also be computed directly from
image data (i.e,g0 is independent of theK-matrix). Fur-
thermore, it is easy to show that the optimal trajectories of
the epipole, with respect to the previously cited criteria, are
of the form [15]:

g(t) = (1 − t)g0 (17)

Such trajectories of the epipole are not affected by error on
intrinsic parameters. Note also that the scaling factorτi is
not time dependent and can be computed directly from the
initial and desired image data since (refer to (16)) :

αi(t)x∗
i (0)∧x∗

i (0) = 0 = G(t)x∗
i (1)∧x∗

i (0)+τig(t)∧x∗
i (0)

We thus obtain3: τi = − (G0x
∗
i (1)∧x∗

i (0))1
(g0∧x∗

i (0))1

The vectorhi is not affected by error on intrinsic parameters
sinceG(t), e(t) andτi (∀i ∈ {1 · · ·n}) can be computed
without error even if theK-matrix is unknown. The trajec-
tories of the considered point in the image corresponding to
an optimal camera path can thus also be computed without
error, using:

x∗
i (t) =

(hi(t))1
(hi(t))3

y∗
i (t) =

(hi(t))2
(hi(t))3

(18)

4.2 Control scheme

To track the trajectories using an image-based control
scheme, we use the task function approach introduced by

3(v)j denotes thejth components ofv

Samson etal in [20]. A vision-based task functione to be
regulated to0 is defined by [5]:

e = L̂+(s(t) − s∗(t)) (19)

The time varying vectors∗(t) is the desired trajectory of
s computed as previously explained (more generally, we
use the notationx∗(t) to represent the planned parameter
x). The matrixL denotes the interaction matrix related to
s (also called image Jacobian). It links the variation of the
visual features with respect to the camera velocityTc with
ṡ = LTc. The matrixL̂+ is the pseudo-inverse of a chosen
model ofL. An exponential decay ofe toward0 can be ob-
tained by imposinġe = −λe (λ being a proportional gain),
the corresponding control law is:

Tc = −λe− ∂e
∂t

(20)

Using such control law, a well known sufficient condition to
ensure global asymptotic stability of the system is [20]:

L̂+L > 0 (21)

For a pointX with coordinates[X Y Z]T in the current
camera frame and image coordinatesx = [x y 1]T in pix-
els, the interaction matrixL(x, Z) related tox is given by:

a


 − 1

Z 0 mx

Z mxmy −(1 + mx
2) my

0 − 1
Z

my

Z (1 + my
2) −mxmy −mx




with m = [mx my 1]T = K+x and:

a =
[

fpu −fpucot(θ)
0 fpv/ sin(θ)

]

where f is the camera focal length,pu andpv are the mag-
nifications respectively in theu andv directions, andθ is
the angle between these axes. Whens is composed of the
image coordinatesxi of n points, the corresponding inter-
action matrix is:

L(s,Z) =
[
LT (x1, Z1) · · ·LT (xn, Zn)

]T
(22)

A classical choice for̂L is L(s(1), Ẑ(1)) (that is the value
of L at the final desired position), in this case, condition
(21) is ensured only in a neighborhood of the desired po-
sition [1]. We will use the value ofL at the current de-
sired position for̂L (that isL̂ = L(s∗(t), Ẑ∗(t)) rather than
L(s(1), Ẑ(1)). With this choice, condition (21) is ensured
along the planned trajectories and not only in a neighbor-
hood of the final desired position.
The interaction matrix depends of thêZ∗-vector. This vec-
tor can be rewritten aŝZ∗(t) = d̂fΣ∗(t) whered̂f is an ap-
proximated value ofdf (that is the only parameter that has
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to be introduced “by hand”) andΣ∗(t) = [ρ∗1(t) · · · ρ∗n(t)],
where [15]:


ρ̂∗i (t) = det(G∗(t)) det(G0−Φ0)
−2/3(

K̂+(G0−Φ0)ΓK̂n̂f
)T

K̂+x∗
i
(t)

if Xi ∈ Π

ρ̂∗i (t) = (1−t)β̂(t)‖K̂+Φ0K̂n̂f‖
‖β̂(t)K̂+pf

i
−K̂+(G0−Φ0)Γ∗

(t)p∗
i
(t)‖ if Xi /∈ Π

in which:

