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Abstract – Analytical resolution of search theory prob-
lems, as formalized by B.O. Koopman, may be applied
with some model extension to various resource manage-
ment and data fusion issues. Such method is based on
a probabilistic prior about the target. Even so, this ap-
proximation forbids any reactive behavior of the target.
As a preliminary step towards reactive target study stands
the problem of resource placement under a min-max game
context. This paper is related to Nakai’s work about the
game placement of resources for the detection of a sta-
tionary target. However, this initial problem is extended
by adding new and more general constraints, allowing a
more subtle modeling of the target and resource behav-
iors.

Keywords: Sensor & Resource Management, target de-
tection, Search game, Search theory, Resource allocation.

Notations
• ϕ(x): Search effort,

• φo: Total amount of search effort,

• α(x): Probabilistic target distribution,

• Ao: Total target probability,

• px(ϕ(x)): Conditional detection probability.

1 Introduction
The initial framework of Search Theory [3][1][2], in-

troduced by B.O. Koopman and his colleagues, sets the
general problem of the detection of a target in a space,
in view of optimizating the detection resources. A thor-
ough extension of the prior formalism has been made by
Brown towards the detection at several periods of search
[4][5]. These simple but meaningful formalism were al-
so luckily applied to various resource management and
data fusion issues [6]. But, in all these problems, a prob-
abilistic prior on the target was required. In addition, in
case of moving target problems, a Markovian hypothesis

is necessary for algorithmic reasons. While this formal-
ism is sufficient for almost ”passive” targets, it is useless
when a target has a complex (and realistic) move. In a
military context especially, the behavior of the “interest-
ing” targets is not neutral and cannot be modeled by a
simple probabilistic prior. A conceivable way for enhanc-
ing the prior on the target in a manner that involves more
properly the complexity or the reactiveness of the target,
is to consider a min-max game version of Koopman op-
timization problems. Nakai presented and solved in [7]
a game with placement of resources for the detection of
a stationary target. In this work the constraints on game
were given by the available placement of target and detec-
tion resources. Thus, constraints were defined at thepure
strategylevel. The purpose of this paper is to present an
extension of Nakai’s game by addition of new constraints
defined on the set of available mixed strategies. In other
words, constraints are now defined at themixed strategy
level. Before explaining properly the extended problem,
we intend to give in this introduction a short description
of Nakai’s game.

Definitions: The searcher want to detect a target posi-
tioned in a spatial search spaceE. To perform this de-
tection, the searcher has available a total amount of (de-
tection) resourcesφo. Theses resources may be shared
between each cellx of the search spaceE. Detection on
cell x is a known function of the search effort put onx.
Forx ∈ E, the variableϕ(x) denotes the local amount of
resources placed on cellx. A constraint naturally holds
for the resources :∫

E

ϕ(x) dx ≤ φo .

Since detection is better when the whole resources are
used, the previous constraint may be replaced by the more
mathematically suitable one:∫

E

ϕ(x) dx = φo . (1)



The set of valid sharing functionsϕ is thus defined by:

R(φ) =
{

ϕ ∈ IR+E
/∫

E

ϕ = φo

}
.

When local resourceϕ(x) is used on cellx and target is
located onx, the probability of non detection is given by
valuepx(ϕ(x)), a conditional probability. This probabil-
ity may depend uponx, since practically visibility and
resource efficiency vary with the concerned cell. Forx
fixed,px decreases with the effort used andp′x < 0. The
detection follows the rule of decreasing return, so that
p′x increases strictly withϕ. On the other hand, the tar-
get have the choice between available positionsT ⊂ E.
Then, a game occurs between the searcher and the tar-
get. The searcher attempts to minimize the probability
of non detection by optimizing the search resource shar-
ing ϕ, while the target aim is to maximize the probability
of non detection by choosing his position. The value of
the game is given bypΘ(ϕ(Θ)), for a target strategyΘ
and a searcher strategyϕ. This problem was solved by
Nakai [7]. Sincep is convex, it appears that the game is
convex. Thus, there is a mixed optimal strategy for the tar-
get and a pure optimal strategy for the searcher. A mixed
strategy for the target is given by a density probabilityα
on the target position, with propertyα(E \ T) = 0. We
denote:

P(T) =
{

α ∈ IR+E
/

α(E \ T) = 0 and
∫

E

α = 1
}

.

the set of such probabilities. For strategies(α, ϕ), the
value of the game is then given by the average :

Pnd(α, ϕ) =
∫

E

α(x)px(ϕ(x)) dx .

