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Hierarchical Estimation of a Dense Deformation
Field for 3-D Robust Registration

P. Hellier, C. Barillot*, E. Mémin, and P. Pérez

Abstract—A new method for medical image registration is
formulated as a minimization problem involving robust estimators.
We propose an efficient hierarchical optimization framework
which is both multiresolution and multigrid. An anatomical seg-
mentation of the cortex is introduced in the adaptive partitioning of
the volume on which the multigrid minimization is based. This al-
lows to limit the estimation to the areas of interest, to accelerate the
algorithm, and to refine the estimation in specified areas. At each
stage of the hierarchical estimation, we refine current estimate by
seeking a piecewise affine model for the incremental deformation
field. The performance of this method is numerically evaluated
on simulated data and its benefits and robustness are shown on a
database of 18 magnetic resonance imaging scans of the head.

Index Terms—Atlas matching, brain MRI, incremental optical
flow, medical imaging, multigrid minimization, registration, ro-
bust estimators.

I. INTRODUCTION

A. Context

DURING the last decade, new means of observing the
human brainin vivohave evolved. Nowadays the users of

medical images, must face not only the huge amount of data,
but also the complementarity between different sets of images.
For example, different magnetic resonance imaging (MRI)
acquisitions are not redundant, and should not be neglected for
the patient’s care. Medical image registration has, thus, become
a crucial issue. We distinguish several image registration
applications [2].

• Registration of the same subject with the same modality.
It is useful for physicians, either to follow the develop-
ment of a disease, or for interventions (dynamic acquisi-
tion during the operation or its validation).

• Registration of the same subject with different modalities.
This problem arises with the development of different im-
ages, either anatomical [magnetic resonance (MR), X-ray]
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or functional [functional MRI (fMRI), positron emission
tomography (PET), electroencephalography (EEG), mag-
netoencephalography (MEG)]. Merging these images is
desirable so that information is not excluded from the di-
agnostic or the therapeutic process.

• Registration of scans from different subjects. The non-
linear registration of brains from different subjects allows
us to build an anatomical atlas of the cortex. Some at-
lases already exist [44], [49], but they appear to be inad-
equate, because they often lack legibility and capacity to
evolve, and their interpretation is very difficult [27]. The
major problem in building an atlas is the high degree of
variability in the human brain. To take it into account, a
nonlinear registration process is necessary. It is possible
to perform automatic segmentations and to map, from one
brain to the other, symbolic information such as functional
activity. It has been shown [44] that we cannot assume
topological equivalence between two different brains, es-
pecially for the cortical regions. Considering the same
sulcus of different subjects, one may find large differences
of orientation, size, and even topology (one sulcus may be
interrupted or absent for instance).

B. Related Work

Medical image registration is a very active field, with re-
cent reviews and classifications of registration procedures [36],
[37], [55]. Methods are usually classified using the following
criteria: the nature and the dimension [two-dimensional (2-D)
or three-dimensional (3-D)] of the homologous structures to be
matched, the domain of transformation (local or global), its type
(rigid, affine, projective, or “free form”), the similarity measure,
and the minimization scheme. We have selected a few common
methods.

Because one major problem is the huge amount of data,
some authors proposed methods to focus on features to be
extracted and matched. These structures may be points [9],
[25], curves [47], or surfaces [48], [52]. The extraction of
these features is a critical issue, but the way these features
are matched—and the way the registration is then computed
throughout the volume—is also critical. Methods have been
developed to overcome this problem: the TPS algorithm [9],
spline transformations [48], the iterative closest point algorithm
[47], or the “balloons” model [16].

Other registration methods are inspired by mechanical
models, either elastic [1], [21], [26], or fluid [10], [14]. Fluid
models allow to reach, in theory, any displacements, but these
methods are highly time consuming. Christensen recently pro-
posed [13] an interesting evolution of these methods, where the
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direct deformation field and the inverse deformation field are
jointly estimated to guarantee the coherence of the deformation.

