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Abstract — Search theory is the discipline that studies The rapid growth of the search theory literature is
the problem of how best to search for an object wherhronicled in reference [2]. For instance, the last item
the amount of searching efforts is limited and onlgsearch games) is the primary focus of recent researches,
probabilities of the object’s possible position are giverincluding numerous sub-domains such as : mobile
Then, the problem is to find the optimal distributioevaders, avoiding target, ambush games, inspection
of this total effort that maximizes the probability ofames and tactical games. For moving target problems,
detection. Although the general formalism of seardttecisive progress have been made in developing search
theory will be used subsequently, we shall considstrategies that maximize the probability of detecting
now a radically different problem. More precisely, thehe (moving) target within a fixed amount of time. In
problem under consideration is to maximize the expectpdrticular, Brown [7] and Washburn [8] have proposed
amount of information about the location of the target bgn iterative algorithm in which the motion space and the
optimally allocating a given search effort. For exampletjime frame have been discretized, and the search effort
in a reconnaissance problem the aim is not to discovawailable in each period is infinitely divisible between the
but to locate as precisely as possible (information searchgrid cells of the target motion space. In this approach, the
search effort available in each period is bounded above
by a constant that does not depend on the allocations

keywords: Search theory, two-sided search, informa}-nade during any other periods

tion, entropy, fusion rules, optimization.

1 Introduction Hoyvever, although the general formalism of search_the—
ory will be used subsequently, we shall study a radical-

Search theory is the discipline that treats the problefpdifferent problem. More precisely, the problem under
of how best to search for an object when the amount génsideration is to maximize the expected amount of in-
searching efforts is limited and only probabilities of thg@ormation about the location of the target by optimally
object’s possible position are given. Search theory camfocating a given search effort [9]. For example, in a re-
into being during World War 1 with the work of B.O. connaissance problem the aim is not to discover but to

Koopman and his colleagues. Since that time, seanglgate as precisely as possible (information search).
theory has grown to be a well-recognized discipline

within the field of operations research. An importa Qi : :
literature has been devoted to this subject; the interested The one-sided information search
reader may consult an extensive survey [2], introductive problem

texts [4] and specialized books [5], [6]. This section is devoted to the one-sided problem; which

means that only the optimization of the searcher policy is

.A search the_ory problem_i.s. characterized by thr%%nsidered. Simultaneous optimization of both searcher
pieces of data: (i) the probabilities of the searched objeaﬁgd target policies will be the object of section 3 (two-
(the "target”) being in various possible locations; (ii) th%ided search)

local detection probabilitythat a particular amount of

local search effort.could detect Fhe target; (iii) the tot%_l Definitions and basic problem formula-

amount of searching effort available. The problem is .

to find the optimal distribution of this total effort that tion

maximizes the probability of detection. Assume, at first, that an object is hidden somewhere
in a spaceF, divided inn cells. Prior distribution of



The
termw L/A then represents the elementary area coverage.

the obect is given by a vectd? of prior probabilities the visibility parameter (here the sweep width).
p; ; i.e. P = (p1,p2,--,pn), along withp;, >

0 Vi, >, p; = 1. The searcher aim is to max-
imize its information about possible location of the ob- Let us consider now this exponential assumption, then
ject by allocating a fixed search effoft. The search we have :
policy itself is represented by an-dimensional effort

X = (z1, 22, -, zn), Obeying also to the following con-

straints :a; > 0 Vi, Y ., x; = ®. Considering the

Nakai's formalism, we define the following information
functional, denoted (X, P) :

Dx =1- Z pi exp(—w; ;) ,
i=1
(w; : visibility factor on cellz) ,

(4)

I(X,P)=H(P)~[Dx Hget+ (1 - Dx) H(TxP) | . (IxP); = -2 exp(—w; 2:)
(1) > pjexp(—w; ;)

In (1), the various terms have the following meanings :

 Vi=1,---,n.

j=1
e H(P) is the prior entropy H (P) 2 S " pilnp;), We thus have to deal with the following constrained opti-

o A .
e Dx isthe probability to detect (and locate) the objecq1lzatlon problem ((X) = —I(X, P):

by using the search policx ,

m}én f(X) with:
e Hyetis the entropy about a detected target; i.e. equal n
to0 !, " Z pr exp(—wk k)
. X) = i —w; x;) In [ =L ,
e IxP = ( (IxP)1, -, 7xP), ) is the n- J(X) ;p exp(—ws z) I | = o

dimensional vector of the posterior distribution o?

the object, given a prior distributioR assuming it
is non detected by a search poliky,

e H(TxP) isits associated entropy.

under the resource constraints :

n

Sei=®, 220 Vie{l--,n}.