An optimal (min-max) couple of strategies(αo, ϕo) is al-
so defined by :




αo = arg max
α∈P(T)

min
ϕ∈R(φo)

∫
E

α(x)px(ϕ(x)) dx ,

ϕo = arg min
ϕ∈R(φo)

max
α∈P(T)

∫
E

α(x)px(ϕ(x)) dx .

Two optimality conditions are obtained, by differentiation
around the optimal strategies :


αo(x) p′x(ϕo(x)) = η , whenαo(x) >

η

p′x(0)

ϕo(x) = 0 , else

(2)

and

∃λ ∈ IR+, αo(x) > 0 =⇒ px(ϕo(x)) = λ . (3)

We can recognize in (2) the classical optimality equation
of de Guenin. By use of these equations, a mathematical
solution of the problem is built. The first step is to verify
the obviously intuitive result:

x ∈ T ⇐⇒
[
αo(x) > 0 andϕo(x) > 0

]
. (4)

Then, the combination of equations (1) and (3) yields∫
T

p−1
x (λ) dx = φo. Defining the functionP by:

P
−1(λ) =

∫
T

p−1
x (λ) dx

yields λ = P(φo). Resultsαo(x) = η/p′x(p−1
x (P(φo)))

andϕo(x) = p−1
x (P(φo)) are finally derived from equa-

tions (2), (3) and (4). Sinceαo is a probability density,
it follows that

∫
T

αo(x) dx = 1. This property permits to
find the dual variableη. After simplification, the simple
formulaη = P

′(φo) is obtained. Finally, the min-max op-
timal strategies(αo, ϕo) are simply given by:

∀x ∈ T,




αo(x) = (p−1
x ◦ P)′(φo)

ϕo(x) = (p−1
x ◦ P)(φo)

(5)

The Nakai game problem thus admits a mathematical so-
lution. In fact, the game remodeling of the search problem
yields some complexity simplification. In comparison, it
is noteworthy that the equivalent Koopman search prob-
lem (i.e. with a probabilistic prior on the target) is not
analytically solvable in general. This problem, known as
de Guenin’s search problem, involves a new constant of
the problem, sayαp the known probabilistic prior on the
target position. Game aspects disappear and de Guenin’s
problem is a simple optimization:

ϕo = arg min
ϕ∈R(φo)

∫
E

αp(x)px(ϕ(x)) dx .

The fast de Guenin’s algorithm relies on a bisectional
method for computing the optimal solution. However,
there is no general mathematical solution. In the next sec-
tion, an extension of Nakai problem will be considered. It
is a min-max game, where constraints are given on the tar-
get mixed strategies. It will be shown that such problem
is a generalization of both Nakai game and de Guenin’s
problem, but is much more complex than these two parent
problems. In particular, no equivalent of crucial proper-
ty (2) holds anymore. New properties will be established
to handle these difficulties and anoriginal algorithm will
be presented.

2 Bounding constraints
In Nakai game, the prior on target is given by the set of

available target positions. This hypothesis constitutes a



prior more general and more flexible than a probabilistic
density on target position, in particular for modeling
uncertain targets. Nevertheless, it does not allow suf-
ficient refinement, for modeling target behavior. For
example, when the detection occurs after a preliminary
target move, it is wise to handle target motion modeling.
Itself depending on the target reactiveness capabilities, it
follows that some final positions are more probable than
other. To model this fact, we will simply introduce an up
and down bounding on the probability associated with
the target mixed strategy.

Similarly, it is also possible to define an up and
down bounding on the resources sharing functions.
Doing so involves a symmetrization of our problem.
However, such bounding constraints on resources have a
physical meaning. It implies a minimum and a maximum
of resource affectation on each cell of the space search.
Definitions have now to be clarified.

Definition: The placement of the target and the search
are accomplished on a spaceE. Each elementx ∈ E is
called a cell. The target mixed strategy is represented by a
density functionα defined onE. Functionα is a variable
of the problem. The summation ofα on E is known and
is denotedAo. The following constraint then holds:∫

E

α(x) dx = Ao .

Sinceα is a density probability,Ao generally equals1. T-
wo bounding functionsα1 andα2 with propertyα1 ≤ α2

are given. These functions are constants of the problem
and yield a bounding constraint on the mixed target strat-
egy:

α1 ≤ α ≤ α2 .

