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Abstract. Bayesian statistical theory is a convenient way of taking a
priori information into consideration when inference is made from im-
ages. In Bayesian image detection, the a priori distribution should cap-
ture the knowledge about objects. Taking inspiration from [1], we design
a prior density that penalizes the area of homogeneous parts in images.
The detection problem is further formulated as the estimation of the set
of curves that maximizes the posterior distribution. In this paper, we ex-
plore a posterior distribution model for which its maximal mode is given
by a subset of level curves, that is the boundaries of image level sets. For
the completeness of the paper, we present a stepwise greedy algorithm
for computing partitions with connected components.

1 Introduction

In most problems of image analysis, incorporation of prior knowledge is im-
portant for making inference based on the images. Bayesian object detection is
the problem of how to estimate the number of simply connected objects and
their location in a non-ideal environment. Bayesian approaches specify ways for
segmenting the entire image using global energy criteria. Indeed, it is usually
straightforward to transfer a Bayesian criterion into an energy minimization cri-
terion. In addition, additivity is desirable in models which must be analyzing by
Markov Chains Monte Carlo sampling. Thereby, the discrete [8,2] or continuous
[18,17] energy functional is traditionally designed as a combination of several
terms, each of them corresponding to a precise property which must be satis-
fied. While this modeling offers a powerful theoretical framework and minimizers
exist [17,25], they have several disadvantages. First, these models lead to very
difficult optimization problems that are notoriously slow to converge [2]. Second,
the weight parameters which are key ingredients of a wide range of segmentation
energies, are usually not correctly estimated, yielding to supervised segmenta-
tion methods. Third, sampling from a Markov Random Fields distribution does
not always produce patterns that look like images.

Object detection belongs to the field of high-level imaging, in which the image
modeling is on a more global scale compared to low-level imaging which deals
with (smoothing) prior models on a pixel level. In particular, more global prior
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models for the simply connected objects can be applied. There has been a grow-
ing interest in this field, particularly along the guidelines of Grenander’s general
pattern theory using deformable templates [9]. Moreover, Zhu et al. attempted
to unify snakes [12], balloons [5] and region growing methods within a general
energy/Bayes framework [25]. These prior models are generally realistic and in-
corporate prior information about the outline of objects in a Bayesian image
analysis framework. In other respects, both approaches estimate the curves that
maximally separate unknown statistics inside and outside the curves [25,9]. The
maximum a posteriori (MAP) estimate is generally determined by prohibitive
stochastic search procedures [9] or other variants of steepest ascent algorithms
[25]. Thereby, additional a priori knowledge may be specified to ease the seg-
mentation task: statistics inside region boundaries are assumed to be known [9,4]
or estimated using ad-hoc methods [20,24]. The global energy functional may be
then optimized, for instance, within a level set framework [19,22] which pro-
vides the advantages of numerical stability and topological flexibility [4,20,24].
In practical imaging, these methods may suffer from the problem of initializa-
tion of curves [25], off-line estimation of the mixture model of Gaussians ap-
proximating the probability density function of the image [20], or selection of
hyperparameters weighting the contribution of energy terms [25,20,4].

In this paper, we address these problems and follow the Bayesian approach
for recovering simply connected objects in the plane. The prior model focuses on
how the area and number of objects can varied in images (Section 2). It allows to
partition the image into few regions, though in a more restrictive manner than
previous approaches [25,20] since it can generate irregular boundaries. Unlike
other approaches [25,9], we shall see that maximizing the posterior distribution
is herein equivalent to select a subset of connected components of image bilevel
sets (Section 3). Section 4 presents the numerical implementation of our model
and the computation of the image segmentation. In Section 5, we illustrate this
approach with some experiments on satellite images. Conclusions and perspec-
tives are presented in Section 6.

