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Abstract – Search theory is the discipline that studies
the problem of how best to search for an object when
the amount of searching efforts is limited and only
probabilities of the object’s possible position are given.
Then, the problem is to find the optimal distribution
of this total effort that maximizes the probability of
detection. Although the general formalism of search
theory will be used subsequently, we shall consider
now a radically different problem. More precisely, the
problem under consideration is to maximize the expected
amount of information about the location of the target by
optimally allocating a given search effort. For example,
in a reconnaissance problem the aim is not to discover
but to locate as precisely as possible (information search).

keywords : Search theory, two-sided search, informa-
tion, entropy, fusion rules, optimization..

1 Introduction
Search theory is the discipline that treats the problem

of how best to search for an object when the amount of
searching efforts is limited and only probabilities of the
object’s possible position are given. Search theory came
into being during World War II with the work of B.O.
Koopman and his colleagues. Since that time, search
theory has grown to be a well-recognized discipline
within the field of operations research. An important
literature has been devoted to this subject; the interested
reader may consult an extensive survey [2], introductive
texts [4] and specialized books [5], [6].

A search theory problem is characterized by three
pieces of data: (i) the probabilities of the searched object
(the ”target”) being in various possible locations; (ii) the
local detection probabilitythat a particular amount of
local search effort could detect the target; (iii) the total
amount of searching effort available. The problem is
to find the optimal distribution of this total effort that
maximizes the probability of detection.

The rapid growth of the search theory literature is
chronicled in reference [2]. For instance, the last item
(search games) is the primary focus of recent researches,
including numerous sub-domains such as : mobile
evaders, avoiding target, ambush games, inspection
games and tactical games. For moving target problems,
decisive progress have been made in developing search
strategies that maximize the probability of detecting
the (moving) target within a fixed amount of time. In
particular, Brown [7] and Washburn [8] have proposed
an iterative algorithm in which the motion space and the
time frame have been discretized, and the search effort
available in each period is infinitely divisible between the
grid cells of the target motion space. In this approach, the
search effort available in each period is bounded above
by a constant that does not depend on the allocations
made during any other periods.

However, although the general formalism of search the-
ory will be used subsequently, we shall study a radical-
ly different problem. More precisely, the problem under
consideration is to maximize the expected amount of in-
formation about the location of the target by optimally
allocating a given search effort [9]. For example, in a re-
connaissance problem the aim is not to discover but to
locate as precisely as possible (information search).

2 The one-sided information search
problem

This section is devoted to the one-sided problem; which
means that only the optimization of the searcher policy is
considered. Simultaneous optimization of both searcher
and target policies will be the object of section 3 (two-
sided search).

2.1 Definitions and basic problem formula-
tion

Assume, at first, that an object is hidden somewhere
in a spaceE, divided in n cells. Prior distribution of



the obect is given by a vectorP of prior probabilities
pi ; i.e. : P = (p1, p2, · · · , pn), along with pi ≥
0 ∀i ,

∑n
i=1 pi = 1. The searcher aim is to max-

imize its information about possible location of the ob-
ject by allocating a fixed search effortΦ. The search
policy itself is represented by ann-dimensional effort
X = (x1, x2, · · · , xn), obeying also to the following con-
straints :xi ≥ 0 ∀i ,

∑n
i=1 xi = Φ. Considering the

Nakai’s formalism, we define the following information
functional, denotedI (X,P) :

I (X,P) = H(P)−[DX Hdet+ (1 − DX)H(TXP)
]

.
(1)

In (1), the various terms have the following meanings :

• H(P) is the prior entropy (H(P) ∆= −∑n
i pi ln pi),

• DX is the probability to detect (and locate) the object
by using the search policyX ,

• Hdetis the entropy about a detected target; i.e. equal
to 0 1 ,

• TXP = ( (TXP)1, · · · , TXP)n ) is the n-
dimensional vector of the posterior distribution of
the object, given a prior distributionP assuming it
is non detected by a search policyX ,

• H(TXP) is its associated entropy.