The searcher pure strategy is represented by a resource
sharing functionϕ defined onE. Functionϕ is also a
variable of the problem. The total amount of resourcesφo

is fixed, so that : ∫
E

ϕ(x) dx = φo .

Also given are two bounding functionsϕ1 andϕ2 with
propertyϕ1 ≤ ϕ2. These functions are constants of the
problem and yield a bounding constraint on the pure
search strategy:

ϕ1 ≤ ϕ ≤ ϕ2 .

For each cellx, a decreasing and convex non detection
functionpx is defined. The valuepx(ϕ(x)) represents the
conditional probability of non detection, when the target
is located on cellx. The value of game for a couple of

strategies(α, ϕ) is given by the averaged probability of
non detection:

Pnd(α, ϕ) =
∫

E

α(x)px(ϕ(x)) dx .

Again, since the game is convex, there is a couple of op-
timal strategies involving a mixed strategy for the target
and a pure strategy for the searcher. The associated min-
max optimization problem stands as follow:

Find:

αo = arg max
α

min
ϕ

∫
E

α(x)px(ϕ(x)) dx

and

ϕo = arg min
ϕ

max
α

∫
E

α(x)px(ϕ(x)) dx ,

under constraints:∫
E

α(x) dx = Ao ,

∫
E

ϕ(x) dx = φo ,

∀x ∈ E, α1(x) ≤ α(x) ≤ α2(x) ,

∀x ∈ E, ϕ1(x) ≤ ϕ(x) ≤ ϕ2(x) .

3 Optimality equations
Considering an optimal couple of strategies(αo, ϕo) as

a saddle point for the game valuePnd(α, ϕ), two optimal-
ity equations are obtained by variational means.

de Guenin’s equation: Since(αo, ϕo) is a saddle point,
it appears that:

ϕo ∈ arg min
ϕ

Pnd(αo, ϕ) .

Constraintsϕ1 ≤ ϕ ≤ ϕ2 apply to the minimization. A
result very similar to classical de Guenin’s equation is
thus obtained. More precisely, leta ∈ E andb ∈ E veri-
fying ϕo(a) > ϕ1(a) andϕo(b) < ϕ2(b). Letdt > 0 be a
positive infinitesimal variation, and define a new sharing
functionϕ̃ by:{

ϕ̃(a) = ϕo(a) − dt andϕ̃(b) = ϕo(b) + dt ,

ϕ̃(x) = ϕo(x) for x 6= a, b .

By definition ofa andb,constraint
∫

E
ϕ̃(x) dx = φo is al-

so satisfied by the functioñϕ. Thus, sinceϕo is a min-
imizer, holdsPnd(αo, ϕo) ≤ Pnd(αo, ϕ̃). Sincedt > 0,
the following inequality is obtained after simplification :

αo(a)p′a(ϕo(a)) ≤ αo(b)p′b(ϕo(b)) .

It is easy, then, to derive a weak optimality condition, i.e.
the existence of a (negative) dual variableη such that:{

ϕ1(x) < ϕo(x) < ϕ2(x) ⇒ αo(x)p′x(ϕo(x)) = η ,

ϕo(x) = ϕ1(x) or ϕ2(x) else.

(6)



But this property is somewhat insufficient or badly for-
mulated for really definingϕo. A more precise property
will be proven. However, it requires a further (but not
restrictive) assumptions. First assumption isϕ1 < ϕ2.
This assumption is absolutely not restrictive, since for
cellsx verifying ϕ1(x) = ϕ2(x), the valueϕo(x) is de-
fined byϕo(x) = ϕ1(x) = ϕ2(x). So, it is of no conse-
quence not to consider these cases. We state also, that
∃x, ϕo(x) > ϕ1(x) and∃x, ϕo(x) < ϕ2(x). This case
is also no more restrictive, since otherwise, we would
have∀x, ϕo(x) = ϕ1(x) or ∀x, ϕo(x) = ϕ2(x), which
are exactly equivalent to propertyφo =

∫
E ϕ1(x) dx or

φo =
∫

E
ϕ2(x) dx respectively. These specific cases are

also directly checked, if necessary. Then, if all these as-
sumptions are in use, the following property holds:

Proposition 1 There exists a negative scalarη for which,
the following alternative holds true for allx ∈ E:


