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Abstract — Analytical resolution of search theory prob-is necessary for algorithmic reasons. While this formal-
lems, as formalized by B.O. Koopman, may be appliéin is sufficient for almost "passive” targets, it is useless
with some model extension to various resource managehen a target has a complex (and realistic) move. In a
ment and data fusion issues. Such method is basednoifitary context especially, the behavior of the “interest-
a probabilistic prior about the target. Even so, this aping” targets is not neutral and cannot be modeled by a
proximation forbids any reactive behavior of the targesimple probabilistic prior. A conceivable way for enhanc-
As a preliminary step towards reactive target study standlsg the prior on the target in a manner that involves more
the problem of resource placement under a min-max gameperly the complexity or the reactiveness of the target,
context. This paper is related to Nakai’'s work about this to consider a min-max game version of Koopman op-
game placement of resources for the detection of a stanization problems. Nakai presented and solved in [7]
tionary target. However, this initial problem is extende@ game with placement of resources for the detection of
by adding new and more general constraints, allowing @ stationary target. In this work the constraints on game
more subtle modeling of the target and resource behawere given by the available placement of target and detec-
iors. tion resources. Thus, constraints were defined aptiie

strategylevel. The purpose of this paper is to present an
Keywords: Sensor & Resource Management, target dextension of Nakai's game by addition of new constraints
tection, Search game, Search theory, Resource allocati@éfined on the set of available mixed strategies. In other

words, constraints are now defined at thixed strategy
Notations level. Before explaining properly the extended problem,
we intend to give in this introduction a short description
of Nakai's game.

(z): Search effort,

¢, Total amount of search effort,

Definitions: The searcher want to detect a target posi-
tioned in a spatial search spagée To perform this de-

a(z): Probabilistic target distribution,

e A,: Total target probability, tection, the searcher has available a total amount of (de-
tection) resources,. Theses resources may be shared
* pz(p(x)): Conditional detection probability. between each ceft of the search spack. Detection on
cell = is a known function of the search effort put an
1 Introduction Forz € E, the variablep(x) denotes the local amount of

The initial framework of Search Theory [3][1][2], in- resources placed on cell A constraint naturally holds
' or the resources :

troduced by B.O. Koopman and his colleagues, sets the
general problem of the detection of a target in a space,

in view of optimizating the detection resources. A thor- /E<P(93) dz < ¢, .

ough extension of the prior formalism has been made by

Brown towards the detection at several periods of searSince detection is better when the whole resources are
[4][5]. These simple but meaningful formalism were alused, the previous constraint may be replaced by the more
so luckily applied to various resource management anththematically suitable one:

data fusion issues [6]. But, in all these problems, a prob-

abilistic prior on the target was required. In addition, in / o(z)dr = ¢, . 1)
case of moving target problems, a Markovian hypothesis E



The set of valid sharing functionsis thus defined by: ~ We can recognize in (2) the classical optimality equation
of de Guenin. By use of these equations, a mathematical

R(¢) = {(p cR* // o= ¢0} . solutlor! of thg prqplem is bl,'ll|t. The first step is to verify
E the obviously intuitive result:

When local resource(z) is used on cell: and target is
located one, the probability of non detection is given by

valuep;((x)), a conditional probability. This probabil- e, the combination of equations (1) and (3) yields

ity may dep_er_1d upom;, since practically visibility and quP;ZlO\) dz = ¢,. Defining the functior® by:

resource efficiency vary with the concerned cell. Eor

fixed, p, decreases with the effort used grid< 0. The o .

detection follows the rule of decreasing return, so that P () = /Pw (A) dzx

pl, increases strictly withp. On the other hand, the tar- B

get have the choice between available positiins £. yields A = P(¢,). Resultsa,(z) = n/p.(p; 1 (P(¢0)))