Thus in (1), the (right) term inside brackets represents
the difference between the prior entropy and the posterior
entropy, that is the expected amount of information
gained by the policyX.

The exponential assumption is very general and is ob-
tained by the following elementary reasoning [1]. Con-
sider now that the search effort is represented by time (t)
and let us denoteq(t) ( q(t) = 1 − p(t)) the probabili-
ty of non-detection. Denotingw as the ”instantaneous”
probability of detection, the increment in probability of
detection associated with the time incrementdt will be
w dt, so that:

q(t + dt) = q(t) (1 − w dt)
or :
d
dtq(t) = −w q(t) and:p(t) = 1 − e−w t .

(2)

A more general presentation of the exponential density
(for the probability of detection) can be found in [4]. For
instance, elementary calculations yield (with the notations
of [4]) :

P (det) = 1 − e−w L/A , (3)

where A denotes the area of the region containing
the target,L the length of the search segment andw

1For a detectedtarget its entropy is zero, since no uncertainty re-
mains about source location.

the visibility parameter (here the sweep width). The
termw L/A then represents the elementary area coverage.

Let us consider now this exponential assumption, then
we have :

DX = 1 −
n∑

i=1

pi exp(−wi xi) ,

(wi : visibility factor on celli) ,

(4)

(TXP)i =
pi exp(−wi xi)

n∑
j=1

pj exp(−wj xj)

, ∀i = 1, · · · , n.

We thus have to deal with the following constrained opti-

mization problem (f(X) ∆= −I(X,P):

P




min
X

f(X) with :

f(X) =
n∑

i=1

pi exp(−wi xi) ln




n∑
k=1

pk exp(−wk xk)

pi exp(−wi xi)


 ,

under the resource constraints :
n∑

i=1

xi = Φ , xi ≥ 0 ∀i ∈ {1, · · · , n} .

(5)
From an algorithmic point of view, the main difference
with the ”classical” search problem is that now the objec-
tive fuctional (i.e.f(X) ) is not separated relatively to the
optimization variablesxi. Thus, even in this elementary
framework (stationary target), the difficulty of the opti-
mization problem grows significantly. At a first time, it is
worth considering the elementary property off(X). Not-
ing that the functional of interest is :

f(X) =
n∑

i=1

pi exp(−wi xi) ln( ti(X) ) ,

where :

ti(X) =

n∑
k=1

pk exp(−wk xk)

pi exp(−wi xi)
,

(6)

we obtain successively (Proofs are given in Appendix A):

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂
∂xi

f(X) = −pi wi exp(−wi xi) ln(ti(X) ) ,

∂2

∂x2
i
f(X) = pi w2

i exp(−wi xi)

×
[

ln(ti(X) ) + (ti(X) )−1 − 1
]

,

∂2

∂xi ∂xj
f(X) = pi wiwj exp(−wi xi) (tj(X) )−1

, i 6= j .

(7)



Consider for a while the functiong(t) = t−1 + ln t − 1.
Sinceg(1) = 0 andg′(t) = (t − 1)/t2 ≥ 0 for t ≥ 1,
we know thatg(t) ≥ 0 whatever the valuet (t ≥ 1).
Therefore ∂2

∂x2
i

f(X) ≥ 0 is positive whatever thexi are

(xi ≥ 0).
Let H the Hessian matrix associated withf(X) andY
a generic vector ofIRn, from the previous calculation we
deduce that :

YtHY =
n∑

i=1

pi exp(−wixi) gi(X,Y) ,

where :
gi(X,Y) = (wiyi)

2[
ln(ti(X)) + t−1

i (X) − 1
]
+ 2
∑
j 6=i

(wiyi)(wjyj)t−1
j (X) .

(8)
In general, the sign of the quadratic formYtHY is not
necessarily positive and this may constitue a drawback for
an iterative optimization. However, a more precise study
allows us to conclude that local minima are rare.