2 The Bayesian Framework

Let S be an open subset of R
2 and f a grey-scale image treated as a function

defined on S. In practical imaging, S is a collection of pixels within a discretized
rectangle, and possible values of f are given by integers [0, 256[∩N. Below we
will work in the continuous setup, where S is a subset of a Euclidian space and
f : S → R

+ represents the observed data function. The continuous setup allows
us to refer to analytic tools, while leaving always a possibility to “discretize”
the problem. We use the terminology “site” or “pixel” to denote a point of
the image, even in the continuous case. Each point x ∈ S is assigned a grey
value f(x). According to Matheron [15], we interpret the image f as a family
of sets defined by Lγ(f) = {x ∈ S : f(x) ≥ γ}, γ ∈ R

+. Each level sets Lγ(f)
is assumed to be of finite perimeter. Therefore, f will belong to the bounded
variation (noted BV ) space [1].
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Let {Ωi ⊂ S} be a set of disjoint and non-empty image domains or objects,
and {∂Ωi} their boundaries. A partition of the space S consists in finding a set
{Ωi}P

i=1 and a background Ω defined as the complementary subset of the union
of objects Ω = S \ ∪P

i=1 Ωi, Ωi ∩i6=j Ωj = ∅ and Ωi ∩i Ω = ∅.
We assume that the observed image f has been produced by the model f =

ftrue + ε, where ε is a zero-mean Gaussian white noise: ε(x) iid∼ N (0, σ2), x ∈ S.
The true image ftrue(x) =

∑P
i=1 fΩi

1x∈Ωi + fΩ1x∈Ω is supposed piecewise
constant, where fΩi

and fΩ denote respectively the unknown average values
of f over Ωi and Ω, and 1x∈E is the set indicator function of the set E. The
variance σ2 is assumed to be known and constant over the entire image [25]. So,
the likelihood for the data f given {Ω1, · · · , ΩP } is specified by

p(f |Ω1, · · · , ΩP ) ∝ exp− 1

2σ2

{
P∑

i=1

∫
Ωi

(f(x) − fΩi
)2dx +

∫
Ω

(f(x) − fΩ)2dx

}
. (1)

We seek a partition of the rectangle S into a finite set of objects Ωi, each of
which corresponding to a part of the image where f is constant. Therefore, we
define the following collection CP of P ≥ 0 admissible, closed and connected
objects

CP = {{Ω1, . . . , ΩP } ⊂ S ; S \ Ω =
P⋃

i=1

Ωi ; Ωi
⋂

1≤i6=j≤P

Ωj = ∅ }.

When P = 0, there is no object in the image. Following the Bayesian approach,
we use some functional of the posterior distribution of {Ω1, · · · , ΩP }:

p(Ω1, · · · , ΩP | f) ∝ p(f | Ω1, · · · , ΩP ) π(Ω1, · · · , ΩP ) (2)

where p(f | Ω1, · · · , ΩP ) is the likelihood given by (1) and π(Ω1, · · · , ΩP ) is
the prior distribution of objects. The posterior distribution is used in a further
inferential issue concerning the objects within the Bayesian paradigm. The a
priori distribution should capture the knowledge about {Ω1, · · · , ΩP }. We define
a density that penalizes the area |Ωi| of objects. Additionally, the variables {|Ωi|}
may be considered as independent random variables with density g(|Ωi|). Hence,
the prior distribution is of the form π(Ω1, · · · , ΩP ) = Z−1

p

∏P
i=1 g(|Ωi|)a where

ZP is a normalization constant and a a real positive value. The density g(|Ωi|)
is chosen to be a non-negative monotically decreasing function of the object
area |Ωi|. For instance, Alvarez et al. [1] have realized experimentally that the
area distribution of homogeneous parts in images follows a power law β|Ωi|−γ .
The parameters β and γ (close to 1, 2 for values of |Ωi| in a certain range)
give the intensity of the model. In what follows, we shall consider this model
for the density g(|Ωi|). There are other possible choices of g(|Ωi|) ; the case of
g(|Ωi|) ∝ exp−β|Ωi|γ has been already discussed in [13,1]. This model is related
to the Markov connected components fields [16].
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3 Bayesian Inference

All kinds of inference are made from p(Ω1, · · · , ΩP | f). Finding the maximum
a posteriori (MAP) estimate is herein our choice of inference. As a consequence,
the MAP estimation of objects comes to the minimization of a global energy
function Eλ(f, Ω1, . . . , ΩP ) defined as

P∑
i=1

∫
Ωi

(f(x) − fΩi
)2 dx +

∫
Ω

(f(x) − fΩ)2 dx︸ ︷︷ ︸
Ed(f,Ω1,...,ΩP )