Finally, some registration procedures are “voxel-based” (i.e.,
iconic) methods: Thirionet al. [45], [51] proposes the demon
method; Collins [18] estimates a locally affine transformation
that maximizes the cross correlation of the image gradient.
Collins recently proposed [19] to introduce cortical constraints
in the registration process by computing a chamfer distance
between selected sulci. Musseet al. [42] propose a method,
which is much related to the method we introduce, based on
the minimization of the displaced frame difference (DFD).
However, this similarity measure is highly non linear and is not
robust to the acquisition artifacts of MRI. The hierarchical op-
timization involves -splines, leading to a smooth deformation
field that preserves the topology of the structures. That means
that this field is only partially relevant, from an anatomical
point of view.

C. Method

The method proposed in this paper is an extension and a com-
plete validation of our previous work presented in [29], [30],
[39], [40]. The registration problem is expressed as a motion
estimation problem, which has been studied by many authors
[3]–[7], [15], [31], [33], [43], [46]. Our 3-D method performs
a nonlinear multimodality registration of MRI scans from dif-
ferent subjects. The similarity measure that we use incorporates
robust estimators whose utility is twofold: on the one hand we
want to limit the influence of the acquisition noise, on the other
hand we want to cope with possible modifications of structures’
topology.

Many tasks in computer vision may be expressed as the min-
imization of a cost function. Optimization is often difficult to
achieve, because the cost function is nonconvex and because the
optimization involves a very large number of variables. There-
fore, efficient iterative multigrid (or multilevel) approaches have
been developed [28], [38] and applied in motion estimation [24]
and in early vision [50].

To take into account large deformations, we use a multires-
olution optimization scheme. Besides, at each resolution level,
we use multigrid minimization to accelerate the algorithm and
improve the quality of the estimation. Within this hierarchical
approach, we designed an adaptive partition of the volume to
refine the estimation on the regions of interest and avoid useless
efforts elsewhere. An anatomical segmentation of the cortex is
introduced and used in two ways: at each resolution level, we
initialize the partition as an octree subdivision based on the seg-
mentation, and the segmentation mask is used in the subdivision
criterion which controls refinement of the estimates.

II. DESCRIPTION OF THEREGISTRATION METHOD

A. General Formulation

The optical flow hypothesis, or brightness constancy con-
straint, introduced by Horn and Schunck [31], assumes that the
luminance of a physical point does not vary much between the
two volumes to register. It amounts to zeroing the so-called DFD

where
voxel of the volume;

and
indexes of the volumes (temporal indexes for a dy-
namic acquisition, indexes in a database for multisub-
ject registration);
luminance function;
the expected 3-D displacement field.

The DFD may not be valid everywhere, because of noise and
intensity inhomogeneities of MR acquisition. The robustness of
the registration process with respect to acquisition artifacts will
be discussed later on, in the Sections II-B and II-D.

Generally, a linear expansion of this equation is preferred:
0 where is the spatial gradient

of luminance and is the voxelwise difference between
the two volumes. The resulting set of undetermined equations
has to be complemented with some prior on the deformation
field. Using an energy-based framework (which can be viewed
either from the Bayesian point of view, or from the one of the
regularization theory), the registration problem may be formu-
lated as the minimization of the following cost function:

(1)

where
voxel lattice;
set of neighboring pairs with respect to a given neigh-
borhood system on ;
controls the balance between the two energy terms.

The first term captures the brightness constancy constraint, thus
modeling the interaction between the field (unknown variables)
and the data (given variables), whereas the second term captures
a simple smoothness prior. The weaknesses of this formulation
are known as follows.

1) Due to the linearization, the optical flow constraint (OFC)
is not valid for large displacements.

2) The OFC might not be valid in all the regions of the
volume, because of the acquisition noise, intensity
nonuniformity in MRI data, and occlusions.

3) The “real” field is not globally smooth and probably con-
tains discontinuities that might not be preserved because
of the quadratic smoothing.

To cope with limitations 2) and 3), we replace the quadratic cost
by robust functions. To overcome limitation 1), we use a mul-
tiresolution plan and a multigrid strategy to improve the mini-
mization at each resolution level.