2.2 Optimizing the policy
A condition for a policyXo = (x1,o, · · · , xn.o) to be

optimal is obtained by means of the Kuhn-Tucker neces-
sary conditions, i.e. :


Li(Xo) = µ if : xi,o > 0
Li(Xo) < µ if : xi,o = 0 ,
where :
Li(X) = ∂

∂xi
f(X).

(9)

It is not hard to prove [11] thatLi(X) is decreasing with
respect to each variablexk (k = 1, · · · , n). A solution
has been proposed by Nakai based on this property [11].
However, the information functional is non separable rel-
atively to the variablesxk (k = 1, · · · , n) and this renders
this appraoch unfeasible even for a moderate cell number
n. We thus consider the following algorithm :

• Initialization :
X0 such thatxo(i) ≥ 0 , i = 1, · · · , n and

n∑
i=1

xo(i) = Φ.

• Master programm :
Solve the followinglinear programm :


max z ,

such that :z ≤ f(Xj) −
n∑

i=1

(uixi,j) + vh(Xj)

for j = 0, · · · , k − 1 ,
u1 ≥ 0, · · · , un ≥ 0 ,

h(Xj) =
n∑

i=1

xi,j − Φ .

(10)

For this linear programm the unknowns arez, thein-
equalityLagrange multipliersu = (u1, · · · , un) and
the constraint parameterv. Note that all theui are
positive, while the sign ofv is undetermined (equal-
ity constraint). It may be solved quite efficiently by
a Simplex algorithm even for a large value ofn.

• Second Step :
Admitting that the Master programm has been
solved, we obtain a new vectoruk, as well as a new
valuevk. The indexk corresponds to the general it-
eration index. Consider the followingunconstrained
problem :

minX f(X) −
n∑

i=1

(ui,kxi) + vk h(X) . (11)

Practically, this optimization step may be solved by a
standard algorithm like DFP or BFGS. After conver-
gence of this algorithm, a new vectorXk is obtained
and added to the list[(X1, · · · ,Xk−1) ,Xk]. Return
to the Master Programm.

Actually, the choice of convenient stepsizes for the it-
erative algorithm involved in the Second Step may be
quite critical, especially ifn is large. For that purpose,
the Goldstein rule performs quite satisfactorily. Denot-
ing q(t) the functional to be minimized (see Second Step)
along a descent direction, this rule takes the following for-
m:

∣∣∣∣∣∣∣∣∣∣∣∣

Choose2 coefficientsm1 andm2 with
0 < m1 < 1/2 < m2 < 1 , perform the following test :
a) if m2 q′(0) ≤ (q(t) − q(0) ) ≤ m1 q′(0) →

stop the stepsize search,
b) if m1 q′(0) < (q(t) − q(0) ) → decrease the stepsize,
c) if (q(t) − q(0) ) < m2 q′(0) → increase the stepsize.

(12)
The whole algorithm performs quite satisfactorily, even
for rather large values of the parametern (up to400). For
larger values ofn, specific algorithms are more relevant
[12] [13] (interior-point algorithms).

2.3 Some extensions

A natural extensions consist in considering the use of
multiple detection resources. Let us denoteX1, · · · ,Xm

the search policies associated with resources1 to m. The
visibility factor {wk

i } represents the visibility factor asso-
ciated with the celli and resourcek. They are related to
operational considerations. Budget constraints take also



the following forms :

B




n∑
i=1

x1
i + · · · +

n∑
i=1

xm
i = Φ

multimode resources, or :
n∑

i=1

x1
i = Φ1, · · · ,

n∑
i=1

xm
i = Φm ,

noncooperative resources .