ϕ1(x) < ϕo(x) < ϕ2(x) =⇒ αo(x)p′x(ϕo(x)) = η ,

ϕo(x) = ϕ1(x) or ϕ2(x) else,

in accordance with the following discriminating equa-
tions: 


αo(x) >

η

p′x(ϕ1(x))
=⇒ ϕo(x) > ϕ1(x)

αo(x) <
η

p′x(ϕ2(x))
=⇒ ϕo(x) < ϕ2(x)

(7)

Proof:

case a : For this case, the existence of a cellb ∈ E
such thatϕ1(b) < ϕo(b) < ϕ2(b) is assumed. Leta ∈ E
be a cell such thatϕo(a) = ϕ1(a) andαo(a) > η

p′
a(ϕ1(a)) .

Let dt > 0 be a positive variation. Construct a perturba-
tion ϕ̃ of ϕo defined by:

{
ϕ̃(a) = ϕo(a) + dt andϕ̃(b) = ϕo(b) − dt ,

ϕ̃(x) = ϕo(x) for x 6= a, b .

Functionϕ̃ also satisfies to constraint
∫

E
ϕ̃(x) dx = φo.

Now, ϕo is a minimizer andPnd(αo, ϕo) ≤ Pnd(αo, ϕ̃).
Equationαo(a)p′a(ϕo(a)) ≥ αo(b)p′b(ϕo(b)) is obtained
after simplifications. Now, from hypothesis onb and e-
quation (6), we haveα(b)p′b(ϕo(b)) = η. A combina-
tion of the two previous results yieldsαo(a) ≤ η

p′
a(ϕo(a)) .

This contradicts assumption ona. We have just refut-
ed the existence ofx ∈ E such thatϕo(x) = ϕ1(x) and
αo(x) > η

p′
x(ϕ1(x)) . Similarly, there is nox ∈ E such that

ϕo(x) = ϕ2(x) andαo(x) < η
p′

x(ϕ2(x)) . Thus, equation-
s (7) are proven, whenever the existence ofb is assumed.

case b : Assume now, there is no cellb ∈ E, such
thatϕ1(b) < ϕo(b) < ϕ2(b). Then, variableη is not giv-
en by de Guenin’s equation, and have to be built. S-
ince∃x, ϕo(x) < ϕ2(x) and∃x, ϕo(x) > ϕ1(x), There
is a cell a so thatϕo(a) = ϕ1(a) and a cellb so that
ϕo(b) = ϕ2(b). Consider variationdt > 0 and a pertur-
bationϕ̃ of ϕo defined by:{

ϕ̃(a) = ϕo(a) + dt andϕ̃(b) = ϕo(b) − dt ,

ϕ̃(x) = ϕo(x) for x 6= a, b .

Function ϕ̃ satisfy constraint
∫

E ϕ̃(x) dx = φo. The
probability increases so thatPnd(αo, ϕo) ≤ Pnd(αo, ϕ̃).
Equationαo(a)p′a(ϕo(a)) ≥ αo(b)p′b(ϕo(b)) is obtained
after simplifications. Thus, we have just proven:

ϕo(x)=ϕ1(x)

ϕo(y)=ϕ2(y)

}
⇒ αo(x)p′x(ϕo(x))≥αo(y)p′y(ϕo(y)) .

Since ϕ1 ≤ ϕo ≤ ϕ2, properties ϕo(x) = ϕ1(x) and
ϕo(y) = ϕ2(y) are equivalent toϕo(x) ≤ ϕ1(x) and
ϕo(y) ≥ ϕ2(y) respectively. The previous equation then
enable the existence ofη such that:{

ϕo(x) ≤ ϕ1(x) =⇒ αo(x)p′x(ϕo(x)) ≥ η ,

ϕo(y) ≥ ϕ2(y) =⇒ αo(y)p′y(ϕo(y)) ≤ η .

In other words, proposition 1 is also verified in this case.

Constantness equation: This part is almost similar to
the preceding. First, it is noticed that:

αo ∈ arg max
α

Pnd(α, ϕo) .

Constraintα1 ≤ αo ≤ α2 applies to this minimization.
Let a ∈ E and b ∈ E so that αo(a) > α1(a) and
αo(b) < α2(b). Let dt > 0 be a positive infinitesimal
variation, and define a new mixed strategyα̃ by:{

α̃(a) = αo(a) − dt andα̃(b) = αo(b) + dt ,

α̃(x) = αo(x) for x 6= a, b .