=1
Thus in (1), the (right) term inside brackets represenlgsr (5)

the difference between the prior entropy and the posterlorom an algorithmic point of view, the main difference

entropy, that is the expected amount of informatio.'th the_ clasglcal searph problemis that n0\_/vthe objec-
: : tive fuctional (i.e.f(X) ) is not separated relatively to the
gained by the policX. RS ; AR
optimization variables:;;. Thus, even in this elementary

The exponential assumption is very general and is ot[!;g_lmework (stationary target), the difficulty of the opti-

tained by the following elementary reasoning [1]. Conrplzatmn pr_oblgm grows significantly. At a first time, it is
sider now that the search effort is represented by tithe (;/orth conS|der|ng the elgmentary p-ropert)g”c()K). Not-
and let us denote(t) ( ¢(t) = 1 — p(t)) the probabili- g that the functional of interest is :

ty of non-detection. Denoting as the "instantaneous”
probability of detection, the increment in probability of

F(X) =" piexp(—wi z;) In( (X)),

detection associated with the time increméniwill be i—1
w dt, So that: where : (6)
n
gt +dt) =q(t) (1—wdt) Z Pk exp(—wy, 1)
or: 2 ) — k=1
( ) t" (X) - p; exp(—w; x;) ’

4g(t) = —wq(t) andip(t) =1—e vt

A more general presentation of the exponential densi\![\ﬂ/e obtain successively (Proofs are given in Appendix A):
_(forthe probability of detectio_n) can be fo_und in [4]. Eor % (X) = —p; w; exp(—w; z7) In(ti(X) ),
instance, elementary calculations yield (with the notations“**

of [4]) : 2
%f(X) = p; w? exp(—w; x;)

x| In(t:(X) ) + (X)) 1],

P(det) =1 — e wL/A (3)

where A denotes the area of the region containin
the target,L the length of the search segment amd

92 I . ) -1 . .
LFor adetectedtarget its entropy is zero, since no uncertainty rel 9w, ox; f(X) = pi wiw; exp(—w; z;) (4;(X) ), i # 7.
mains about source location. 7




Consider for a while the functiog(t) = ¢! +1Int — 1. For this linear programm the unknowns atehein-

Sinceg(1) = 0 andg/(t) = (t —1)/t> > 0fort > 1, equalityLagrange multiplierst = (uq, - - -, u,) and
we know thatg(t) > 0 whatever the value (t > 1). the constraint parameter Note that all theu; are
Thereforeaa—;f(x) > 0 is positive whatever the; are positive, while the sign of is undetermined (equal-
(z; > 0). i ity (_:onstraint). I_t may be solved quite efficiently by
Let H the Hessian matrix associated wiftiX) and'Y a Simplex algorithm even for a large valuerof
a generic vector olR"*, from the previous calculation we
deduce that : e Second Step :
Admitting that the Master programm has been
YI'HY = Z:pZ exp(—w;x;) g:(X,Y) , solved, we obtain a new vectay,, as well as a new
valuev,. The indexk corresponds to the general it-
where : eration index. Consider the followingnconstrained
gi(X,Y) = (wiy;)* problem :
[In(t:(X)) + ¢, 1(X) = 1] + 2D (wiys) (wyy;)t; 1 (X) -
J#i n
(8) ming f(X) = Y (uirzi) +ve h(X) . (1)
In general, the sign of the quadratic fo’¥HY is not i=1

necessarily positive and this may constitue a drawback for
an iterative optimization. However, a more precise study Practically, this optimization step may be solved by a