Then, a game occurs between the searcher and the &ad ¢, (z) = p, 1 (P(¢,)) are finally derived from equa-

get. The searcher attempts to minimize the probabilitions (2), (3) and (4). Since, is a probability density,

of non detection by optimizing the search resource shitrfollows thath a,(x) dz = 1. This property permits to

ing ¢, while the target aim is to maximize the probabilitffind the dual variable). After simplification, the simple

of non detection by choosing his position. The value ébrmulan = P'(¢,) is obtained. Finally, the min-max op-

the game is given bye(¢(0)), for a target strategy) timal strategiega,, ¢,,) are simply given by:

and a searcher strategy This problem was solved by

Nakai [7]. Sincep is conve, it appears that the game is { ao(z) = (p; L o P) ()
Ve e T,

z €T+ [ao(:c) >Oandgao(:r)>0} . @

convex. Thus, there is a mixed optimal strategy for the tar-
get and a pure optimal strategy for the searcher. A mixed
strategy for the target is given by a density probability

on the target position, with property £\ T) = 0. We The Nakai game problem thus admits a mathematical so-
denote: lution. In fact, the game remodeling of the search problem
= yields some complexity simplification. In comparison, it
P(T) = {oz eR" /a(E \T)=0 and/ a= 1} . is noteworthy that the equivalent Koopman search prob-
B lem (i.e. with a probabilistic prior on the target) is not
the set of such probabilities. For strategies ¢), the analytica}ly solvable in genera_l. This problem, known as
value of the game is then given by the average : de Guenin’s search problem, involves a new constant of
the problem, sayy, the known probabilistic prior on the

- target position. Game aspects disappear and de Guenin’s
Pra(a,¢) = /Ea(x)p””(@(x)) dr . problem is a simple optimization:

%)
Po(z) = (p; " o P)(¢o)

An optimal (min-max) couple of strategiésa,, ¢, ) is al- _ : / d
so defined by : po =arg mm | ap(2)ps(p(2)) dz .

) The fast de Guenin’s algorithm relies on a bisectional
o =18 areng()’(ﬂ)wer%l({lbo)/Ea(‘T/)px(@(x)) dz method for computing the optimal solution. However,
there is no general mathematical solution. In the next sec-
. tion, an extension of Nakai problem will be considered. It
Yo =8I @6117121(%0) arggﬁ) /E a(z)pz(p(@)) dz is a min-max game, where constraints are given on the tar-
get mixed strategies. It will be shown that such problem
Two optimality conditions are obtained, by differentiatiofls a generalization of both Nakai game and de Guenin’s
around the optimal strategies : problem, but is much more complex than these two parent
problems. In particular, no equivalent of crucial proper-
ty (2) holds anymore. New properties will be established
(2) to handle these difficulties and aniginal algorithm will
be presented.

o(2) P,(pola)) = 1, whenao(a) >

wo(z) =0, else

and 2 Bounding constraints

N In Nakai game, the prior on target is given by the set of
INERT, ap(x) > 0= palpo(z)) =A. (3) available target positions. This hypothesis constitutes a



prior more general and more flexible than a probabilistgtrategieg a, ) is given by the averaged probability of
density on target position, in particular for modelinghon detection:

uncertain targets. Nevertheless, it does not allow suf-

ficient refinement, for modeling target behavior. For Pra(a, @) :/ a(@)pa (p(z)) dz .

example, when the detection occurs after a preliminary E

target move, it is wise to handle target motion modeling9ain, since the game is convex, there is a couple of op-
Itself depending on the target reactiveness capabilitiestiffal strategies involving a mixed strategy for the target
follows that some final positions are more probable th&#'d & pure strategy for the searcher. The associated min-
other. To model this fact, we will simply introduce an upnax optimization problem stands as follow:

and down bounding on the probability associated with
the target mixed strategy.

Find:

Qa, = argmaxmin/ a(z)pg(e(x)) dz

Similarly, it is also possible to define an up and “ v JE

down bounding on the resources sharing functions.