We introduce a simple regularization term that makes almost
no assumption on the estimated deformation field. One could
imagine choosing various regularizations for the different brain
tissues, but that involves specific assumptions on the “real”
deformation that we did not address previously. However, the
introduction of a robust estimator on the regularization term
makes it possible to take into account possible discontinuities
on the border of structures having different physical properties.
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Fig. 1. Incremental estimation of the optical flow.

B. Robust Estimators

Cost function (1) does not distinguish between relevant data
and inconsistent data, nor between neighboring pairs where the
field is smooth and neighboring pairs where the field is discon-
tinuous. Therefore, we introduce robust functions [32] and more
precisely two robust -estimators [8], the first one on the data
term and the second one on the regularization term. We do not
describe in details the properties of robust-estimators; refer
to [8] and [39] for further explanation. The cost function (1) can
then be modified as

(2)

According to some properties of robust -estimators [8],
[12], it can be shown that the minimization of [see (1)] is
equivalent to the minimization of an augmented function, noted

:

(3)

where and are auxiliary variables (acting as “weights”)
to be estimated. This cost function has the advantage to be
quadratic with respect to . It also shows clearly that, when
a discontinuity becomes larger, the contribution of the pair of
neighbors is limited by the reduction of the associated weight

. The minimizers of with respect to the auxiliary variables
are obtained in closed form [8], [12]. The overall minimization
of such function consists in an alternated weights computation
and quadratic minimizations (with respect to).

C. Multiresolution Incremental Computation of the Optical
Flow

In cases of large displacements, we use a classical incre-
mental multiresolution procedure [6], [24] (see Fig. 1). We con-
struct a pyramid of volumes with successive Gaussian

smoothing and subsampling in each direction [11]. For each di-
rection is the spatial resolution of a voxel (the spa-
tial resolution of MR scans is approximately 1 mm, depending
on the system). We perform a Gaussian filtering using the re-
cursive implementation proposed in [23] with a standard devi-
ation of in direction , in order to satisfy Nyquist’s cri-
terion. This implementation allows to perform infinite impulse
response filtering at a constant computation cost.

At the coarsest level, displacements are reduced, and cost
function (3) can be used because the linearization hypothesis
becomes valid. For the next resolution levels, only an incre-
mentd is estimated to refine the estimate obtained from
the previous level. We perform the registration from resolution

until resolution (in general 0). This is done using

cost function (2) but with and

instead of and
.

To compute the spatial and temporal gradients, we construct
the warped volume from volume and
the deformation field , using trilinear interpolation. The spa-
tial gradient is, hence, calculated using the recursive implemen-
tation of the derivatives of the Gaussian [23]. At each voxel, we
calculate the difference between the source volume and the re-
constructed volume, and the result is filtered with a Gaussian
to construct the temporal gradient. As previously, these quan-
tities come from the linearization of the constancy assumption
expressed for the whole displacement d . The regular-
ization term becomes d d .

D. Multigrid Minimization Scheme

1) Motivations: The direct minimization of (3) is un-
tractable. Some iterative procedure must be employed.
Unfortunately, the propagation of information through local
interaction is often very slow, leading to an extremely time-con-
suming algorithm. To overcome this difficulty (which is classic
in computer vision when minimizing a cost function involving
a large number of variables), multigrid approaches have often
been designed and used in computer vision [24], [39], [50].
Multigrid minimization consists in performing the estimation
through a set of nested subspaces. As the algorithm proceeds,
the dimension of these subspaces increases, thus leading to a
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(a) (b)

Fig. 2. Example of multiresolution/multigrid minimization. For each resolution level (a), a multigrid strategy (b) is performed. For legibility reasons, the figure
is a 2-D illustration of a 3-D algorithm with volumetric data.

more accurate estimation. In practice, the multigrid minimiza-
tion usually consists of choosing a set of basis functions and
estimating the projection of the “real” solution on the space
spanned by these basis functions.

2) Description: At each level of resolution, we use multigrid
minimization (see Fig. 2) based on successive partitions of the
initial volume [39]. At each resolution level, and at each grid
level , corresponding to a partition of cubes, we estimate an in-
cremental deformation fieldd that refines the estimate ,
obtained from the previous resolution levels. This minimization
strategy, where the starting point is provided by the previous
result—which we expect to be a rough estimate of the desired
solution—, improves the quality and the convergence rate com-
pared with standard iterative solvers (such as Gauss–Seidel).