β̂(t) =
‖[K̂+Φ0K̂n̂f ]×(G0 − Φ0)Γ∗(t)x∗

i (1)‖
‖[K̂+Φ0K̂n̂f ]×K̂+x∗

i (t)‖

If the target is known to be motionless, we have∂e
∂t

=

−L̂+ ∂s∗
∂t

and the control law (20) can be rewritten as fol-
low:

Tc = −λe + L̂+ ∂s∗

∂t
(23)

where the term̂L+ ∂s∗
∂t

= L̂+[
∂x∗

1
∂t

∂y∗
1

∂t
· · · ∂x∗

n
∂t

∂y∗
n

∂t
]T allows

to compensate the tracking error. More precisely, we have
from (16):

∂x∗
i

∂t
=

1
αi(t)

[
∂G
∂t

x∗
i (1) + βi

∂g
∂t

− ∂αi

∂t
x∗

i (t)
]

(24)

and if we rewrite the collineation and the epipole as follow:

G(t) =


 G1(t)

G2(t)
G3(t)


 g(t) =


 g1(t)

g2(t)
g3(t)




we obtain from (15), (16) and (17):


∂G
∂t = − [−Φ0 + (G0 + Φ0)Γ(t)] =


 ∂G1

∂t
∂G2
∂t

∂G3
∂t




∂g
∂t = −g0 =


 ∂g1

∂t
∂g2
∂t

∂g3
∂t




αi(t) = G3(t)x∗
i (1) + τig3(t)

∂αi

∂t = ∂G3
∂t x∗

i (1) + τi
∂g3
∂t

The term∂s∗
∂t is finally obtained by introducing the previous

relations in (24).

4.3 Experimental results

The proposed method has been tested in a positioning
task with respect to unknown scenes using a CCD camera
mounted on a six degree of freedom robot arm. In the first
experiment, the target is a non-planar object composed by
nine white marks. The extracted visual features are the im-
age coordinates of the center of gravity of each mark. The

desired images have been acquired during an off-line step.
The algorithm proposed in [14] has been used to obtain the
initial collineation. The images corresponding to the desired
and initial camera positions are given in the Figures 3(a) and
3(b) respectively. The corresponding camera displacement
is very important (bx = −195mm, by = −610mm, bz =
−1455mm, (uθ)x = −68dg, (uθ)y = −41dg, (uθ)z =
−144dg). In order to check the robustness with respect to
modeling errors of the proposed approach, two different sets
of parameters have been used,correct calibration: the cor-
rect intrinsic parameters and the correct value ofdf (that
is 36 cm) have been used (see Figure 4);bad calibration:
an error of 50% has been added on the intrinsic parameters,
while df has been set to 80 cm (see Figure 5).

1) Correct calibration: Planned and tracked trajectories
are plotted in Figures 4(a) and 4(b) respectively. We first
note that the tracked trajectories and the planned trajecto-
ries are almost similar. This shows the efficiency of the pro-
posed control scheme. The tracking error (s(t) − s∗(t)) is
plotted in Figure 4(d), and it confirms the previous com-
ment since the maximal error remains small (always less
than5 pixels). The error on the coordinates of each target
point between its current and its desired location in the im-
age (s(t)− s∗(1)) is given in Figure 4(c). The convergence
of the coordinates to their desired value demonstrates the
correct realization of the task. The computed control law
is given in Figure 4(e). Note finally that the camera optical
center move along a straight line as can be seen in Figure
4(f).
1) Bad calibration: First, we note that the planned and fol-
lowed trajectories obtained with or without modeling errors
are almost similar (refer to Figures 4 and 5). That con-
firms the robustness of the path planning and of the con-
trol scheme with respect to calibration errors and errors on
df . Once again, as can be seen in Figures 5(a) and 5(b) the
planned and the tracked trajectories are also similar. The
tracking error, given in Figure 5(e), remains small during
the servoing (less than8 pixels). We note also the stabil-
ity and the robustness of the control law (see Figures 5(e)).
Once again, the task is correctly realized. This is shown
by the convergence of the image points coordinates to their
desired value (refer to Figure 5(d)).