Doing so involves a symmetrization of our problem. Yo = argmwinmgx/ a(x)ps (o)) de |
; ; E

Howc_aver, such bouang_constrglr_]ts on resources_have a| under constraints:

physical meaning. It implies a minimum and a maximum

of resource affectation on eac.h. cell of the space search. / a(z)ds = A, , / o(z)dz = ¢, ,

Definitions have now to be clarified. E E

V€ Ev O‘l(x> < Oé(l') < 042(x) )

and

Definition: The placement of the target and the search Ve € E, v1(z) < ¢(z) < ¢a(z) .
are accomplished on a spake Each element € E is ] ] .
called a cell. The target mixed strategy is represented byda - Optimality equations

density functiony defined onE. Functiona is a variable Considering an optimal couple of strategies, ¢, ) as

pf the problem. The surr_lmation afqn E is known and a saddle point for the game valie, (e, ), two optimal-
is denoted4,,. The following constraint then holds: ity equations are obtained by variational means.

/ a(z)de = A, . de Guenin’s equation: Since(a,, ,) is a saddle point,
E it appears that:
Sincec is a density probabilityd, generally equals. T-
wo bounding functions;; andas with propertya; < as
are given. These functions are constants of the problgfnstraintsy; < < ¢, apply to the minimization. A
and yield a bounding constraint on the mixed target straksylt very similar to classical de Guenin's equation is
egy: thus obtained. More precisely, lete £ andb € E veri-
ar<a<ag. fying @o(a) > ¢1(a) andp,(b) < @2 (b). Letdt > 0bea

) positive infinitesimal variation, and define a new sharing
The searcher pure strategy is represented by a reso‘f[ﬁ?ction@ by:

sharing functiony defined onE. Functiony is also a
variable of the problem. The total amount of resoukggs { P(a) = @o(a) — dt and@(b) = ¢, (b) + dt ,

is fixed, so that : o(x) = po(x) forz # a,b .

Yo € arg m;n Pra(o, @) -

/ o(z)dz = ¢, . By definition ofa andb,constraint/,, ¢(x) dz = ¢, is al-
E so satisfied by the functiopp. Thus, sincep, is a min-
imizer, holdsP,.q(a,, o) < Pra(ae, $). Sincedt > 0,

Also given are two bounding functions; and 2 With  yhe following inequality is obtained after simplification :
propertyp, < ¢o. These functions are constants of the

problem and yield a bounding constraint on the pure o(a)p, (po(a)) < ao(b)py(wo(D)) -

search strategy: It is easy, then, to derive a weak optimality condition, i.e.

p1 <@ < o the existence of a (negative) dual variahlsuch that:

functionp,, is defined. The valug,. (¢(z)) represents the B |
conditional probability of non detection, when the targetl ¥o(%) = ¢1(z) Of @2 () €lse.
is located on cellz. The value of game for a couple of (6)

For each cellz, a decreasing and convex non detection{%(m) < 0o(x) < pa(z) = ao(x)p(po(z)) =1,



But this property is somewhat insufficient or badly for- case b : Assume now, there is no cdlle E, such
mulated for really defining,. A more precise property thatp; (b) < ¢,(b) < p2(b). Then, variable) is not giv-
will be proven. However, it requires a further (but noén by de Guenin’s equation, and have to be built. S-
restrictive) assumptions. First assumptiongis < ¢o. ince 3z, ¢, (x) < p2(x) and3Iz, ¢, (z) > ¢1(x), There
This assumption is absolutely not restrictive, since fag a cella so thaty,(a) = ¢1(a) and a cellb so that
cellsx verifying ¢ (x) = w2(z), the valuep,(x) is de- ¢, (b) = w2(b). Consider variationlt > 0 and a pertur-
fined by p,(x) = ¢1(z) = p2(x). So, it is of no conse- bationg of ¢, defined by:

guence not to consider these cases. We state also, that , _ _

Az, @o(z) > ¢1(x) and3x, p,(z) < @2(z). This case ¢(a) = @o(a) + dt and@(b) = ¢, (b) — dt ,

is also no more restrictive, since otherwise, we would P(x) = @o(x) forz # a,b .