(13)

More generally, we can consider budget constraints of the
form [14]:

AX = M(Φ1, · · · , Φm) , (14)

where theA andM matrices have compatible dimen-
sions and represents operational requirements (e.g. total
amount of a given resource, choice of mode, etc.). The
information functional is defined as previously, i.e. :

I (X,P) = H(P)−[DX Hdet+ (1 − DX)H(TXP)
]

,

where, in the case of independent detections :

(1 − DX) =
n∑

j=1

pj

m∏
k=1

exp(−wk
j xk

j ) ,

(TXP)i =

pi

m∏
k=1

exp(−wk
i xk

i )

n∑
j=1

pj

m∏
k=1

exp(−wk
j xk

j )
, ∀i = 1, · · · , n.

(15)
So that we have to deal with the optimization of the fol-
lowing functional :

f(X) =
n∑

i=1

[
pi

m∏
k=1

exp(−wk
i xk

i )

]
ln(ti(X) ),

where :

ti(X) =

n∑
j=1

pj

m∏
k=1

exp(−wk
j xk

j )

pi

m∏
k=1

exp(−wk
i xk

i )
.

(16)
Once again, this definition is quite arbitrary. For in-

stance, the above expression of the non-detection proba-
bility means that the target is said undetected if it has not
been detected by any detection device, associated with re-
sources{Φ1, · · · , Φm}. This corresponds to an ”and” rule
for non-detection. Other definitions are classical. For ex-
ample, it is possible to consider that the target is said de-
tected if it is detected by, at least,k elementary resources,

i.e. :

Ptd =
n∑

i=k



(

i−k∑
p=0

(−1)p C(i, p)

) 
∑

Ci,n


∏

j

Pdj






 ,

where :
C(i, p) = i!

p! (i−p)! .

(17)

In (17), the term
∑

Ci,n

[∏
j Pdj

]
is the sum of all the

possible products ofi elementary detections that can be
formed from the whole elementary detections. In all
the cases, the optimization problem must be solved by
a general algorithm (see section 2.2). Multiple resource
constraints (14) add some dififficulty, however quite
moderate.

A straightforward extension to moving target is to con-
sider a conditionnally deterministic assumption [10] [15]
about the target motion. Note that this problem is basical-
ly defined in a multiperiod framework. We have then to
deal with the following (primal) optimization problem :

P




max
∑
θ ∈Θ

I (x1,θ, x2,θ, · · · , xp,θ) ,

where :

I (x1,θ, x2,θ, · · · , xp,θ)
∆=

I (p(x1,θ), p(x2,θ), · · · , p(xp,θ) ) ,
under the resource constraints :∑
θ ∈Θ

x1,θ + x2,θ · · · + xp,θ = Φ ,

x1,θ ≥ 0 , x2,θ ≥ 0 , · · · , xp,θ ≥ 0 , ∀ θ ∈ Θ .
(18)

In (18),xk,θ represents a search effort, affected to the cell
indexed by the parameterθ, at the search periodk. The
indexk takes its values in the subset{1, · · · , n}. The pa-
rameterθ takes its values in a multidimensional space or
set (denotedΘ), characterizing the target trajectory (e.g.
initial position and velocity) and thep-dimensional vector

Xθ
∆= (x1,θ, x2,θ, · · · , xp,θ)

∗ represents the effort vector
associated with the target trajectory (or track) indexed by
θ. Furthermore,p(xk,θ) is the elementary probability of
detection in the cell(k, θ), for a search effortxk,θ; while
I is a given differentiable function. The following simple
remarks are then fundamental :

• the functionalI (x1,θ, · · · , xn,θ) is a differentiable
functional of the variablesxk,θ ,

• the constraints are qualified since they are linear,

Again, the previous framework can be used to optimize
the information functional. For the sake of brevity, it is
omitted here since it is essentially similar to section 2.2 .
A natural extension is to consider Markovian targets; i.e.
targets whose movements have the Markov property. The



classical optimization framework we used previously is
here useless due to the complexity of elementary events.
Instead, we shall use Brown’s approach [7] [8], where a
sequence of search plans is generated incrementally.