+ λ

P∑
i=1

(γ log(|Ωi|) − A)︸ ︷︷ ︸
Ep(Ω1,...,ΩP )

(3)

where Ep(Ω1, . . . , ΩP ) is the penalty functional, Ed(f, Ω1, . . . , ΩP ) the data
model, λ = 2a σ2 > 0 the regularization parameter and A = log(β). The penalty
functional tends to regulate the emergence of objects Ωi in the image and gives
no control on the smoothness of boundaries. The regularization parameter λ
can be then interpreted as a scale parameter that only tunes the number of
regions [17,14,13]. If λ = 0, each point is potentially a region and Ω = ∅ ; the
global minimum coincides with zero and this segmentation is called the “trivial
segmentation” [17,14].

Our MAP estimator is defined by (when exists)

(Ω̂1, . . . , Ω̂P̂ ) = argmin0≤P≤T argmin{Ω1,...,ΩP }∈CP
Eλ(f, Ω1, . . . , ΩP ) (4)

where CP ⊆ CT , ∀P ≤ T , and T is the maximum number of admissible objects
registered in a bank CT . We recall that Ω̂ = S \ ∪P̂

i=1Ω̂i is the complemen-
tary subset of estimated objects {Ω̂1, . . . , Ω̂P̂ }. By using classical arguments on
lower semi-continuous functionals on the BV space, we assume here existence
of minimizers of Eλ(f, Ω1, · · · , ΩP ) among functions of sets finite perimeter (or
of bounded variation) [17,25]. However, a direct minimization with respect to
all unknown domains Ωi and parameters fΩi

is a very intricate problem, even
if T is low since objects are not designed. In what follows (Lemma 1), we prove
that the object boundaries that minimize Eλ(f, Ω1, . . . , ΩP ) are level lines of
the function f , which makes the problem tractable.

Lemma 1. If there exists minimizers and no pathological minimum exists, then
the energy minimizing set of curves is a subset of level lines of f :

f|∂Ω̂i
≡ µi, i = 1, . . . , P̂ .

i.e. the border ∂Ω̂i of each Ω̂i is a boundary of a connected component of a level
set of f .

Proof of Lemma 1 Let Ωδ be a variation of a set Ω, i.e. the Hausdorff dis-
tance d∞(Ωδ, Ω) ≤ δ . To prove Lemma 1, we assume that, for any connected
perturbation of Ω such d∞(Ωδ, Ω) ≤ δ, two neighboring sets Ω and Ω′ do not
merge into one single set Ω ∪ Ω′ and, for any connected perturbation of Ω
such d∞(Ωδ, Ω) ≤ δ, Ω does not split into two new sets. This corresponds to
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prohibited topological changes. Without loss of generality, we prove Lemma 1
for one object Ω and a background Ω, that is the closure of the complementary

set of Ω. For two sets A and B, denote
∫

A\B

f
def=
∫

A

f −
∫

B

f . Then, we have

∫
Ωδ\Ω

1 def
= |Ωδ | − |Ω| and

(∫
Ωδ

f

)2

−
(∫

Ω

f

)2

=2

∫
Ω

f

∫
Ωδ\Ω

f +

(∫
Ωδ\Ω

f

)2

.(5)

The difference between the involved energies is defined as ∆Eλ(f, Ω) =
Eλ(f, Ωδ) − Eλ(f, Ω) = T1 + T2 + T3 + T4 + T5 where

T1 =

∫
Ωδ

f2 −
∫

Ω

f2, T2 =
1

|Ω|
∫

Ωδ\Ω

λγ, T3 = − 1

|Ωδ|
(∫

Ωδ

f

)2

+
1

|Ω|
(∫

Ω

f

)2

,

T4 =

∫
S\Ωδ

f2 −
∫

S\Ω

f2 , T5 = − 1

|S| − |Ωδ |

(∫
S\Ωδ

f

)2

+
1

|S| − |Ω|

(∫
S\Ω

f

)2

. (6)

Denote ∆|Ω| = |Ωδ| − |Ω|. Using (5), and passing to the limit ∆|Ω| → 0, i.e.
|Ωδ| ' |Ω|, we obtain (higher order terms are neglected)