havevz, g,(x) = p1(x) or Vz, po(z) = @a(x), which _ _ _

are exactly equivalent to property, = [, ¢1(x)de or Function ¢ satisfy constraint/,, ¢(z) dv = ¢o. The
¢o = [ p2(x) dz respectively. These specific cases arobability increases so th#,q (o, o) < Paa(ao, )-
also directly checked, if necessary. Then, if all these dsauationa,(a)p; (¢o(a)) > ao(b)py(¢.(b)) is obtained
sumptions are in use, the following property holds:  after simplifications. Thus, we have just proven:

Proposition 1 There exists a hegative scalafor which, #o(r)=¢1(2)

= ao(2)ps (9o (@) = 0 (y) Py (00 (y)) -
the following alternative holds true for all € E: Po(y) sﬁz(y)} !

/ _ Since @1 < @, < 2, properties ,(z) = p1(x) and

1) < 9o() < p2(w) = o(@)p(Po(z)) =11, ©o(y) = p2(y) are equivalent top,(z) < ¢i(z) and

Po(x) = p1(z) Or () else, ©o(y) > pa(y) respectively. The previous equation then
enable the existence gfsuch that:

itinossc:cordance with the following discriminating equa- {%(x) < 1 (2) = ao(2)pl(po(@)) > 1,
©o(y) = @2(y) = o (y)py, (woly)) <7
ao(z) > m = o(T) > p1(7) - In other words, proposition 1 is also verified in this case.
ao(2) < m = ¢o(@) < p2(x) Constantness equation: This part is almost similar to
the preceding. First, it is noticed that:
Proof: Qa, € arg max Pralo, o) -

Constrainta; < a, < as applies to this minimization.
case a : For this case, the existence ofadelt £ | gt ¢ ¢ F andb € E so thata,(a) > a1 (a) and
such thatp; (b) < ¢,(b) < @2(b) is assumed. Let € E () < ay(b). Letdt > 0 be a positive infinitesimal

be a cell such thag,(a) = ¢1(a) andao(a) > 7= variation, and define a new mixed strateghy:
Let dt > 0 be a positive variation. Construct a perturba-
tion ¢ of ¢, defined by: a(a) = ap(a) — dt anda(b) = ao(b) + dt ,

a(z) = ao(x) forz # a,b .
@(a) = (Po(a) +dt and@(b) = ‘Po(b) —dt,
{ f b Constrainth a(x)dx = A, still holds true. Thus, s-
po(x) forz #a,b. ince «, is a maximizer, the probability decreases, i.e.
Pra(o, vo) > Pna(a, ). Sincedt > 0 we obtain, af-
ter simplification:

pL
8

S~—
I

Functiony also satisfies to constrairfy, ¢(x) dz = ..
Now, ¢, is a minimizer andP,,4(o, o) < Pra(ao, ).
Equationa,(a)p), (2(a)) > ao(b)p}(i20(b)) is obtained Palpo(a) = pr(o(d)) -

after simplifications. Now, from hypothesis érand e- ] - ]

quation (6), we havex(b)p, (¢.(b)) =n. A combina- There is also a dual (positive) variablesuch that:
tior_w of the tw<_) previous re;ults yields, (a) < m {al(m) < () < az(x) = pa(po(x)) = A,
This contradicts assumption an We have just refut- (8)
ed the existence of € F such thatp,(z) = ¢1(x) and

ao(r) > 5ty Similarly, thereis no: € E'suchthat A more precise optimality equation will be proven now.
Po(r) = pa(z) andao () < 77imyy- Thus, equation- Again, assumptionsy; < s, 3z, as(z) > ai(x) and

s (7) are proven, whenever the existencé sfassumed. 3z, «,(z) < az(x) are made without loss of generality.

ao(x) = ai(x) orax(z) else.