The target is moving among a finite number of cells
and its path is decribed byω = (ω1, ω2, · · · , ωT ) ∈ CT .
The searcher starts with a functiong : CT → [0, 1],
whereg(ω) is the probability that the target takes the path
ω. During thet-th period, the searcher hasΦt units of
search efforts which he may divide between the cells of
the t-th period in arbitrary proportions. Thus, the search
effort distribution at timet may be described by a vec-
tor Xt, with componentsx(c, t), giving the search effort
placed in cellc at timet. We assume that the searches at
distinct time periods are statistically independent, so that
the probability that a target with pathω be undetected is :

1 − DX =
∑
ω∈Ω

g(ω) exp

[
−

T∑
t=1

wωt,t xωt,t

]
,

and :

TX(P) =

g(ω) exp

[
−

T∑
t=1

wωt,t xωt,t

]

∑
ω∈Ω

g(ω) exp

[
−

T∑
t=1

wωt,t xωt,t

] .

(19)

We have now to consider the following information func-
tional :

f(X) =
∑
ω∈Ω

g(ω) exp

[
−

T∑
t=1

wωt,t xωt,t

]
ln[tω(X)] ,

where :

tω(X) =

∑
ω∈Ω

g(ω) exp

[
−

T∑
t=1

wωt,t xωt,t

]

g(ω) exp

[
−

T∑
t=1

wωt,t xωt,t

] ,

(20)
and our problem is to minimizef(X) with the constraints
{x(c, t) ≥ 0 , ∀ t, ∀ c} and

∑
ct∈Ct

x(ct, t) ≤ Φt.
Then, it is worth considering the following ”factorization”
of f(X) :

f(X) =
∑

c

[ ∑
ω∈Ω: ωt=c

g(ω) exp

(
−

T∑
t=1

wωt,t xωt,t

)
ln(tω(X) )

]

(21)
Now, thanks to the Markov prperty, we have :

g(ω) = g1(ω1)t(ω1, ω2) · · · t(ωT−1, ωT )gT (ωT ) , (22)

wheret(ωt, ω(t+1)) is the probability of transition fronm
the cellωt to the cellω(t+1), andg1(ω1), gT (ωT ) repre-
sent priors about target trajectory. An instrumental idea

consists then in considering that all the search plan is
fixed, exceptfor period τ (denote this plañXτ , and to
consider the following definitions of Forward and Back-
ward (denoted F and B) quantities :∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F (c, X̃τ ) =
∑
ωt=c

g1(ω1)t(ω1, ω2) · · · t(ωτ−1, c) ,

× exp

(
−

τ−1∑
t=1

wt(ωt)xωt,t

)
,

B(c, X̃τ ) =
∑
ωt=c

gT (ωT )t(ωT , ωT−1) · · · t(ωτ+1, c)

× exp

(
−

T∑
τ+1

wt(ωt)xωt,t

)
.

(23)
The functional2 f(Xτ ) takes then the following form :

f(Xτ ) =
∑

c∈Cτ

F (c, X̃τ )B(c, X̃τ ) exp(−wc,τxc,τ ) ,

× ln

[∑
c∈Cτ

F (c, X̃τ )B(c, X̃τ ) exp(−wc,τxc,τ )

]
,

−
∑

c∈Cτ

F (c, X̃τ )B(c, X̃τ ) ,

× ln
[
F (c, X̃τ )B(c, X̃τ ) exp(−wc,τxc,τ )

]
.

(24)
Assuming that the quantitiesF (c, X̃τ ) andB(c, X̃τ ) are
known, the vector̃Xτ is determined by the algorithm p-
resented in section 2.2. . Note that the above quantities
represent the probabilities that a target whose trajectory
crsos the cell c at the time-periodτ be undetected, both
beforeτ and afterτ The only remaining problem is the
calculation ofF (c, X̃τ ) andB(c, X̃τ ). This is achieved
by means of Forward and Backward recursions, i.e. :

F (c, X̃t) =
∑
d∈C

F (d, X̃t−1) exp(−wd,t−1xd,t−1)t(d, c) ,

B(c, X̃t) =
∑
d∈C

F (d, X̃t+1) exp(−wd,t+1xd,t+1)t(d, c) .

