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Abstract: Analytical resolution of search theory problems, as formalized by
B.O. Koopman, may be applied with some model extension to various resource
management and data fusion issues. Such method is based on a probabilis-
tic prior about the target. Even so, this approximation forbids any reactive
behavior of the target. As a preliminary step towards reactive target study s-
tands the problem of resource placement under a minimax game context. This
report is related to Nakai’s work about the game placement of resources for
the detection of a stationary target. However, this initial problem is extended
by adding new and more general constraints, allowing a more subtle modeling
of the target and resource behaviors.
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Optimisation minimax d’un effort de recherche

continu pour la detection d’une cible

Résumé : La résolution analytique des problèmes de Search Theory, comme
l’a formalisé B.O. Koopman, peut être appliquée avec quelques extensions de
modèle à des situation variées de gestion de ressource et de fusion de données.
Ce genre de méthode se base sur un a priori probabiliste de la cible. Une telle
approximation ne permet pas de modéliser l’éventuelle réactivité de la cible.
Une étape préliminaire à l’étude de cible réactive réside dans les problèmes de
placement des ressources dans le contexte de jeux mini-max. Ce rapport prend
comme point de départ le travail de Nakai concernant le jeu de l’allocation des
ressources pour la détection d’une cible stationnaire. Ce problème initial a été
étendu par l’adjonction de nouvelles contraintes, permettant des modélisations
plus souple du comportement de la cible et des ressources.

Mots clés : Gestion de capteurs, Détection, Jeux de recherche, Théorie de
la recherche, Allocation de ressources



Minimax Optimization of Search Efforts 3

Notations

• ϕ(x): Search effort,

• φo: Total amount of search effort,

• α(x): Probabilistic target distribution,

• Ao: Total target probability,

• px(ϕ(x)): Conditional non detection probability.

1 Introduction

The initial framework of Search Theory [4][2][3], introduced by B.O. Koopman
and his colleagues, sets the general problem of the detection of a target in a
space, in view of optimizating the detection resources. A thorough extension of
the prior formalism has been made by Brown towards the detection at several
periods of search [5][6]. These simple but meaningful formalism were also
applied to various resource management and data fusion issues [7]. But, in all
these problems, a probabilistic prior on the target was required. In addition,
in case of moving target problems, a Markovian hypothesis is necessary for
algorithmic reasons. While this formalism is sufficient for almost “passive”
targets, it is useless when a target has a complex (and realistic) move. In
a military context especially, the behavior of the “interesting” targets is not
neutral and cannot be modeled by a simple probabilistic prior. A conceivable
way for enhancing the prior on the target in a manner that involves more
properly the complexity or the reactiveness of the target, is to consider a
min-max game version of Koopman optimization problems. Nakai presented
and solved it in [8] a game with placement of resources for the detection of
a stationary target. In this work the constraints on game were given by the
available placement of target and detection resources. Thus, constraints were
defined at the pure strategy level. The purpose of this paper is to present an
extension of Nakai’s game by addition of new constraints defined on the set
of available mixed strategies. In other words, constraints are now defined at
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4 Frédéric Dambreville , Jean-Pierre Le Cadre

the mixed strategy level. Before explaining properly the extended problem, we
intend to give in this introduction a short description of Nakai’s game.

Definitions: The searcher want to detect a target located in a search space
E. To perform this detection, the searcher has available a total amount of
(detection) resources φo. These resources may be put on each cell x of the
search space E. Detection on cell x is a known function of the search effort
put on x. For x ∈ E, the variable ϕ(x) denotes the local amount of resources
placed on cell x. A constraint naturally holds for the global amount of resources
in use: ∫

E

ϕ(x) dx ≤ φo .

Since detection is better when the whole resources are used, without restricting
generality the previous constraint may be replaced by an equality one:∫

E

ϕ(x) dx = φo . (1)

The set of valid sharing functions ϕ is thus defined by:

R(φ) =

{
ϕ ∈ IR+E

/∫
E

ϕ = φo

}
.