Constraint
∫

E
α̃(x) dx = Ao still holds true. Thus, s-

ince αo is a maximizer, the probability decreases, i.e.
Pnd(αo, ϕo) ≥ Pnd(α̃, ϕo). Sincedt > 0 we obtain, af-
ter simplification:

pa(ϕo(a)) ≥ pb(ϕo(b)) .

There is also a dual (positive) variableλ such that:{
α1(x) < αo(x) < α2(x) ⇒ px(ϕo(x)) = λ ,

αo(x) = α1(x) or α2(x) else.
(8)

A more precise optimality equation will be proven now.
Again, assumptionsα1 < α2, ∃x, αo(x) > α1(x) and
∃x, αo(x) < α2(x) are made without loss of generality.



Proposition 2 There exists a positive scalarλ for which,
the following alternatives hold true for allx ∈ E:

{
α1(x) < αo(x) < α2(x) ⇒ px(ϕo(x)) = λ ,

αo(x) = α1(x) or α2(x) else,

in accordance with the following discriminating equa-
tions: {

ϕo(x) < p−1
x (λ) =⇒ αo(x) > α1(x) ,

ϕo(x) > p−1
x (λ) =⇒ αo(x) < α2(x) .

(9)

case a : For this case, the existence of a cellb ∈ E
such thatα1(b) < αo(b) < α2(b) is assumed. Leta ∈ E
be a cell such thatαo(a) = α1(a) andϕo(a) < p−1

a (λ).
Let dt > 0 be a positive variation. Construct a perturba-
tion α̃ of αo defined by:

{
α̃(a) = αo(a) + dt andα̃(b) = αo(b) − dt ,

α̃(x) = αo(x) for x 6= a, b .

Constraint
∫

E α̃(x) dx = Ao still holds true. The prob-
ability decreases so thatPnd(αo, ϕo) ≥ Pnd(α̃, ϕo). E-
quationpa(ϕo(a)) ≤ pb(ϕo(b)) is obtained after simpli-
fications. Now, from hypothesis onb and equation (7) we
havepb(ϕo(b)) = λ. A combination of the two previous
results yieldspa(ϕo(a)) ≤ λ. This contradicts hypothesis
on a. The existence ofx ∈ E such thatαo(x) = α1(x)
andϕo(x) < p−1

x (λ) has been refuted. Similarly, there is
nox ∈ E such thatαo(x) = α2(x) andϕo(x) > p−1

x (λ).
Thus, equations (9) are proven, wheneverb is located.

case b : Assume now, there is no cellb ∈ E, such
that α1(b) < αo(b) < α2(b). Since∃x, αo(x) < α2(x)
and∃x, αo(x) > α1(x), there is both a cella and a cell
b so thatαo(a) = α1(a) and αo(b) = α2(b). Consider
variationdt > 0 and perturbatioñα of αo defined by:

{
α̃(a) = αo(a) + dt andα̃(b) = αo(b) − dt ,

α̃(x) = αo(x) for x 6= a, b .

Function α̃ obeys to constraint
∫

E α̃(x) dx = Ao. The
probability decreases so thatPnd(αo, ϕo) ≥ Pnd(α̃, ϕo).
Equationpa(ϕo(a)) ≤ pb(ϕo(b)) is obtained after simpli-
fications. Thus, we have just proven:

αo(x) = α1(x)

αo(y) = α2(y)

}
⇒ px(ϕo(x)) ≤ py(ϕo(y)) .

Again, this property proves the existence of a dual vari-
ableλ satisfying proposition 2.

Clarification: The previous propositions 1 and 2 have
a geometric interpretation. For a given cellx, the op-
timal strategies(αo, ϕo) are locally defined by the in-
tersection of two curvesHx

η and Λx
λ. In other words,

(αo(x), ϕo(x)) ∈ Hx
η ∩ Λx

λ. These two curves are de-
fined respectively from propositions 1 and 2:

(a, f)∈Hx
η ⇔




a ≤ η
p′

x(ϕ1(x)) ⇒ f = ϕ1(x)
η

p′
x(ϕ1(x)) <a< η

p′
x(ϕ2(x)) ⇒a p′x(f)=η

a ≥ η
p′

x(ϕ2(x)) ⇒ f = ϕ2(x)

(10)

and

(a, f)∈Λx
λ⇔




f < p−1
x (λ) ⇒ a = α2(x)

f = p−1
x (λ) ⇒ a ∈ [α1(x), α2(x)]

f > p−1
x (λ) ⇒ a = α1(x)