Proposition 2 There exists a positive scalarfor which, Clarification: The previous propositions 1 and 2 have

the following alternatives hold true for all € E a geometric interpretation. For a given cell the op-
timal strategieq«,,,) are locally defined by the in-
01(z) < ao(x) < az(z) = pa(wo(z)) = A, tersection of two curves/;” and A5. In other words,
() = a1 () OF an(x) else, (_ao(x),cpo(x)_) € Hy NAS. Th_e_se two curves are de-
fined respectively from propositions 1 and 2:
in accordance with the following discriminating equa
tions: a< m =f=¢i(x)
(0, D EHy <1 5o <<y = 4P =1

n _
9 aZm;‘f*S@(x)

{%(fﬂ) <pyt(N) = aol@) > an(z)
©o(T) > Py (N) = ao(z) < as(z) .

(10)

case a : For this case, the existence of a dek £ and
such that (b) < a,(b) < az(b) is assumed. Lei € E
be a cell such that,(a) = a1 (a) andp,(a) < p;t(A). f<pyt(N\) = a=as(x)
Let dt > 0 be a positive variation. Construct a perturba- z |
eNfe<f= A)=ac€ ,
tion & of o, defined by: (. €A ; - PIIEA; N ¢ [al((m)) ()
P a=aoa(x

{&(a) = a,(a) + dt anda(b) = a,(b) — dt , (12)
a(x) = ao(x) forz £ a,b .

It is not very difficult to derive these curves from the
propositions. But proofs are left to the reader. Since
Constraint [, a(xz) dz = A, still holds true. The prob . is convex,p/, is increasing and — pl, " (2) is in-
ability decreases 80 thal,a(ao, vo) > Pra(@, ¢o). E- creasing 4 < 0). Thus, HZ is flat (= ¢ (z)) for

quationp,(,(a)) < py(¢o(b)) is obtained after simpli- ' 2y then becomes an mcreasmg curve and is
fications. Now, from hypothesis dnand equation (7) we Pz (21 on the oth-

havep,(¢,(b)) = A. A combination of the two prewousﬂat again (_ (’92(_ r)) for a > pmﬁwz(x>> )
results yieldg. (¢o(a)) < A. This contradicts hypothesis®’ 1 hand,A% is vertically decreasing down o, (>\1) for
ona. The existence of € E such thato,(z) = a(z) & = al(ﬂf)- Then the curve becomes flgt¢ p, (1))
andy,(z) < p;1()\) has been refuted. Similarly, there id0r @1 () < a < as(z) and, at last, the curve is vertical-
noz € E such thatv,(z) = as(z) andg,(z) > p;1()). v decreasing down from, 1) fora = ay(z). These
Thus, equations (9) are proven, whenevirlocated. two curves are schematized in figure 1. However, propo-

case b : Assume now, there is no cdlle E, such
that a; (b) < a,(b) < an(b). Sincedz, a,(z) < as(x)
and3z, a,(x) > a1(x), there is both a celt and a cell
b so thata,(a) = a1(a) and a,(b) = az(b). Consider —e
variationdt > 0 and perturbatio@ of «, defined by:

{d(a) = a,(a) + dt anda(b) = a,(b) — dt ,
a(z) = ao(x) forz # a,b .

Functiona obeys to constrain{,, a(z) dz = A,. The .
probability decreases so th&q (., gao) > Poa(a, o). Figure 1: Curves\} andH,;.
Equatiorp, (¢, (a)) < pp(¢,(b)) is obtained after simpli-
fications. Thus, we have just proven: sitions 1 and 2 have a more precise meaning. There is a
common choice of dual variables, which defines the w-
ao(r) = ar(x) hole optimal strategies as local intersection of the associ-
} = pz(po(z)) < Py (¢o(y)) - ated curves.
ao(y) = az(y)

Mo, o, Var € B, (ao(), 0o(w)) € HE NA, .

Again, this property proves the existence of a dual vari- (12)

able\ satisfying proposition 2.



A ANA A ; ;
Valuesgp"*, A" andA}", . will be of constant use in the

development of our algorithm.