T1 = −T4 =

∫
Ωδ\Ω

f2 , T2 =
λγ

|Ω|
∫

Ωδ\Ω

1,

T3 = − 2

|Ω|
∫

Ωδ\Ω

f

∫
Ω

f − 1

|Ω|

(∫
Ωδ\Ω

f

)2

+
1

|Ω|2
∫

Ωδ\Ω

1
(∫

Ω

f

)2

, (7)

T5 =
1

|S| − |Ω|

{
2

∫
Ωδ\Ω

f

∫
S\Ω

f −
(∫

Ωδ\Ω

f

)2

− 1

|S| − |Ω|
∫

Ωδ\Ω

1

(∫
S\Ω

f

)2}
.

We define the following image moments m0 =
∫

Ω 1, m1 =
∫

Ω f , K0 =
∫

S 1,
K1 =

∫
S f . Using the mean value theorem for double integral, which states that

if f is continuous and a connected subset E is bounded by a simple curve, then
for some point x0 in E we have

∫
E f(x)dE = f(x0) · |E| where |E| denotes the

area of E, it follows that

∆Eλ(f, Ω) =

M0︷ ︸︸ ︷{[
m2

1

m2
0

− (K1 − m1)2

(K0 − m0)2
+

λγ

m0

]
+

M1︷ ︸︸ ︷[
2(K1 − m1)
K0 − m0

− 2m1

m0

]
f(x0)

−
[

1
m0

+
1

K0 − m0

]
f(x0)2

∫
Ωδ\Ω

1

} ∫
Ωδ\Ω

1. (8)

Let xb be a fixed point of the border ∂Ω. Choose Ωδ such that ∂Ωδ = ∂Ω except
on a small neighborhood of xb. The energy having a minimum for Ω, f(xb) needs
to be solution of the following equation

lim
∆|Ω|→0

∆Eλ(f, Ω)
∆|Ω| = [M0 + M1f(xb)] + O(∆|Ω|) = 0. (9)
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By passing to the limit ∆|Ω| → 0, we obtain M0 +M1f(xb) = 0. This equation
has one single solution. The coefficients M0 and M1 do depend on neither xb nor
f(xb), and M0 6= 0. The function f is continuous and ∂Ω is a connected curve.
Therefore f(xb) is constant when xb covers ∂Ω. This completes the proof. 2

We have proved Lemma 1 with a connected perturbation including the situ-
ation when |Ωδ|− |Ω| = |∂Ω| where |∂Ω| is the boundary length of Ω. Equation
9 states a necessary condition which is essential to prove that a subset of level
lines globally minimizes the energy.

If f is of bounded variation, the connected components of level sets can be
characterized by their boundaries, that is the so-called level lines of f [3]. In
consequence of Lemma 1, those curves constitute the borders {∂Ωi} of objects
{Ωi}.

4 A Stepwise Greedy Algorithm for Image Segmentation

This section describes our algorithmic procedure for object boundaries estima-
tion. Our recommendations for the concrete choice of the input parameters are
collected in this section. The algorithm we propose does require neither the
number of regions nor any initial mean gray values for regions and background.

4.1 Level Sets and Object Boundaries

The key ingredient of the procedure is the construction of objects whose bound-
aries are image level lines [3]. In practical imaging, we can associate with an
image 255 level sets {Lγ(f)}, 0 ≤ γ ≤ 255. We consider the scenario where
a point x belongs to one single connected component at once within the image
level sets. We take into account this fact and define the bilevel sets of f as the set
of pixels x ∈ S such that v ≤ f(x) ≤ w, 0 ≤ v ≤ w. Instead of computing all the
255 level sets, we restrict only this computation to a small number of K(< 255)
level sets and adaptively quantize the image histogram using an entropy method
[11]. For l ∈ N varying from 1 to K, let bl be the binary image with bl(x) = 1 if
f(x) ∈ [tl−1, tl) and bl(x) = 0 otherwise, where tl is a threshold. We call those
images the K-bilevel sets of f ∈ [fmin, fmax] [1]. In general, each bilevel set is
made up of n(tl) disjoint connected components, where n(tl) is a function of
the threshold tl and S = ∪l=K

l=1 [Ωtl,1 ∪ Ωtl,2 ∪ · · · ∪ Ωtl,n(tl)]. A crude way to
build pixels sets corresponding to objects would be to proceed to a connected
components labeling of binary images {bl}, 1 ≤ l ≤ K, and to associate each
label with an object Ωi.