(a) (b)

Figure 3: (a) Initial image and (b) desired image
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Figure 4: Correct calibration: (a) planned trajectories, (b)
followed trajectories, (c) error in image points coordinates
(pixels), (d) tracking error (pixels) (e) velocities (cm/s and
dg/s) and (f) camera trajectory.
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Figure 5: Bad calibration: (a) planned trajectories, (b) fol-
lowed trajectories, (c) error in image points coordinates
(pixels), (d) tracking error (pixels) (e) velocities (cm/s and
dg/s) and (f) camera trajectory.
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Figure 6: Block diagram of the interpolation and tracking
process

5 Case of N images

Classical visual servoing techniques make assumptions
on the link between the initial and target images, limiting
the applicability of these techniques to relatively small dis-
placement when the scene is complex. Indeed, if a sufficient
number of image features can not be matched in these im-
ages, the visual servoing can not be realized. We propose to
use relay images to cope with this limitation.

5.1 Obtaining the relay images

Recent work in image database analysis have emerged as
solution to the problem of retrieving and delivering images
from large database using query [4]. In our lab, these tech-
niques have been investigated [8]. We use these methods
to obtain the relay images between the initial and target im-
ages. In a first off-line step, the robot acquires a large set of
images of its workspace. Ideally, these images must provide
a representative sample of all the points of view which could
be reached during the operational phase. Points of interest
of all these images are extracted (using the Harris detector
[9]) and some invariants are computed [21]. That allows on
the one hand to index these images in a database which will
be used to retrieve fastly images acquired during the oper-
ational phase, and on the other hand to match images by
pair. A graph is then derived from this matching. The nodes
of the graph are the images. An edge between two images
indicates that the images could be matched. The edges are
valuated in a way inversely proportional to the number of
matched image features (the matching is realized using the
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algorithm proposed in [24]).
In the second on-line step, the robot acquires an initial

image at an unspecified place of its workspace. A task is
specified in the form of an image to reach. The system then
seeks in the image database the closest images to the initial
and desired images. The shortest path between these im-
ages in the graph is then obtained by using the Dijkstra’s
algorithm . We thus obtain an ordered set of relay images
such that between two successive images of this set a suffi-
cient number of image features can be matched. As already
stated, classical visual servoing could be used between two
successive images until the last image. However, using such
a process, the camera velocity would be null at each transi-
tion. That is why the trajectories in the images are planned.
The features are interpolated as for the case N=1 (see Sec-
tion 4.1) and the displacement is then carried out using the
control scheme described in Section 4.2 (see Fig. 6).

5.2 Experimental results
In this section, our approach is validated by realizing a

positioning task. The images corresponding to the desired
and initial camera positions are given in the Figs. 7(a) and
7(b). In this case, the SFMJ is impossible to realize. How-
ever, from the graph built with the image database, eight
relay images are obtained (see 8). The trajectories of in-
teresting points are then planned. The planned and fol-
lowed trajectories are given in the Figs. 8 and 9. We note
that these trajectories are similar. The camera trajectory
is given in the Fig. 10(a). The tracking error (defined as
1
2n

∑n
1 (xi(t)− x∗

i (t)) + (yi(t)− y∗
i (t)) and plotted in Fig.

10(b)) remains sufficiently small (always less than 5 pixels)
to ensure a good behavior of the control scheme.
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Figure 7: (a) Initial image and (b) desired image

6 Conclusion
In this paper, we have addressed the problem of finding

and tracking image trajectories of visual features between
N relay images automatically extracted from a database.
The obtained camera trajectory corresponds to a minimal
path. The method is model-free and it does not need any
accurate calibration. By coupling the path planning step
with an image-based servoing, the proposed method im-
proves significantly the behavior of image-based servoing.
We have validated our approach in a robotic platform by re-
alizing positioning tasks with respect to an unknown scene.
Future work will be devoted to introduce nonholonomic
constraints in the planned trajectories.
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Figure 8: Planned trajectories
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Figure 9: Followed trajectories
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Figure 10: (a) Camera trajectory (m), (b) Tracking error
(pixels)
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