: Variation of ¢, A7) and A7 Our interest now

min maz-
inti A ognA A
_/ focuses on the variation @f’*, A", andA;,  accord-

ing to the variableg and \. First, it appears that an in-
crease ofy produces an up swelling (associated to a left
shifting) of the curvell;; (recalln andp;, are negative and

p,,~ ! is increasing), more precisely:

(Cl, fl) S H,;El
m <mn2 = |V, Va, - =fo>h
We will use this viewpoint to develop an algorithmic res- (a,f2) € Hy,

olution. However, these intersections may be (even local- (13)

ly) non unique, as it is shown in figure 2. The_ confusmghis property is a direct consequence of definition (10).
cases are precised by means of the constraint equatigns, A% is a decreasing curve and? is an increasing

= _AO and [, Y= @,. Butit may happen that SEVeI"curve. Thus, the increase ofi.e. the up increase df;;)

hen yields an up-left move of the intersectifiif N AS.
Thus, the incoming result :
X (2) > o) (z)

min min

Figure 2: Undefined intersections.

section and takes into accounts the previous remarks.

Mapping (1, A) — (o™, ¢"):  The previous remarks

A A
permit us to build a mapping from the dual variable\) m <1z =4 alz(z) > alg () (14)
to the associated strategi@s’*, "*), which inverts the O () < @A (x)

optimality equations. As seen previously, this mappi _ . .
may point to more than one strategy. What we have _&anks to definition (11), an increaseoproduces sim-

define is a multivalued function. Now, the curves shadgrly axleft_slvyellmg (as;omated toa down.sh|ft|ng) of
induces thatid; N A% is always an horizontal closedCUrVeAX (v, is decreasing). In other words:
interval. In other word, the mapping is : 1 for p"*; (a1,§) € A2
while, for each* (), it is given by a continuum froma A1 < A2 = lv% V¥, Axl }é ag < a1]
minimum valuea (z) to a maximum valuex?, (z). (a2,) € A%,

min max

Generally,a:’,fm(x) = (x). In fact, because of the (15)
middle flatness of\f, there is at most one\ such that = Similarly to the previous case, the intersecti@dfj N A3
OZZLAm(fU) < a™ (x). Now, the following mapping may moves down-left. Again, the variations af and ¢ are
be defined, for the solutions associated to the optimali@gduced:

constraints orjn, \) : ™ (2) > a2 (z)

A < A=< a1 (1) > a2 () (16)

max max
P (z) > ()

The crucial point, is thaﬁgjm, o ande™ are simply But there is, in fact, a stronger property. Since there is
and entirely defined and computable by means of thémost one\ such thaia!sy () < o/, (), the above
problem data. However, we shall not give an explicRroperty yields :

definition of these functions, since a lot of case checking

is required.

(1 0) — [alh, ol | x L™}

min’ —-max

A < A — a:i;\lln(m) > o1 (x) .

max

Global results are then derived:

Knowing o™ | o and ¢" it is useful to define

min? mazx nA N2 A
the following global values: Amin 2 Amin
VA, < mp = 4 AT > AT (17)
¢7]/\ :/ (pnA(x) dr ¢n1k < ¢7}2)\
E
and
A= [ oo do
z A, = AT,
A= [ olln(e) o N P
E



Implicit definition of 7n(\) : Let A be fixed. In this sit- Computing A\, and n,: The first ingredient is to build
uation, the curve\s is also fixed. Then, what happenup the procedure, which defingg\), that is, which com-

whenn, is varying? Define: putes nin (A) and nmq.(A). Thanks to the increase-
ness property associated with the definitiormgf;,, (\)
Nmin = Min (ag(m)p; (991(35))) ) and n,q(A), two bi-sectional processes aroung are
x in use to compute),,;,(A) and nmq..(A). Then, the
and main part of the process will consist in findirlg such
Mz = max a1 ()9 (92(2)) ) - that 4, € [A7:=™, Al ™. Thanks to the in-