At grid level is the partition
of the volume into cubes . At each grid level
corresponds a deformation incrementT that is defined as
follows: A 12-dimensional parametric increment deformation
field is estimated on each cube , hence, the total increment
deformation fieldd is piecewise affine. At the beginning
of each grid level, we construct a reconstructed volume with the
target volume and the field estimated previously (see
Section II-C). We compute the spatial and temporal gradients at
the beginning of each grid level and the increment deformation
field d is initialized to zero. The final deformation field
is, hence, the sum of all the increments estimated at each grid
level, thus expressing the hierarchical decomposition of the
field.

Contrary to block-matching algorithms, we model the inter-
action between the cubes (see Section II-E) of the partition, so
that there is no “block-effects” in the estimation. At each resolu-
tion level , we perform the registration from grid level until
grid level . Depending on the application, it may be useless to
compute the estimation until the finest grid level, i.e., .
We will evaluate this fact later on (see Section III-A).

3) Adaptive Partition: To initialize the partition at the
coarsest grid level , we consider a segmentation of the brain
obtained by morphological operators. After a threshold and
an erosion of the initial volume, a region growing process is
performed from a manually chosen starting point. A dilatation

Fig. 3. Results of the registration process on simulated data. The 3-D
MRI phantom has been deformed on the top of the figure. In the middle,
the reconstructed volumes are shown and must be compared with the initial
volume to evaluate the quality of the registration. On the bottom, the difference
volumes show the benefits of nonlinear registration.

operation produces a binary segmentation. At grid level,
the partition is initialized by a single cube of the volume size.
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TABLE I
OBJECTIVE MEASURES OF THEQUALITY OF THE REGISTRATION ONSIMULATED DATA. SPECIFICITY, SENSITIVITY, AND TOTAL PERFORMANCEMEASURESARE

GIVEN FOR THREE LEVELS OFNOISE AND TWO REGISTRATION METHODS

The registration processes are performed until resolution 0 (voxel size 1 mm). We manage to recover up to 93% of the deformation even in presence
of important noise (9%) and image intensity inhomogeneity (40%). The cpu times are given for an Ultra Sparc at 333 MHz.

We iteratively divide each cube as long as it intersects the
segmentation mask and as long as its size is superior to.
We finally obtain an octree partition which is anatomically
relevant.

When we change from grid level, each cube is adaptively di-
vided. The subdivision criterion depends first on the segmen-
tation mask (we seek maximum precision on the cortex), but it
also depends on the local distribution of the variable[see (3)].
More precisely, a cube is divided if it intersects the segmenta-
tion mask or if the mean of on the cube is below a given
threshold. In fact, indicates the correspondence between the
data and the estimated deformation field at voxel. Therefore,
this criterion combines an indicator of the confidence about the
estimation with a relevant anatomical information.

E. Parametric Model

We now introduce the deformation model that is used. We
chose to consider an affine 12-parameter model on each cube
of the partition, commonly used in computer vision but rarely
used in medical imaging. If a cube contains less than 12 voxels,
we only estimate a rigid six-parameter model, and for cubes that
contain less than six voxels, we estimate a translational displace-
ment field. As we have an adaptive partition, all the cubes of a
given grid level might not have the same size. Therefore, we
may have different parametric models, adapted to the partition.

At a given resolution level and grid level
is the partition of the volume into

cubes . On each cube , we estimate an affine

displacement defined by the parametric vector
d , with

A neighborhood system on the partition derives nat-
urally from (see Section II-A).

. being the set of neighboring pairs on, we
must now distinguish between two types of such pairs: the pairs
inside one cube and the pairs between two cubes

and

and

For conciseness, we drop the resolution index. With this no-
tation, the cost function (3) becomes (4), as shown at the bottom
of the next page.