allows us to conclude that local minima are rare. standard algorithm like DFP or BFGS. After conver-
. . gence of this algorithm, a new vectHy, is obtained
2.2 Optimizing the policy and added to the li§tX, - -, X;_1) , X,]. Return
A condition for a policyX, = (21,0, +,2Zn.o) t0 be to the Master Programm.
optimal is obtained by means of the Kuhn-Tucker neces-
sary conditions, i.e. : Actually, the choice of convenient stepsizes for the it-
LiX,) =p if: 2o >0 ergtive _allgorithm inyolvgd i_n the Second Step may be
Li(X,) < if: xw —0, quite critical, especially if» is large. For that purpose,
where (9) the Goldstein rule performs quite satisfactorily. Denot-
Li(X) = ai (X). ing ¢(t) the functional to be minimized (see Second Step)
i along a descent direction, this rule takes the following for-
It is not hard to prove [11] thak,;(X) is decreasing with m:
respect to each variable, (k = 1,---,n). A solution

has been proposed by Nakai based on this property [11]Choose2 coefficientsn; andm, with

However, the information functional is non separable re]-0 < m; < 1/2 < my < 1, perform the following test :
atively to the variables;, (k = 1,---,n) and this renders | a) if m2 ¢’(0) < (¢(t) — ¢(0) ) < m1 ¢'(0) —

this appraoch unfeasible even for a moderate cell number  stop the stepsize search

n. We thus consider the following algorithm : b) if m1 ¢’(0) < (¢(t) — ¢(0) ) — decrease the stepsize
. N 0) )
o Initialization - c) if (¢(t) — q(0) ) < ma ¢’(0) — increase the st(elp;s)lze

Xo such thatz,(i) > 0 , i = 1,---,n and The whole algorithm performs quite satisfactorily, even
Z o(i) = . for rather large values of the parameteup to400). For
larger values of:, specific algorithms are more relevant

12] [13] (interior-point algorithms).
e Master programm : [12] [13] ( p g )

Solve the followindinear programm :
max z,

suchthat = < £(X;) — 3 (uss;) + vh(X,) 2.3 Some extensions
. i=1 A natural extensions consist in considering the use of
forj=0,--,k—1, multiple detection resources. Let us dendg, - - -, X™
ur 20, ) Un 20, the search policies associated with resouicesm. The
— le = visibility factor {w!} represents the visibility factor asso-
' ciated with the celf and resourcé&. They are related to
(10) operational considerations. Budget constraints take also




the following forms : ie.:

n i—k
Zx +- +Z:c = Pa=Y_ (Z(—l)p C(@'m)) oI Pdi| | ¢
i=k { \p=0 Cim | J
B multlmode resource,snr (13) vg?gre): ;
L@, ... m_ g, bLP) = Pip) -
;xz 1 7; Ty ) (17)
noncooperative resources . In (17), the term) ., [H]. de] is the sum of all the

possible products of elementary detections that can be

More generally, we can consider budget constraints of thrgrmed from the whole elementary detections. In all
form [14]: the cases, the optimization problem must be solved by
AX = M(Dy, -+, D) (14) @ general algorithm (see section 2.2). Multiple resource

constraints (14) add some dififficulty, however quite

where theA and M matrices have compatible dimenJnoderate.
sions and represents operational requirements (e.g. total
amount of a given resource, choice of mode, etc.). TheA straightforward extension to moving target s to con-
information functional is defined as previously, i.e. :  sider a conditionnally deterministic assumption [10] [15]
about the target motion. Note that this problem is basical-
_ _ _ ly defined in a multiperiod framework. We have then to
T(X,P) = H(P) [DX Hyet (1 = Dx) H(TxP) } " deal with the following (primal) optimization problem :

where, in the case of independent detections :
max > I (x1,0,22,0,  Tpo) »
n m e
where :
(1-Dx)=>_» H A
j=1 k=1 I(xl,O;ZQ,Q;"'axpﬁ) =
P I(p(xl,e)vp(lQﬁ)a"'ap(xp79>> ’
H under the resource constraints :
(TXP) n :m ,Vi:1,~~~,n. 21‘179 +$279"'+$p79:(1),
ZpJHexp w;-“ xf) 0o
j=1 k=1 21,0 2>0,2202>0,---,2p0>0,V0€O.