If f is bounded, the connected components of level sets can be characterized
by their surrounding curves, that is the level lines [3,1]. If we map these level
lines for a given set of K levels, we get a segmentation of the image also called
topographic map [3,7]. More generally, one can consider a segmentation achieved
using only some connected components of level sets, which is the philosophy of
our approach. The most perceptible level lines can be determined by an isoperi-
metric criterion [7] or the detection of T-junctions of level lines [3]. Both criteria
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are strong indicators of region boundaries. Instead, we use herein a simpler cri-
terion where perceptually significant level lines are the level sets boundaries of
an quantized image by using K quantizers and an entropy method [11]. En-
tropy methods seek to maximize the information content between objects and
background pixels of an image. The method due to Kapur et al. chooses the
thresholds {tl} to be the values at which the information is maximum. As a
consequence, the detection of meaningful level lines will depend on the quanti-
zation parameter K. Unlike previous criteria [3,7], this quantization operation
is not invariant to contrast changes. Nevertheless, we shall see that, in practice,
K = {4, . . . , 8} seems sufficient to detect physically meaningful objects in the
image.

4.2 The Segmentation Procedure

The proposed algorithm is not a region growing algorithm as described in [14,17]
since all objects are built once and for all. Although our work is related to
morphological approaches based on connected operators [21,6,10], it is an inde-
pendent approach since we seek minimizers of a global objective functional. In
addition, it differs from the watershed approach since regions that emerge from
the watershed segmentation are not necessarily connected components within
the image level sets [23].

We post-process the connected components to remove any components whose
surface area |Ωi| is less than some threshold |Ωmin| (a parameter of the method)
to eliminate regions corresponding to noise and artifacts in the original image
[21,6,10]. To implement our level set image segmentation based on energy mini-
mization, a four step method is used. Let K, λ, |Ωmin| be the input parameters
set by the user.

1. Bilevel Set Construction. The first step completes a crude mapping of each
image pixel on a given bilevel set. At present, we quantize the function f ∈
[fmin, fmax] in K = {4, · · · , 8} non-equal-sized and non-overlapping intervals
[tl−1, tl), l = {1, · · · , K}. Given this set of intervals estimated using the maxi-
mum entropy sum method [11], let bl be the bilevel set image with bl(x) = 1 if
f(x) ∈ [tl−1, tl) and bl(x) = 0 otherwise.

2. Object Extraction. A crude way to build pixels sets corresponding to objects
is to proceed to a connected components labeling of images {bl} and to associate
each label with an object Ωi. Though this process may work in the noise-free
case, in general we would also need some smoothing effect of the connected com-
ponents labeling. So we consider a size-oriented morphological operator acting
on sets that consists in keeping all connected components of the output of area
larger than a limit |Ωmin|. This connected operator in mathematical morphology
will never introduce new features or edges and boundaries of remained connected
components are preserved [21,6,10]. The list of connected components then forms
the bank CT of admissible objects {Ω1, . . .ΩT } with |Ωi| ≥ |Ωmin|.
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3. Configuration Determination. The connected components are then combined
during the third step to form object configurations. For instance, these configu-
rations can be built by enumeration of all possible object combinations, i.e. 2T

configurations. Each configuration is made of a subset of objects taken in the
bank {Ω1, . . .ΩT }. The background Ω corresponds to the complementary set of
objects selected for each configuration.

4. Energy Computation and Object Configuration Selection. Energy calcula-
tions take the image intensities of the original (not quantized) image to estab-
lish piecewise-constant approximation errors. Energies of the form {∫Ωi

(f(x) −
fΩi

)2 dx} are computed once and stored on a ram memory. The energy term∫
Ω

(f(x) − fΩ)2 dx is efficiently updated for each configuration since Ω is the
complementary subset of the union of objects {Ωi}P

i=1. The configuration that
globally minimizes the energy functional corresponds to the MAP segmentation.
The time necessary to perform image segmentation essentially depends on the
size of the object bank CT .