(11)

It is not very difficult to derive these curves from the
propositions. But proofs are left to the reader. Since
px is convex,p′x is increasing anda 7→ p′x

−1 (
η
a

)
is in-

creasing (η < 0). Thus, Hx
η is flat (f = ϕ1(x)) for

a ≤ η
p′

x(ϕ1(x)) , then becomes an increasing curve and is
flat again (f = ϕ2(x)) for a ≥ η

p′
x(ϕ2(x)) . On the oth-

er hand,Λx
λ is vertically decreasing down top−1

x (λ) for
a = α1(x). Then the curve becomes flat (f = p−1

x (λ))
for α1(x) ≤ a ≤ α2(x) and, at last, the curve is vertical-
ly decreasing down fromp−1

x (λ) for a = α2(x). These
two curves are schematized in figure 1. However, propo-

Figure 1: CurvesΛx
λ andHx

η .

sitions 1 and 2 have a more precise meaning. There is a
common choice of dual variables, which defines the w-
hole optimal strategies as local intersection of the associ-
ated curves.

∃ηo, ∃λo, ∀x ∈ E, (αo(x), ϕo(x)) ∈ Hx
ηo

∩ Λx
λo

.

(12)



Figure 2: Undefined intersections.

We will use this viewpoint to develop an algorithmic res-
olution. However, these intersections may be (even local-
ly) non unique, as it is shown in figure 2. The confusing
cases are precised by means of the constraint equations∫

E α = Ao and
∫

E ϕ = φo. But it may happen that sever-
al solutions are optimal. Our algorithm is defined in next
section and takes into accounts the previous remarks.

Mapping (η, λ) 7→ (αηλ, ϕηλ): The previous remarks
permit us to build a mapping from the dual variable(η, λ)
to the associated strategies(αηλ, ϕηλ), which inverts the
optimality equations. As seen previously, this mapping
may point to more than one strategy. What we have to
define is a multivalued function. Now, the curves shape
induces thatHx

ηo
∩ Λx

λo
is always an horizontal closed

interval. In other word, the mapping is1 : 1 for ϕηλ;
while, for eachαηλ(x), it is given by a continuum from a
minimum valueαηλ

min(x) to a maximum valueαηλ
max(x).

Generally,αηλ
min(x) = αηλ

max(x). In fact, because of the
middle flatness ofΛx

λ, there is at most oneλ such that
αηλ

min(x) < αηλ
max(x). Now, the following mapping may

be defined, for the solutions associated to the optimality
constraints on(η, λ) :

(η, λ) 7−→
[
αηλ

min, αηλ
max

]
× {ϕηλ} .

The crucial point, is thatαηλ
min, αηλ

max andϕηλ are simply
and entirely defined and computable by means of the
problem data. However, we shall not give an explicit
definition of these functions, since a lot of case checking
is required.

Knowing αηλ
min, αηλ

max and ϕηλ it is useful to define
the following global values:




φηλ =
∫

E

ϕηλ(x) dx

Aηλ
min =

∫
E

αηλ
min(x) dx

Aηλ
max =

∫
E

αηλ
max(x) dx

Valuesφηλ, Aηλ
min andAηλ

max will be of constant use in the
development of our algorithm.

Variation of φηλ, Aηλ
min and Aηλ

max: Our interest now
focuses on the variation ofφηλ, Aηλ

min andAηλ
max accord-

ing to the variablesη andλ. First, it appears that an in-
crease ofη produces an up swelling (associated to a left
shifting) of the curveHx

η (recallη andp′x are negative and

p′x
−1 is increasing), more precisely:

η1 < η2 ⇒
[
∀x, ∀a,

(a, f1) ∈ Hx
η1

(a, f2) ∈ Hx
η2

}
⇒ f2 ≥ f1

]

(13)

This property is a direct consequence of definition (10).
Now Λx

λ is a decreasing curve andHx
η is an increasing

curve. Thus, the increase ofη (i.e. the up increase ofHx
η )

then yields an up-left move of the intersectionHx
η ∩ Λx

λ.
Thus, the incoming result :

η1 < η2 =⇒




αη1λ
min(x) ≥ αη2λ

min(x)

αη1λ
max(x) ≥ αη2λ

max(x)

ϕη1λ(x) ≤ ϕη2λ(x)