Considering the auxiliary variables of the robust estimators
as fixed, one can easily differentiate the cost function (4) with
respect to any and get a linear system to be solved. We use
a Gauss–Seidel method to solve it for its implementation sim-
plicity. However, any iterative solver could be used (solvers such
as conjugate gradient with an adapted preconditioning would
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Fig. 4. Evolution of the mean square error (mse) with respect to the grid level (at finest resolution 1 mm) and computation time needed to perform the registration
until a given grid level. We observe that the mse decreases significantly at coarsest grid level, whereas at finest grid level it continues to decrease, but less rapidly.
At the same time, the computation time increases continuously. If we look at the difference between grid level 2 (the smallest cubes are of size 2� 2 � 2
and the incremental deformation field is affine on each cube) and grid level 0 (the smallest cubes are reduced to a voxel and the incremental deformation field
is translational for the smallest cubes), the computation time increases of 100%, whereas the mse variation is only 5.3%. That suggests that, depending on the
application, the user can make a compromise between the accuracy of the registration and the computation time if the resources are limited.

be for example more efficient). In turn, when the deformation
field is “frozen,” the weights are obtained in a closed form [8],
[12]. The minimization may, therefore, be naturally handled as
an alternated minimization (estimation of and computation
of the auxiliary variables). Contrary to other methods (minmax
problem like the demons’ algorithm for instance), that kind of
minimization strategy is guaranteed to converge [12], [22], [41]
(i.e., toconvergetowardalocalminimumfromanyinitialization).

Moreover, the multigrid minimization makes the method in-
variant to intensity inhomogeneities that are piecewise constant.
As a matter of fact, if the intensity inhomogeneity is constant
on a cube, the restriction of the DFD on that cube is modified
by adding a constant. As a consequence, minimizing the cost
function (4) gives the same estimate, whenever the cost at the
optimum is zero or a constant (see Section III-A1 for an illus-
tration on that issue).

III. RESULTS

A. Experiments on Simulated Data

1) Evaluation on the MNI Phantom:To evaluate the global
registration method, we use the simulated data provided by the

Fig. 5. Synthetic data to validate the link between robust estimator on the
regularization term and local changes of topology.

MNI (Brainweb: http://www.bic.mni.mcgill.ca/brainweb) [17].
Data have been collected with three levels of noise and inho-
mogeneity. We design a synthetic deformation field made up
of a global affine field with large deformations combined with
local stochastic perturbations. We do not try to build a “realistic”
field, but rather a field with the following properties: large de-

(4)
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Fig. 6. Results of the registration without robust estimator. The different volumes correspond to different values of the parameter�, and must be compared to
the source volume.

formations and local perturbations that modify the topology of
the structures, in order to validate the basic hypothesis of our
work. The “local” field is generated from 2000 voxels which
are randomly picked in the volume. For each voxel, each of
the three components of the deformation is the realization of
a Gaussian random variable of standard deviation 120 mm. We
then perform Gaussian smoothing with a small average devi-
ation in order to propagate this perturbation to a local neigh-
borhood while preserving discontinuities. The volumes and the
results are shown in Fig. 3. We compare the multigrid method
with a global affine registration method, in which a 12-param-
eter deformation is estimated for the entire volume.

To asses the quality of the registration, we compute the mean
square error (mse)1 which is an indicator of the quality of the
registration. However, it would be unfair to evaluate the regis-
tration only with a measure that is the underlying driving force
of the estimation. Therefore, as we have the binary classification
of the phantom, we can also assess the quality of the registra-
tion based on the overlap of two volumes: the first volume is
the initial classification, i.e., a gold standard (grey matter/white
matter), the second volume is the deformed classification, reg-
istered with the estimated deformation field. We then measure
overlapping ratios such as the sensitivity, the specificity, and the
total performance [54]. Results are presented on Table I. Despite
the use of binary classes, the resulting measures that we obtain
are very satisfactory. Particularly, the robustness of the method
is demonstrated in critical conditions (9% noise and 40% inho-

1mse= (1=N) (I (i)� I (i)) , whereI andI are the volumes to
compare, andN is the number of voxels.