4.3 Computational Issues

Now we discuss how some parameters of the procedure can be selected and
indicate one possible choice used in our experimental results. On the discrete
domain S, the neighborhoods of a pixel x are typically defined via 4-connectivity
or 8-connectivity.

Number of Bilevel Sets. The value of K is mainly determined by the number of
meaningful objects that one wishes to extract and the computational effort one
is able to spend. Decreasing K allows to reduce the number of connected com-
ponent. In our approach, we determine the optimal configuration of objects by
supervising a small set of levels. In practice, our approach successfully segmented
various images into only 4 or 8 levels.

Minimal Area of Objects. The area-oriented operator affects the image by re-
maining connected components within the image level sets that do not satisfy
the minimum criterion [21,6,10]. Boundaries of connected components are not
distorted by this operator as occurs with other types of image filters (such
as openings and closings using structuring elements). Our default choice is
|Ωmin| ∈ [0.0001, 0.001]× |S|.
Prior Parameters A and γ. For fixed K, we consider the sets of observations
{log(|Ωi|), log(g(|Ωi|)), 1 ≤ i ≤ T }. We perform a linear regression on this set
so as to find the straight line (in the log-log coordinates) log(g(|Ωi|)) = A −
γ log(|Ωi|) the closest to the data in the least squares sense [1].

Hyperparameter λ. The choice of this parameter determines mostly the prop-
erties of the segmentation result. Increasing this parameter reduces the final
number of objects to be extracted. If f is a function from S to [0, 255], a default
choice for the hyperparameter is λ ∈ [0.1, 1.] × 2552. Of course larger values of
λ lead to even extraction of only one object. In practice, it’s possible for us to
to tune this parameter according to image contents.
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Energy Minimization. For a fixed bank CT = {Ω1, · · · , ΩT } of T objects, one
way to choose the optimal set of of objects {Ω̂1, · · · , Ω̂P̂ }, P̂ ≤ T , is to search
for all possible combinations of P objects and compute the corresponding energy
Eλ(f, Ω1, · · · , ΩP ). Enumerating all possible sets of objects in the object bank
and comparing their energies is computationally too expensive if T is large (typ-
ically, it is infeasible if T > 32). Instead of a such brute force search, we propose
the following stepwise greedy algorithm for minimizing Eλ(f, Ω1, · · · , ΩP ).

We start from P = 0 and introduce one object Ωj at a time. Energies of
all objects are assumed to be already stored in a ram memory. At the first
step, we compute the T energies with one single object Ωj at once against the
complementary subset Ω = S \ ∪T

j 6=i=1Ωi. Let Ω̂1 be the estimated object that
best lowers Eλ. This object is stored on a ram memory as an object of the
optimal configuration. It is removed from the initial bank CT . At any steps of
the algorithm, a new object is chosen to maximally decrease the energy Eλ.

Suppose that at the P -th step, P̂ and Ω̂ are not known but we have estimated
P objects {Ω̂1, · · · , Ω̂P } and a current background Ω = S \ {Ω̂1, · · · , Ω̂P }. Let
Eλ(f, Ω̂1, · · · , Ω̂P ) be the current computed energy. Then at the (P +1)-th step,
we choose the object Ωj ∈ CT \ {Ω̂1, · · · , Ω̂P } which has the maximal difference,
i.e.

Ω̂P+1 = arg max
Ωj∈CT \{Ω̂1,··· ,Ω̂P }

Eλ(f, Ω̂1, · · · , Ω̂P ) − Eλ(f, Ω̂1, · · · , Ω̂P , Ωj) (10)

The algorithm stops at P -th step when the adding of any object does not
decrease Eλ. This means that the optimal number of objects is P̂ = P and
the remained objects of the bank are a part of the estimated background, i.e.
Ω̂ = S \ {Ω̂1, · · · , Ω̂P̂ }.

This fast algorithm selects a suboptimal configuration of objects correspond-
ing to a local minima of the energy functional. Using this algorithm, T×(T+1)

2
object configurations are examined at the most, whereas the supervision of all
the configurations corresponds to 2T global energy computations.