(18)
(15) In(18),z ¢ represents a search effort, affected to the cell
So that we have to deal with the optimization of the foindexed by the parametér at the search periokl. The
lowing functional : indexk takes its values in the subsft, - - -, n}. The pa-
rameterd takes its values in a multidimensional space or
m set (denoted®), characterizing the target trajectory (e.g.
[piH exp(—w?f :cf)] In(t;(X) ), initial position and velocity) and the-dimensional vector
1 k=1 Xy = (z1,0,72,0,  +,Tpe)" represents the effort vector
" m associated with the target trajectory (or track) indexed by
Z »; H exp(—wf x?) 0. Furfcher_morep(:ckye) is the elementary probabili'Fy of
—, detection in the cel(k, #), for a search effork;, ¢; while
ti(X) = m ' 1 is a given differentiable function. The following simple
v [ [ exp(—wf ) remarks are then fundamental :

NIE

fX) =

where :

<.
I

(16) e the functionalZ (x; 9, - -,zn,) is a differentiable

Once again, this definition is quite arbitrary. For in- functional of the variablesy. o,

stance, the above expression of the non-detection proba; the constraints are qualified since they are linear,
bility means that the target is said undetected if it has not

been detected by any detection device, associated withAgrin, the previous framework can be used to optimize
sourceg®q,---, P, }. This corresponds to an "and” rulethe information functional. For the sake of brevity, it is
for non-detection. Other definitions are classical. For egmitted here since it is essentially similar to section 2.2 .
ample, it is possible to consider that the target is said d&-natural extension is to consider Markovian targets; i.e.
tected if it is detected by, at leagtelementary resources,targets whose movements have the Markov property. The



classical optimization framework we used previously ieonsists then in considering that all the search plan is
here useless due to the complexity of elementary everftged, exceptfor period r (denote this plarX ., and to
Instead, we shall use Brown’s approach [7] [8], where @nsider the following definitions of Forward and Back-
sequence of search plans is generated incrementally. ward (denoted F and B) quantities :

The target is moving among a finite number of cells (¢ X+) = > uwntwn, ) twro1,0)
and its path is decribed by = (w1, wo,---,wr) € CT. wime
The searcher starts with a functign : C*7 — [0,1], X exp (Z“’t (W) t)
whereg(w) is the probability that the target takes the path Py )
w. During thet-th period, the searcher hds units of B(e,X,) =

. .. gT(wT)t(wT7wT—1)' "t(w7'+17c)
search efforts which he may divide between the cells of

thet-th period in arbitrary proportions. Thus, the search T
effort distribution at timet may be described by a vec-|  x exp —Zwt(wt)mw,,,t :
tor X, with components:(c, t), giving the search effort T+1

placed in cellk at timet. We assume that the searches at (23)

distinct time periods are statistically independent, so thaf'® functionaf f(X.) takes then the following form :

the probability that a target with pathbe undetected is : F(X,) = Z F(e,X,)B(e, X)) exp(—We,rTe,r)

T ceC,
1-Dx = u%;lg(w) exp [—;wwt,t Tyt 1 5 x Iln CEXC:TF(C, )~(T)B(c7 XT) exp(—wcﬁxcﬁ)] ,
and T ~ Y F(e,X;)B(c¢,X,),
9(w) exp [wat’t Tyt ] (19) ceC,
Tx(P) = = Oa . x In {F(C, )NCT)B(C7 XT) exp(—wc77xc77)} .
Zg(w) exp [wat;t Ty 1 ]
we t=1 (24)

Assuming that the quantitigs(c, X,) and B(c, X;) are

known, the vectoX , is determined by the algorithm p-

resented in section 2.2. . Note that the above quantities
T represent the probabilities that a target whose trajectory

f(X) = Zg(w)eXp [—Zw%tm%t] Inft,(X)], crsos the cell ¢ at the time-periadbe undetected, both
t=1

We have now to consider the following information func
tional :

weN beforer and afterr The only remaining problem is the
where : calculation of F (¢, X, ) and B(c, X,). This is achieved
- by means of Forward and Backward recursions, i.e. :
Zg(w) exp [—wa“t Ty t ] ) ]
to(X) = «E€2 - t=1 : F(e,X;) = ZF(d, Xi—1)exp(—wqt—1%q¢—1)t(d, c) ,
. deC B
g(w) exp [tzlwwt,t Loyt ] B(e,Xy) = ZF(d’ Xip1) exp(—wa i i1Za41)t(d, c) .