(14)

Thanks to definition (11), an increase ofλ produces sim-
ilarly a left swelling (associated to a down shifting) of
curveΛx

λ (p−1
x is decreasing). In other words:

λ1 < λ2 ⇒
[
∀x, ∀f,

(a1, f) ∈ Λx
λ1

(a2, f) ∈ Λx
λ2

}
⇒ a2 ≤ a1

]

(15)

Similarly to the previous case, the intersectionHx
η ∩ Λx

λ

moves down-left. Again, the variations ofα andϕ are
deduced:

λ1 < λ2 =⇒




αηλ1
min(x) ≥ αηλ2

min(x)

αηλ1
max(x) ≥ αηλ2

max(x)

ϕηλ1 (x) ≥ ϕηλ2(x)

(16)

But there is, in fact, a stronger property. Since there is
at most oneλ such thatαηλ

min(x) < αηλ
max(x), the above

property yields :

λ1 < λ2 =⇒ αηλ1
min(x) ≥ αηλ2

max(x) .

Global results are then derived:

∀λ, η1 < η2 ⇒




Aη1λ
min ≥ Aη2λ

min

Aη1λ
max ≥ Aη2λ

max

φη1λ ≤ φη2λ

(17)

and

∀η, λ1 < λ2 ⇒
{

Aηλ1
min ≥ Aηλ2

max

φηλ1 ≥ φηλ2
(18)



Implicit definition of η(λ) : Let λ be fixed. In this sit-
uation, the curveΛx

λ is also fixed. Then, what happen,
whenη is varying? Define:

ηmin = min
x

(
α2(x)p′x(ϕ1(x))

)
,

and
ηmax = max

x

(
α1(x)p′x(ϕ2(x))

)
.

Inverting the above equations gives usϕηminλ = ϕ1 and
ϕηmaxλ = ϕ2, whence :

φηminλ =
∫

E

ϕ1(x) dx andφηmaxλ =
∫

E

ϕ2(x) dx .

Now, curveHx
η is continuously increasing and the shift-

ing of Hx
η due to theη-variation is also continuous. Thus,

whenη varies fromηmin to ηmax, the valueφηλ also in-
creases continuously from

∫
E ϕ1(x) dx to

∫
E ϕ2(x) dx.

It follows that everyφ ∈ [∫
E ϕ1,

∫
E ϕ2

]
admits a non

empty set of antecedents. It is in particular true forφo.
The set of antecedents is often reduced to one element,
otherwise it is an interval:

φηλ = φo ⇔ η ∈ [ηmin(λ), ηmax(λ)] .

Now, property{ λ1 < λ2 ⇒ ϕηλ1 ≥ ϕηλ2 } and proper-
ty { η1 < η2 ⇒ ϕη1λ ≤ ϕη1λ } hold from equations (14)
and (16). Consequently, ifλ increases andφηλ is main-
tained equal toφo, η has to “increase” also. Variations of
ηmin(λ) andηmax(λ) are deduced:

λ1 < λ2 =⇒
{

ηmin(λ1) ≤ ηmin(λ2)
ηmax(λ1) ≤ ηmax(λ2)

Now, Aηλ
min andAηλ

max are decreasing for bothη andλ.
Thus previous results yield:

λ1 < λ2 =⇒




A
ηmin(λ1)λ1
min ≥ A

ηmin(λ2)λ2
min

A
ηmin(λ1)λ1
max ≥ A

ηmin(λ2)λ2
max

A
ηmax(λ1)λ1
min ≥ A

ηmax(λ2)λ2
min

A
ηmax(λ1)λ1
max ≥ A

ηmax(λ2)λ2
max

(19)

4 Algorithm
The previous properties are a guideline for developing

our algorithm. Since optimality equations are almost in-
vertible and signs of variation are fixed forAηλ

min, Aηλ
max

and φηλ, bi-sectional methods were chosen. Our algo-
rithm is made of two parts. First part find the optimal
dual parameterλo. At this point, convergence is almost
achieved. The second part sharpens the convergence and
renders more precise some subdefinitions, by calibrating
the optimal dual parameterηo.

