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1 Introduction

Multitarget tracking (MTT) deals with the state estimation of an unknown number of moving targets. Available
measurements may both arise from the targets if they are detected, and from clutter. Clutter is generally considered
as a model describing false alarms. Its (spatio-temporal) statistical properties are quite different from those of
the target, which makes the extraction of target tracks from clutter possible. To perform multitarget tracking the
observer has at his disposal a huge amount of data, possibly collected on multiple receivers. Elementary measure-
ments are receiver outputs, e.g., bearings, ranges, time-delays, Dopplers, etc. But the main difficulty comes from
the assignment of a given measurement to a target model. These assignments are generally unknown, as are the
true target models. Thus, two distinct problems have to be solved joinrly: the data association and the estimation.
We propose here a general algorithm for multitarget tracking in the passive sonar context and take advantage of its
versatility to extend it to multiple receivers.

2 The basic particle filter
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Figure I: Basic particle filter with adaptive resampling .

We consider a dynamic system represented by the stochastic process (X;) € R™ whose temporal evolution is
given by the state equation (1). It is observed at discrete times via realizations of the stochastic process (1) € R
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governed by the measurement equation (2):

X, =F(X:1, W), (1)
Y = Hy( X, W), (2)

The two processes (V;) € R™ and (W;) € R are only supposed to be independent white noises. Moreover,
it is to be noted that no linearity hypothesis on F; and H; is done. We will denote by Yo.; the sequence of the
random variables (Y3, - .. ,Y;) and by wo.; one realization of this sequence. Our problem consists of computing
at each time £ the conditional density L, of the state X, given all the observations accumulated up to ¢, i.e.,
L, = p(X4|Yo = wo,--- ,Y: = 3:) and also of estimating any functional g(X,) of the state by the expectation
-E{g{X:)|Yos). The original particle filter, named bootstrap filter [3], proposes to approximate the densities (L;),
by a finite weighted sum of N Dirac densities centred on elements of K™=, named particles. It then evolves the
particle set S; .= (s?,qP)n=1,... .- where s, € R™* is the particle and g; its weight, such that the density L; can
be approximated by the density Ls, = Zf= 1 @fds». The two steps of prediction and correction are discretized
as described in figure 1, and also the adaptive resampling step. The reader will find more details on the different
filters in [3]. [6] or [2] and on adaptive resampling in [7] and [2]. After these recalls, we propose an extension of
this algorithm to multiple-object tracking.

3 Multitarget particle filter
3.1 Notations

Let M be the number of targets to track, assumed here to be known. The state vector we have to estimate is made
by concatenating the state vector of each target. At time ¢, X; = (X7,...,XM) follows the state equation (1)
decomposed in M partial equations:

X! =F{(X{_, V) Vi=1,...,M. 3

The noises (V') and (Vt"') are only supposed to be white both temporally and spatially, independent for i # 7.
The observation vector at time t is denoted by y: = (¥7,- .- , ¥ ). Following the seminal ideas of R. Streit and T.
Luginbuhl {9], we introduce the stochastic vector K; € {1,...,M}™ such that K] = i if 3 is issued from the '
ith target. In this case, y] is a realization of the stochastic process:

Y/ = Hi(Xi,wi)if K] = 1. (4

Again, the noises (W7) and (W/ ') are only supposed to be white noises, independent for 7 # j'. We make the
assumption that one measurement can originate from one target or from the clutter, and that one target ¢an produce
zero or several measurements at one time. For that, we dedicate the model 0 to false alarms. The false alarms
are supposed to be uniformly distributed in the observation area. Their number is assumed to arise from a Poisson
density of parameter AV where V is the volume of the observation area and A the number of false alarms per volume
unity. Of course, we do not associate any kinematic model to false alarms and then no particles represent their
density. Let m; € [0, 1]+ bedefined by 7} = P(K7 = i) forallj = 1,...m,. Itis assumed that the assignment
vector K, has independent components [9]. To estimate the density L; = p(X, = (X],... L XMlyo.t). we
propose to use particles whose dimension is the sum of the ones of the individual state spaces corresponding to
each target. Each of these concatenated vectors then gives jointly a representation of all targets. The proposal step is
performed like in the single-target case. To update the weight of the particles, we need to estimate the association
probabilities {mi);—1.... m, Which can be seen as the stochastic coefficients of the M —component mixwre. To
estimate them we propose to use a Gibbs sampler whose principles are briefly recalled (see {1] or [8] for more
details). For 8; = (X, K¢, I1;), the method consists of generating a Markov chain that converges to the stationary
distribution p{@:|¥s.:) which cannot be sampled directly. For that, we must be able to get a partition 6:,....6F
of 8;, and to sample alternatively from the conditional posterior distribution of each component of the partition.
Assume the T first elements of the Markov chain (81, . .. , ;) have been drawn. We sample the P components of
B4 as follows:
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Figure 2: MTPF: multiple target particle filter with adaptive resampling.

Draw 6},, from p(6'|Yo.,60%,...,6F)

Draw 6, from p(8F|Yo.,0),,,...,657¢

In our case, at a given instant ¢, the partitionning of 8 is:
BJ'=_K;'" forj=1,...,my
gt = i fori=1,...,M; 5

GrtM+i ___Xt‘ fori=1,..., M.

and the algorithm is described in figure 2. Details the MTPF can be found in {4] and {5].

4 Application to problems with active and passive measurements

We consider a scenario with two targets whose bearings made with an observer are always very closed (see
. figure 3.2. The trajectories of the targets and of the observer are plotted in figure 3.1. It is to be noted that
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Figure 3: (a) Trajectories of the targets and of the observer; (b) Difference between the noisy bearings associared
with the targets compared with the standard deviation of the measurement noise = (.05, i.e., 2.8 degrees, (c) Noisy
ranges simulated for T = 30 and P = 100; (d-e-f) Averaged estimates (donted lines) and 20 confidence ellipsoids
(dashed lines) obrained with bearings-measurements and 0%, 20% and 50% of range measurements respectively.
The solid lines stand for the real trajectories.

the observer does not follow a leg by leg trajectory, that renders the estimation of the trajectories quite diffi-
cult. As shown in Figures 3.4,5,6, the estimation is ameliorated by adding active measurements (here ranges).
We assume that noisy ranges are available during intervals of length T every P times, i.e., if the current time
t is such that t modP € [0 ;7). A noisy range associated with the ith target is supposed to follow the
equation: R} = /(z} — z¢%*)? + (yi — y¢%*)2 + Z; where Z; is a Gaussian noise with standard deviation
oz|(zi — z2%%)? + (y} — yf®*)?|, where o, = 1073, For instance, for T = 30 and P = 100, the simulated
ranges of the two targets are shown in Figure 3.c.
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