(20) deC (25)
and our problem is to minimiz£(X) with the constraints ¢ gescription of the algorithm is now complete. Despite
{z(e,t) 2 0, Ve, Vepand)S, co, z(cnt) < @ e huge number of paths under consideration, we have
Then, itis worth conS|der|ngthefollowmg”factorlzatlon”on|y to solve, at each time period, a stationary problem.
of f(X): The only price to pay is to perform multiple iterations of

T the whole algorithm. Thus, it iguite feasibleeven if,
X)) => l > gw)exp <—wa,t a:w,,,t> In(t.(X) )1 practically, both the variable number and the number of

t=1 paths may be tremenduously high. This is due to the se-
(21)  quential nature of the Brown'’s algorithm.

c wEQ:wr=c

Now, thanks to the Markov prperty, we have :
3 Two-sided search
Up to now, our efforts have been exclusively devoted
wheret(wy, w(:+1)) is the probability of transition fronm to the one-sided search, which means that decisions are

the Ce”_wt to the cellw (1), _andgl (w1), _QT(WT> repre- 2The time indextau means thabnly the search plan associated wit
sent priors about target trajectory. An instrumental ideaw is considered.

9(w) = g1(w)t(wr,w2) - - tHwr—1,wr)gr(wr) , (22)




only made by the searcher. For the two-sided seardrthis gives us [11]the general form of the vect®s and
game theory is the natural framework. If the objectivX™* :

functional is the probability of detection then the two- Aqq me (without loss of generality) that :
sided search problem has an explicit and simple solutionw1 > wy---w, ,then:

[11]. The simple nature of the solution is certainly due to p. _ (cw - awyh, B, )

the separable nature of the optimizations, which meansy. _ ;. Lo 6)’ T

that all the variables (i.e. the search efforts and the target, i the constraints -

priors) play separable roles. Furthermore, notice that the !

optimal searcher and target strategies are proportional.zm: =& ,and:(n—1)B+ O‘ZWfl -1
Quite intuitively, this strategy is such that the product ;= =1

xfpf remains constant.

(28)

Thus, forP* there is only one undertermined parame-
ter. Thus, the algorithm consists practically in using the
agorithm of section 2.2 in conjunction with (28). This
two-sided formulation may be extended to the multiple
Yesource case and to Markovian targets (see section 2.3),
even if it becomes considerably more intricated. In fact,
this requires to analyze a great variety of situations.

4 Results

I(P*,X) < I(P*, X*) < Z(P,X*) ,

V(X,P) : Zpi =1, sz - The_aim of this se_ction is to proyide some examples il-
p Z lustrating the behavior of the algorithm we have develope-

d for optimizing the information search. The prior about

Alternatively, we see that the coup{®*,X*} is a sad- target location (parametrized by a couple y}) is given

dle point for the functional (P, X). Assuming that no py the following formula :

local minimum ofZ(X) does exist, existence and unicity 1

of this saddle point may be proved.The following KKT p(z,y) = exp <_ [(x _ 1>2 ¥y — 1>2D . (29)

conditions are easily derived (see [11]) and give some in- 2

sights about optimal policies. Note that it involvego 1 2 2

positiveLagrange multipliersq and ). Texp (__ [(x —5)+ -9 D ’

For the information search, the detection functional
replaced by the information functiona(P,X) = (1 —
Dx(P) ) H(Tx(P). The elementary problem consist
to find the vector®* andX*, solutions of the following
min-max problem :

(26)

—¢ if pr=0 illustrated by fig. 1, while the value of the visibility factor
K;(P*,X*) : { <¢ if p; -0 is given by the formulav(z,y) = 1/(y/x? + y2). These