(25)
The description of the algorithm is now complete. Despite
the huge number of paths under consideration, we have
only to solve, at each time period, a stationary problem.
The only price to pay is to perform multiple iterations of
the whole algorithm. Thus, it isquite feasibleeven if,
practically, both the variable number and the number of
paths may be tremenduously high. This is due to the se-
quential nature of the Brown’s algorithm.

3 Two-sided search
Up to now, our efforts have been exclusively devoted

to the one-sided search, which means that decisions are
2The time indextau means thatonly the search plan associated wit

tau is considered.



only made by the searcher. For the two-sided search,
game theory is the natural framework. If the objective
functional is the probability of detection then the two-
sided search problem has an explicit and simple solution
[11]. The simple nature of the solution is certainly due to
the separable nature of the optimizations, which means
that all the variables (i.e. the search efforts and the target
priors) play separable roles. Furthermore, notice that the
optimal searcher and target strategies are proportional.
Quite intuitively, this strategy is such that the product
x∗

i p
∗
i remains constant.

For the information search, the detection functional is
replaced by the information functionalI(P,X) = (1 −
DX(P) ) H(TX(P). The elementary problem consists
to find the vectorsP∗ andX∗, solutions of the following
min-max problem :

I(P∗,X) ≤ I(P∗,X∗) ≤ I(P,X∗) ,

∀(X,P) :
∑

i

pi = 1 ,
∑

i

xi = Φ .
(26)

Alternatively, we see that the couple{P∗,X∗} is a sad-
dle point for the functionalI(P,X). Assuming that no
local minimum ofI(X) does exist, existence and unicity
of this saddle point may be proved.The following KKT
conditions are easily derived (see [11]) and give some in-
sights about optimal policies. Note that it involvestwo
positiveLagrange multipliers (ξ andµ).

Ki(P∗,X∗) :
{

= ξ if p∗i = 0
< ξ if p∗i > 0

p∗i wi Ki(P∗,X∗) :
{

= µ if x∗
i > 0

< µ if x∗
i = 0

where :
Ki(P,X) = exp(−wixi) ln [ti(X,P)] .

(27)

Inequalities in (27) are deduced from the decreasing prop-
erty (as a function ofpi, and as a function ofxi) of
Ki(P,X). Even if these conditions are quite general,
they are not truly enlightening. However, the following
elementary consequences of these conditions [11] allow
us to develop an algorithmic approach.

1. If p∗i = 0, thenx∗
i = 0 .

2. If p∗i > 0, then two cases must be consid-
ered according to the value ofx∗

i . If x∗
i > 0,

then we havep∗i wi = µ
ξ . If x∗

i = 0, then
ln [
∑n

k=1 p∗k exp(−wkx∗
k) ] = ξ p∗i , so thatp∗i is in-

dependent of the indexi.

So,p∗i is either equal toα w−1
i (if x∗

i > 0), or to a con-
stant β (if x∗

i = 0). Notice thatβ may be equal to zero.

This gives us [11]the general form of the vectorsP∗ and
X∗ :

Assume (without loss of generality) that :
w1 ≥ w2 · · ·wn , then :
P∗ =

(
α w−1

l , · · · , α w−1
1 , β, · · · , β) ,

X∗ = (x∗
1, · · · , x∗

l , 0, · · · , 0) ,
with the constraints :

l∑
i=1

x∗
i = Φ , and :(n − l)β + α

l∑
i=1

W−1
i = 1 .

(28)

Thus, forP∗ there is only one undertermined parame-
ter. Thus, the algorithm consists practically in using the
algorithm of section 2.2 in conjunction with (28). This
two-sided formulation may be extended to the multiple
resource case and to Markovian targets (see section 2.3),
even if it becomes considerably more intricated. In fact,
this requires to analyze a great variety of situations.