Fig. 7. Results of the registration with a robust estimator on the regularization
term. The reconstructed volumes must be compared to the source volume. We
can handle with local topology changes, while preserving the global smoothness
of the solution.

mogeneity), which are far tougher than in any realistic acquisi-
tion.

The numerical evaluation also allows to study the sensitivity
of the algorithm with respect to the parameters of the algorithm,
i.e., parameters of the robust estimators. We have two parame-
ters to fix, and . corresponds to the hyperparameter of
robust function , associated with the similarity term, while
corresponds to the hyperparameter of robust functionasso-
ciated with the regularization term. We made the parameters
and vary in a cube of size with step
respectively of and 1 (which means that we performed the
registration with 200 different sets of parameters), and we ob-
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Fig. 8. Final 3-D results of the registration on real data. The volumes are T1-MRI acquisitions of two different subjects. The reconstructed volume iscomputed by
trilinear interpolation with the target volume and the final dense displacement field. In order to evaluate the quality of the registration, we must,therefore, compare
the source volume and the reconstructed volume.

serve that the final result (the mse between the source volume
and the reconstructed volume) varies less than 5% of the nom-
inal mse. This indicates that the sensitivity of algorithm with
respect to these two parameters is very low.

For simulated data, mse is a direct measure of the quality of
the registration. Therefore, we can evaluate also the influence of

(see Section II-D3) on the computation time and on the ac-
curacy of the registration. Fig. 4 shows the evolution of the mse
with respect to the grid level (at finest resolution 1 mm) and also
shows the computation time needed to perform the registration
until a given grid level. We observe that the mse decreases sig-

nificantly at coarsest grid level, whereas at finest grid level it
continues to decrease, but less rapidly. At the same time, the
computation time increases continuously. If we look at the dif-
ference between grid level2 2 and grid level3 0, the computation
time increases of 100%, whereas the mse variation is only 5.3%.
That suggests that, depending on the application, the user com-
promise between the accuracy of the registration and the com-

2The smallest cubes are of size 2� 2 � 2 and the increment deformation
field is affine on each cube.

3The smallest cubes are reduced to a voxel and the increment deformation
field is translational for the smallest cubes.
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Fig. 9. Final 3-D results of the registration on real data. Top: Difference before registration. Middle: Difference after registration. Bottom: Adaptive partition at
grid level 3. The difference volumes must be interpreted carefully, since we havethe superposition of two errors: the first one is the registration error which comes
from the anatomical variability that we could not apprehend. The second error is due to the difference of acquisition of the two volumes, which makes the two
original histograms of the two volumes different.

putation time if its resources are limited. In our case, we find
that 1 (the smallest cubes are of size 22 2 and the
allowed deformation is rigid on the smallest cube) is generally
a good compromise.

2) Importance of Robust Estimator:We have introduced ro-
bust estimators in the registration process, to allow local discon-
tinuities of the deformation field to occur. To verify the direct
link between the introduction of a robust function and the possi-
bility of local change in the topology of the structures on simu-
lated data, we constructed two volumes (see Fig. 5) to be regis-
tered, with a local modification of the topology. The volumes are

composed of two homogenous classes, each one being defined
by a unique grey level. With these two volumes, we obviously
face the aperture problem, which is classic in the optical flow
literature.

We first register the two volumes without any robust esti-
mator. Results are presented in Fig. 6. The reconstructed vol-
umes are computed with the target volume and the estimated
deformation field with trilinear interpolation. One must, there-
fore, compare the reconstructed volume and the source volume
to assess the quality of the registration. The different volumes
shown in Fig. 6 correspond to different values of the param-
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Fig. 10. Final 3-D results of the registration on real data. Top: data outlier map. Middle: spatial outlier map. Looking at the spatial outlier term, weobserve that
dark regions are located in the cortex. Dark areas shows that the importance of the regularization term is reduced, and discontinuities can appear. The fact that
discontinuities appear in the cortex is significant because we know that inter-subject variability is very high on the cortex.

eter . This parameter balances the importance of the similarity
term and the regularization term. When this parameter is high,
the solution is smooth but the topology is not modified. When

decreases, the solution is not smooth, the aperture problem is
obvious, whereas the topology is not correctly modified.