! continuous values are discretized oh0ax 10 grid. The
-0 @27) total number of cells is thus equal 160.

piwiKi(P7X>:{<Z if zf=0

where :

K;(P,X) = exp(—w;z;) In[t;(X,P)] .
Inequalities in (27) are deduced from the decreasing pro®*
erty (as a function ofp;, and as a function of;) of °”
K;(P,X). Even if these conditions are quite genera\zzz
they are not truly enlightening. However, the following.
elementary consequences of these conditions [11] allcos
us to develop an algorithmic approach. 002

0.01

1. Ifp; =0, thenz; =0. 0

2. If pf > 0, then two cases must be consid-
ered according to the value of’. If 27 > 0,

then we havep; w; = %. If 27 = 0, then
In [}y, piexp(—wrzy)] = £p}, so thatp is in- _ _
dependent of the index Figure 1: Values of the prigs(z, y)

So, p} is either equal tox w;l (if zy > 0), ortoacon- We present then (see fig.4) the values of the informa-
stant 3 (if 7 = 0). Notice thatd may be equal to zero. tion search efforts; for the prior given in fig. 1 and the



visibility factor given by the above formula. The value of
the total search effo® is ® = 60. We use the cutting
plane algorithm presented in section 2.2. Convergent,
needs some iterations of the master programm, so that t
computation time is abo®0 sec. in this case. The con- °
straints are satisfied sindg, ) ;, = 59.43, allthez; ,
are positive; while the value of the information functional
7 is equal t01.788 (for ® = 30, we foundZ = 2.211). ©°*
The algorithm has been initialized by a vector filled of ,
very small values.

0.6

0
0

Figure 3: KKT conditions, values df;(Xy).

35

25

Figure 2: Values of the information search effods,= .l
60.

KKT conditions are illustrated by fig.3, in this case |
the visibility factor is constantu(z,y) = 1,V(z,y)
). The values of the partial derivatives of the La- *f
grangian (i.e. L;(X,) are plotted as a function of the
cell index (X, value of the information searc vector os,— o o 20 o0 5% o 10 o
at convergence). We see that(X,) are (almost) e-
gual together when the search efforts are strictly posi-
tive and lower for zero values of the efforts. FinallyFigure 4: Values of the Information function&(X) ver-
we present the values of the information functional fasus the total amourdt.
optimized values of the search efforts versus the total
amount of search effort. The prior is as above but,
this time, the visibility function is more complicated
(w(z,y) = cos*(v/a2 +y?) exp(—0.2/22 + ¢?) ).

The total amount of search effobtis ranging fromo0 to

500). We can notice that the information functional de-

creases fastly at first and then that the decrease becoRfe! detailed and tested. For the eseential, difficulties
quite slower. arise from the non-separability of the information func-

tional. As it is usual in search theory, once the elemen-
5 conclusion tary information search problem (monoperiod, monore-
source) has been solved, then numerous extensions (mul-
The aim of this paper is to study the management tiple types of resources, two-sided, Markovian target) can
the information search. Despite great similarities with thee treated. However, the algorithmic complexity of the
"classical” search problem, it involves rather intricate opelementary step greatly increase the difficulty of the ex-
timization problems, for which algorithmic solutions havéensions.




A Appendix

Let us now detail the calculation %f% f(X):

a0 [(X) = —pjw; exp(—wjz;) In(t; (X)) ,

n

+Zpiwi eXp(_wixi)i_ In(t;(X)) -

s, (30)

7

It remains to calculate the terﬁ; In(¢;(X)), we have :

9 . DT
— In(t;(X)) = — f]pJ exp(—w;;) +wi biy
5‘:cj
> pr exp(—wiax)
k=1

(31)
whered; ; stands for the Kronecker symbol (i.&,; = 1
if i = 7, 0 else). Therefore :

n

0
Zpi’wi exp(—w;z;) 5— In(t; (X))
- alﬂj
B . . Do piexp(—wiw;
= —Ww;p; exp(f’w]Z]) ::11pk, exp(—wrxk)

(32)

+Z [w;8; jp; exp(—w;z;] =0 .

i=1

ending the proof.
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