) ) _ creaseness evoked in property (19), this is done a-
Inverting the above equations givesgis"* = ¢ and gain by a bi-sectional process. However, this pro-
'mas? = o, whence : cess will call the procedure faf,i, () and 1,42 (\)

computation, constituting in fact a double bi-sectional
PlminA :/ ©1(x) dz andgme=* :/ w2 (z)dx . procedure. This procedure yields as result the op-
E E timal dual variable\,. It is noteworthy that for

Now, curveH? is continuously increasing and the shift?] € [7min (o), fmaz (Ao)], ¢™ = ¢, and we will not
ing of H due to they-variation is also continuous. Thus 1ave to care about the constraint gp, now. Oth-

) . - : mmaz(Xo)Xo  gTmin(Ao) o :
wheny varies froms,,in t0 Nmae, the valuep™ also in- erwise, sinceA, € [A:]nin (Roddo | gmin(Xo) } exists
creases continuously fro dx to dx. .

It follows that ever i;) € F}E%(xf) ; ] af(fnﬁis(x; nxon 1 € [min(Xo), maz (Vo)] 80 thatd, € AZZZL’A%C‘OQE}'
y EPL g P2 This  will be our optimal dual variable,. To compute

empty set of antecedents. Itis in particular truedor . a bi-sectional process is again instrumental, because of
The set of antecedents is often reduced to one eIemt%hté constant si r?variations ?alf'”o and A (‘refer ©
otherwise it is an interval: 9

min max

property (17)). The whole process is summed up below:
¢)77>\ = ¢o < N € Mmin(A); Mmaz ()] - n

Now, property{ A; < Ay = ¢ > "2 } and proper- do it by means of a bi-sectional process; a sub-
ty {m < o = @M < oM} hold from equations (14) procedure is used to coMpuig,in (A) andmmaz (A),
and (16). Consequently, X increases ang” is main-

tained equal t@,, n has to “increase” also. Variations of.. .
. Find n,, element of[9,,in (Ao), Tmaz(Xo)], SUCh that
Nmin(A) @ndn,,q..(A) are deduced: . Find . min (o), thmaz (Ao)], SU

A, € [A”o% A%Ao} - do it by means of a bi-

min ‘T max

77min()\1) S 77min()\2) SeCtionaI process

i Find A, such thatd, € Al Al O],

A< A= {
Nmaz (A1) < Mmaz(A2) sub-procedure: Compute 7,,i,(A) and 7nm,q.(A) by
means of a bi-sectional process.

Now, A™ and A7* are decreasing for both and \.

main max
Thus previous results yield: Finalization: Now, 7, and \, are found. Function
B QM 5 ginin (Ga)ha o is entirely defined b_yp"?o%. However, there could
min = Amin be some indetermination fot,, in particular when
ATmin QM 5 gnmin(A2)Xs Allode < Aniodo Now, definitions ofA”?;  andA™) = say
A <Ay = QM S gmas () (9 4m = [ o™ andA,. = [ am . Thus, a candi-
man - T datea,, such thath a, = A°, may be defined as the

Nmaz (A1) A1 Nmaz (A2) A2 . .
Amia > Amiaz barycenter ob™ andaleXe, where weights are given

min mazx?

by the relative positions o) Ao and A,

4  Algorithm i
The previous properties are a guideline for developing ( ¢, = @ |
our algorithm. Since optimality equations are almost in- \ A ATt \
vertible and signs of variation are fixed fdf'”, , A7) Qo =)0 + W (04%’35 —aghy )
and ¢™, bi-sectional methods were chosen. Our algo mazx___ *Tmin
rithm is made of two parts. First part find the optim
Results

dual parametei,. At this point, convergence is almos
achieved. The second part sharpens the convergence and this section, we present an exemple computed by
renders more precise some subdefinitions, by calibratitige algorithm. The search spaégis a set of30 x 20

the optimal dual parametey,. cells. Values4, =1 and¢, = 30 are used. The local



boundsw; anda, are represented in figure 3. In the figresource game has been solved, by means of an iterative
ures, dark cells are representing low values, while brigihitethod based on this algorithm. For the sake of brevity,
cells represent high values. The local boundsand itis not presented here. Details may be found in [13].
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