We then perform the robust multigrid registration process,
with a robust function only on the regularization term. Results
are presented in Fig. 7, with two “extreme” values of the param-
eter . In that case, the modification of the topology is possible,
while preserving the global smoothness of the solution. How-
ever, the aperture problem is still present on the tubular struc-
ture on the right. This experiment makes it possible to verify
the link between the introduction of a robust estimator on the
regularization term and the possibility to handle local change of
topology. In addition, the robust registration process appears to
be also more robust with respect to the parameter, because
the results of the registration are very similar, whenvaries in
a range of .

B. Experiment on 2 Subjects

Results of the 3-D method are presented in Figs. 8, 9, and
10. Two 3-D MRI-T1 volumes of two different subjects are
registered. The source volume, the target volume and the re-
constructed volume are presented oin Fig. 8. The reconstructed
volume is computed with the target volume and
the final displacement field by the way of a trilinear interpola-

tion. To assess the quality of the registration, one must compare
the source volume with the reconstructed volume.

We also present the volumes of difference, before and after
registration on Fig. 9. On the same figure, the adaptive partition
at grid level 3 is also presented (we do not present further grid
levels for readability reasons). The difference volumes must be
interpreted carefully, since we ghave the superposition of two er-
rors: the first one is the registration error which comes from the
anatomical variability that we could not apprehend. The second
error is due to the difference of acquisition of the two volumes,
which makes the histograms of the source and target volumes
different.

In Fig. 10, the outliers are drawn, i.e., the data outliers map
(variable ) and the spatial outlier map (for each point, we
compute the mean of variable with respect to ).
Looking at the data outliers map, the dark points represent areas
where the optical flow hypothesis is inadequate, because of oc-
clusions for instance (see the jaw in Fig. 10). For these points,
the regularization term overwhelms the similarity term. Looking
at the spatial outlier term, we observe that dark regions are lo-
cated in the cortex. At that locations, the importance of the reg-
ularization term is reduced, and discontinuities can appear. The
fact that discontinuities appear in the cortex is significant be-
cause we know that inter-subject variability is very high on the
cortex.

The 3-D deformation field is presented in Fig. 11. The vector
field is subsampled in order to be easier to look at, and we also
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Fig. 11. Top: deformation field. Bottom: Images of the three components of the field on the sagittal view. The 3-D deformation field is subsampled in order to
be easier to look at. Although discontinuities are visible, the general spatial coherence of the final deformation field is visible, due to the regularization. The field
also confirms that there is no “block-effect” in the registration process.

show the three components of the field on the sagittal view. Al-
though discontinuities are visible, the general spatial coherence
of the final deformation field is visible, due to the regulariza-
tion. The field also confirms that there is no “block-effect” in
the registration process.

The computation takes about one-and-one-half hours on a
Sun Ultra Sparc 30 (300-MHz) workstation. The volumes are
256 256 200. We use three levels of resolution ( 0,
1, 2) because the displacement amplitude may reach 30 voxels,
and at each resolution level we perform the registration from
grid level 4 until grid level 0.

C. Experiments on a Dataset of 18 Subjects

To validate the registration method on a larger database, we
acquired MRI-T1 volumetric data of 18 patients. One subject
was chosen as the reference subject. We then perform the reg-
istration between the reference volume (source) and each of the
other subjects (target)alwaysusing the same set of parameters
for the algorithm. Finally, we obtained 17 reconstructed vol-
umes that can be compared to the reference volume. We av-
eraged all the reconstructed volume in order to have a global
overview of the quality of the method.

1) AverageDeformed Volume:Figs. 12 and 13 present the
averaging between 17 patients after a global affine registration
(top), after a quadratic multigrid registration, i.e., the method
without robust estimators (middle), and the average volume

after a robust multigrid registration (bottom). After global
affine registration and averaging, we notice that the internal
anatomical structures are blurred, because the registration is not
precise enough. However, after a robust multigrid registration,
we may distinguish precisely the contours of anatomical
structures, such as ventricles, deep nuclei, white matter tracks,
and even cortical regions (sylvian fissure and parietal region
for instance).