Computing λo and ηo: The first ingredient is to build
up the procedure, which definesη(λ), that is, which com-
putesηmin(λ) and ηmax(λ). Thanks to the increase-
ness property associated with the definition ofηmin(λ)
and ηmax(λ), two bi-sectional processes aroundφo are
in use to computeηmin(λ) and ηmax(λ). Then, the
main part of the process will consist in findingλ, such

that Ao ∈
[
A

ηmax(λ)λ
min , A

ηmin(λ)λ
max

]
. Thanks to the in-

creaseness evoked in property (19), this is done a-
gain by a bi-sectional process. However, this pro-
cess will call the procedure forηmin(λ) and ηmax(λ)
computation, constituting in fact a double bi-sectional
procedure. This procedure yields as result the op-
timal dual variableλo. It is noteworthy that for
η ∈ [ηmin(λo), ηmax(λo)], φηλo = φo and we will not
have to care about the constraint onφo, now. Oth-

erwise, sinceAo ∈
[
A

ηmax(λo)λo

min , A
ηmin(λo)λo
max

]
, exists

η ∈ [ηmin(λo), ηmax(λo)] so thatAo ∈
[
Aηλo

min, Aηλo
max

]
.

This η will be our optimal dual variableηo. To compute
it, a bi-sectional process is again instrumental, because of
the constant sign variations ofAηλo

min andAηλo
max (refer to

property (17)). The whole process is summed up below:

i. Find λo such thatAo ∈
[
A

ηmax(λo)λo

min , A
ηmin(λo)λo
max

]
;

do it by means of a bi-sectional process; a sub-
procedure is used to computeηmin(λ) andηmax(λ),

ii. Find ηo, element of[ηmin(λo), ηmax(λo)], such that

Ao ∈
[
Aηoλo

min , Aηoλo
max

]
; do it by means of a bi-

sectional process.

sub-procedure: Compute ηmin(λ) and ηmax(λ) by
means of a bi-sectional process.

Finalization: Now, ηo and λo are found. Function
ϕo is entirely defined byϕηoλo . However, there could
be some indetermination forαo, in particular when
Aηoλo

min < Aηoλo
max . Now, definitions ofAηλ

min andAηλ
max say

Aηλ
min =

∫
E αηλ

min andAηλ
max =

∫
E αηλ

max. Thus, a candi-
dateαo, such that

∫
E

αo = Ao, may be defined as the

barycenter ofαηoλo

min andαηoλo
max , where weights are given

by the relative positions ofAηoλo

min , Aηoλo
max andAo:




ϕo = ϕηoλo ,

αo = αηoλo

min + Ao − Aηoλo

min

Aηoλo
max − Aηoλo

min

(
αηoλo

max − αηoλo

min

)

5 Results
In this section, we present an exemple computed by

the algorithm. The search spaceE is a set of30 × 20
cells. ValuesAo = 1 andφo = 30 are used. The local



boundsα1 andα2 are represented in figure 3. In the fig-
ures, dark cells are representing low values, while bright
cells represent high values. The local boundsϕ1 and
ϕ2 are represented in the two first frames of figure 4.
The conditional probability,p, is of exponential form
px(ϕ) = exp(−ωxϕ). The visibility parameterωx is low
for bad detection and high for good detection. The param-
eterω is represented by last frame of figure 4. The func-
tionsαo andϕo obtained after convergence are represent-
ed in figures 5. Again, low values correspond to dark cells
whereas bright cells represent high values. Moreover, the
color of the cell contours indicate if bounds are reached
or not. Blue contour on cellx meansϕo(x) = ϕ1(x)
or αo(x) = α1(x). Green contour on cellx signifies
ϕ1(x) < ϕo(x) < ϕ2(x) or α1(x) < αo(x) < α2(x).
Red contour on cellx corresponds toϕo(x) = ϕ2(x) or
αo(x) = α2(x).

Figure 3: Boundsα1 andα2.

Figure 4: Boundϕ1, ϕ2 and visibility parameterω.

Figure 5: Target strategyαo and searcher strategyϕo.

6 Conclusion
Our aim was to solve a spatial resource allocation

problem, in a game context between the target and the
searcher. A great enhancement and a generalization of
both Nakai’s game and de Guenin’s optimization prob-
lem were obtained. The viewpoint considered is versa-
tile, allowing subtle modeling of the target and resource
behavior. It is not limited to simple priors on available
target position. The algorithm, we developed, is quite o-
riginal and fast. It is reliable and may be involved in more
intricate processes. It particular, extension to multi-type

resource game has been solved, by means of an iterative
method based on this algorithm. For the sake of brevity,
it is not presented here. Details may be found in [13].
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