4 Results
The aim of this section is to provide some examples il-

lustrating the behavior of the algorithm we have develope-
d for optimizing the information search. The prior about
target location (parametrized by a couple{x, y}) is given
by the following formula :

p(x, y) = exp
(
−1

2

[
(x − 1)2 + (y − 1)2

])
; ,(29)

+ exp
(
−1

2

[
(x − 5)2 + (y − 5)2

])
,

illustrated by fig. 1, while the value of the visibility factor
is given by the formulaw(x, y) = 1/(

√
x2 + y2). These

continuous values are discretized on a10 × 10 grid. The
total number of cells is thus equal to100.

0

2

4

6

8

10 0

2

4

6

8

10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Figure 1: Values of the priorp(x, y)

We present then (see fig.4) the values of the informa-
tion search efforts; for the prior given in fig. 1 and the



visibility factor given by the above formula. The value of
the total search effortΦ is Φ = 60. We use the cutting
plane algorithm presented in section 2.2. Convergence
needs some iterations of the master programm, so that the
computation time is about500 sec. in this case. The con-
straints are satisfied since

∑100
i=1 xi,o = 59.43, all thexi,o

are positive; while the value of the information functional
I is equal to1.788 (for Φ = 30, we foundI = 2.211).
The algorithm has been initialized by a vector filled of
very small values.
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Figure 2: Values of the information search efforts,Φ =
60.

KKT conditions are illustrated by fig.3, in this case
the visibility factor is constant (w(x, y) = 1 , ∀(x, y)
). The values of the partial derivatives of the La-
grangian (i.e. Li(X0) are plotted as a function of the
cell index (Xo value of the information searc vector
at convergence). We see thatLi(X0) are (almost) e-
qual together when the search efforts are strictly posi-
tive and lower for zero values of the efforts. Finally,
we present the values of the information functional for
optimized values of the search efforts versus the total
amount of search effort. The prior is as above but,
this time, the visibility function is more complicated
(w(x, y) = cos2(

√
x2 + y2) exp(−0.2

√
x2 + y2) ).

The total amount of search effortΦ is ranging from0 to
500). We can notice that the information functional de-
creases fastly at first and then that the decrease becomes
quite slower.

5 Conclusion
The aim of this paper is to study the management of

the information search. Despite great similarities with the
”classical” search problem, it involves rather intricate op-
timization problems, for which algorithmic solutions have
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Figure 3: KKT conditions, values ofLi(X0).
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Figure 4: Values of the Information functionalf(X0) ver-
sus the total amountΦ.

been detailed and tested. For the eseential, difficulties
arise from the non-separability of the information func-
tional. As it is usual in search theory, once the elemen-
tary information search problem (monoperiod, monore-
source) has been solved, then numerous extensions (mul-
tiple types of resources, two-sided, Markovian target) can
be treated. However, the algorithmic complexity of the
elementary step greatly increase the difficulty of the ex-
tensions.



A Appendix
Let us now detail the calculation of∂∂xj

f(X) :

∂
∂xj

f(X) = −pjwj exp(−wjxj) ln(tj(X)) ,

+
n∑
i

piwi exp(−wixi)
∂

∂xj
ln(ti(X)) . (30)

It remains to calculate the term∂
∂xj

ln(tj(X)), we have :

∂

∂xj
ln(tj(X)) = − wjpj exp(−wjxj)

n∑
k=1

pk exp(−wkxk)

+ wi δi,j ,

(31)
whereδi,j stands for the Kronecker symbol (i.e.δi,j = 1
if i = j; 0 else). Therefore :

n∑
i

piwi exp(−wixi)
∂

∂xj
ln(ti(X))

= −wjpj exp(−wjxj)
∑n

i=1
pi exp(−wixi∑n

k=1
pk exp(−wkxk)

+
n∑

i=1

[wiδi,jpi exp(−wixi] = 0 .

(32)

ending the proof.
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