The comparison between the quadratic registration and the
robust registration shows the benefit of robust functions, be-
cause cortical regions are better registered. The mse between the
reference volume and the averaged volume is 892 for quadratic
registration, and drops to 584 for robust registration. We must
note that, considering two subjects, the mse is not a good ab-
solute measure of the quality of the registration because of the
acquisition (a simple translation between the two histogram can
lead to large mse). However, the mse is a good relative measure
to compare two registration processes over a large database.

This experiments clearly show the significant impact of ro-
bust estimators. All the more, it validates the assumption that
it is necessary to let discontinuities appear in the deformation
field to register brains correctly. These experiments also demon-
strate the robustness of the method (robustness with respect to
the acquisitions and also with respect to the algorithm parame-
ters) over a realistic database of subjects.

2) Overlapping of Brain Tissues:The evaluation must not
be based only on a measure that is more or less related to the
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Fig. 12. Results of experiments on a database of 18 subjects. One subject was chosen as the reference subject (see Fig. 13), and we averaged all the reconstructed
volumes after global affine registration (top), after quadratic multigrid registration (middle) and after robust multigrid registration (bottom). We kept the same set
of parameters for all the subjects. This demonstrate the robustness of the method, and the importance of robust estimators (the quadratic registration is less accurate
on the cortex).

image similarity. Therefore, as in Section III-A1, we evaluate
in this section the registration process by computing the overlap
between the tissues (grey matter and white matter) of the refer-
ence volumes and the tissues of each studied volume after reg-

istration. We measure the overlap with the total performance,
which has already been presented in Section III-A1.

The extraction of grey matter and white matter is performed
using a technique presented in [34]. It consists in a 3-D texture
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Fig. 13. Results of experiments on a database of 18 subjects. One subject was chosen as the reference subject (bottom), and we averaged all the reconstructed
volumes after robust multigrid registration (top). We kept the same set of parameters for all the subjects, which demonstrates the robustness of the method. Results
of the averaging after registration show the accuracy of the registration (after averaging we can distinguish precisely anatomical structures suchas ventricles, deep
nuclei, white matter tracks and even cortical regions).

analysis to compute statistical attributes of each voxels. A clus-
tering procedure is used to find the initial discrimination of the
data, and a bayesian relaxation refines the primary decision.

For grey matter tissue, the average overlap after registration
is 93.9% (mean of total performance). For white matter, the av-
erage overlap is 94.9%. If we perform a rigid registration by max-
imization of mutual information, we obtain 88.3% and 87.1% of
average overlap, for grey matter and white matter respectively.
These measures must be interpreted carefully for two reasons.
We use binary classes (and not fuzzy classes) and a simple tri-
linear interpolation scheme, which may introduce some error.
Furthermore, the classification algorithm introduces errors that
disturb the overlap measure. In the last 5% to recover, it is diffi-
cult todistinguish what is due to the registration process andwhat
is due to interpolation and segmentation errors. However, these
overlap measures show the benefit of non rigid registration.

IV. CONCLUSION

We have presented in this paper a new registration method
based on a dense robust 3-D estimation of the optical flow with

a piecewise parametric description of the deformation field.
The performance of this method was evaluated objectively on
simulated data and results are presented on different real data,
demonstrating the significant impact of the method. We show
that the method is robust with respect to the parameters, as
well as with respect to the differences of acquisition of MRI
scans. We also show the benefits of robust estimators on a large
database of subjects.

We use an efficient minimization framework, both multires-
olution and multigrid with robust estimators. This optimization
scheme is not limited to the estimation of the optical flow, but
may as well be adapted to other similarity measures, leading to
different registration applications. The adaptive partition of the
volume accelerates the algorithm and improves the estimation
in the regions of interest.

In the future, we intend to investigate the integration of cor-
tical features [35] in the registration process. Some interesting
work [20], [19], [53] has already been done in that direction,
and we think that the energy based framework that we have
presented, coupled with the adaptive multigrid minimization, is
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naturally adapted to cooperation between luminance based reg-
istration and local approaches.
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