5 Experimental Results in Image Segmentation

Experiments were conducted on satellite and meteorological images to evaluate
the performance of the algorithm. Recall that obtaining the most meaningful
objects is the goal of this work. For this reason, K was set fairly low in the
experiments (K = 4 or K = 8) to obtain large regions and to improve robustness
to noise and artifacts in the image. Regions which areas |Ωi| < [0.0001, 0.001]×
|S| are discarded. For our method, λ varies across the images depending on the
image contents. It is set empirically and values that gave visually better results
were chosen. Most segmentations took approximately about 1-15 seconds on a
296MHz workstation.

Figure 1a shows an aerial 256 × 256 image (in the visual spectrum) depict-
ing the region of Saint-Louis during the rising of the Mississippi and Missouri
rivers in July 1993. We are interested in extracting the rivers and a background



94 Charles Kervrann

(a) Original image.
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(b) Image histogram.
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(d) Topographic map. (e) Segmentation
with T = 291 objects.

(f) Optimal segmen-
tation (P = 105).

Fig. 1. Satellite image (K = 8, |Ωmin| = 0.00025× |S|, λ = 0.25 × 2552).

corresponding to textured urban areas. Figure 1 shows the segmentation results
when K = 8, |Ωmin| = 0.00025×|S| and λ = 0.25×2552. In this experiment, the
maximum number of significant components is T = 291 (Fig. 1d-e). The con-
nected components that do not satisfy the minimum area criterion are labeled in
“white” in Fig. 1e. The image histogram has been quantized with K = 8 quan-
tizers and an entropic method (Fig. 1b). We estimated the values of A = 3.727
and γ = 1.486 by fitting a straight line log(g(|Ωi|) = A − γ log(|Ωi|) to the ob-
served data by linear regression. In that case, the least squares error is 2.007 and
17 ≤ |Ωi| ≤ 2.886 104 pixels. Figure 1f displays the crudely piecewise-constant
approximation results by setting λ = 0.25 × 2552. It takes about 15 seconds
(25095 < T×(T+1)

2 = 42486 iterations) of computing time for building CT and
selecting the best configuration (P = 105 objects) using the stepwise greedy
algorithm. Enumerating all the configurations is infeasible since 2T = 3.981087

iterations ! The non-connected background is labeled in “white” in Fig. 1f and
the objects are filled with their mean gray values {fΩi

}.
The performance of the segmentation procedure is demonstrated for a satel-

lite (210 × 148) image shown in Fig. 2. For the set of parameters K = 4,
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(a) Original image.
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(b) Area distribution.

(c) Piecewise-constant approxima-
tion (T = 207).

(d) Optimal piecewise-constant ap-
proximation (P = 65).

Fig. 2. Meteorological image (K = 4, |Ωmin| = 0.00015× |S|, λ = 0.75 × 2552).

λ = 0.75 × 2552 and |Ωmin| = 0.00015 × |S|, the algorithm selected P = 65
objects from the bank which contains T = 213 objects (Fig. 2d). The piecewise-
constant approximation of the image using T = 213 objects is shown in Fig.
2c. The algorithm stopped at the 11765 th iteration (2s of cpu time), i.e. before
the maximal iteration T×(T+1)

2 = 22791. We performed a linear regression to
estimate the values of A and γ (5 ≤ |Ωi| ≤ 1.159 104): A = 1.482, γ = 1.202.
This corresponds to a least squares error of 1.34.

6 Conclusion and Perspectives

In this paper, we have presented a Bayesian approach for extracting structures
in images. The prior model penalizes the area of the homogeneous parts of the
image. Morphological approaches based on connected operators have already
applied a such criterion but the filtering/segmentation process is not generally
based on the optimization of a global objective functional. In addition, we proved
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that our MAP estimator can be determined by selecting a subset of image level
lines. A total cpu time of a few seconds using a suboptimal stepwise greedy
algorithm for partitioning a 256 × 256 image into meaningful regions makes
the method attractive for many time-critical applications. In terms of future
directions for research, we propose to create a non-linear scale-space by successive
applications of an area morphology operator to select most meaningful regions
in the image.
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