When local resource ϕ(x) is put on cell x and target is located on x, the prob-
ability of non detection is given by value px(ϕ(x)), a conditional probability.
This probability may depend upon x, since practically visibility and resource
efficiency vary with the concerned cell. For x fixed, px decreases with the
effort used and p′x < 0. The detection follows the rule of decreasing return,
so that p′x increases strictly with ϕ. On the other hand, the target have the
choice between available positions T ⊂ E. Then, a game occurs between the
searcher and the target. The searcher attempts to minimize the probability
of non detection by optimizing the search resource sharing ϕ, while the target
aim is to maximize the probability of non detection by choosing his position.
The value of the game is given by pΘ(ϕ(Θ)), for a target strategy Θ and a
searcher strategy ϕ. This problem was solved by Nakai [8]. Since p is convex,
it appears that the game is convex. Thus, there is a mixed optimal strategy

Irisa



Minimax Optimization of Search Efforts 5

for the target and a pure optimal strategy for the searcher. A mixed strategy
for the target is given by a density probability α on the target position, with
property α(E \ T) = 0. We denote:

P(T) =

{
α ∈ IR+E

/
α(E \ T) = 0 and

∫
E

α = 1

}
.

the set of such probabilities. For strategies (α, ϕ), the value of the game is then
given by the averaged value (denoted Pnd) of the probability of non detection.

Pnd(α, ϕ) =

∫
E

α(x)px(ϕ(x)) dx .

An optimal (min-max) couple of strategies (αo, ϕo) is also defined by :


αo = arg max
α∈P(T)

min
ϕ∈R(φo)

∫
E

α(x)px(ϕ(x)) dx ,

ϕo = arg min
ϕ∈R(φo)

max
α∈P(T)

∫
E

α(x)px(ϕ(x)) dx .

Two optimality conditions are obtained, by differentiation around the optimal
strategies: 


αo(x) p′x(ϕo(x)) = η , when αo(x) >

η

p′x(0)

ϕo(x) = 0 , else

(2)

and

∃λ ∈ IR+, αo(x) > 0 =⇒ px(ϕo(x)) = λ . (3)

We can recognize in (2) the classical optimality equation of de Guenin. By use
of these equations, a mathematical solution of the problem is built. The first
step is to verify the obviously intuitive result:

x ∈ T ⇐⇒
[
αo(x) > 0 and ϕo(x) > 0

]
. (4)
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6 Frédéric Dambreville , Jean-Pierre Le Cadre

Then, the combination of equations (1) and (3) yields
∫
T
p−1

x (λ) dx = φo. Defin-
ing the function P by:

P
−1(λ) =

∫
T

p−1
x (λ) dx ,

it follows that λ = P(φo). At last, equations (2), (3) and (4) simplify and
reduce to ϕo(x) = p−1

x (P(φo)) and αo(x) = η/p′x(p
−1
x (P(φo))). Since αo is a

probability density, it follows that
∫
T
αo(x) dx = 1. This property permits to

find the dual variable η. After simplification, the simple formula η = P
′(φo)

is obtained. Finally, the min-max optimal strategies (αo, ϕo) are simply given
by:

∀x ∈ T,




αo(x) = (p−1
x ◦ P)′(φo)

ϕo(x) = (p−1
x ◦ P)(φo)

(5)

The Nakai game problem also admits a mathematical solution. In fact, the
game remodeling of the search problem yields some complexity simplification
in comparison with the classical one-sided search problem [1]. However, there
is no general mathematical solution. In the next section, an extension of Nakai
problem will be considered. It is a min-max game, where constraints are given
on the target mixed strategies. Such problem will be seen as a generalization
of both Nakai game and de Guenin’s problem, but is much more complex than
these two parent problems. New properties will be established to handle these
difficulties and an original algorithm will be presented.

2 Bounding constraints

In Nakai game, the prior on target is given by the set of available target posi-
tions. This hypothesis constitutes a prior more general and more flexible than
a probabilistic density on target position, in particular for modeling uncer-
tain targets. Nevertheless, it does not allow sufficient refinement, for modeling
target behavior. For example, when the detection occurs after a preliminary
target move, it is wise to handle target motion modeling. Itself depending
on the target reactiveness capabilities, it follows that some final positions are
more probable than other. To model this fact, we will simply introduce an

Irisa



Minimax Optimization of Search Efforts 7

up and down bounding on the probability associated with the target mixed
strategy.

Similarly, it is also possible to define an up and down bounding on the re-
sources sharing functions. Doing so involves a symmetrization of our problem.
However, such bounding constraints on resources have a physical meaning. It
implies a minimum and a maximum of resource affectation on each cell of the
space search. Definitions have now to be clarified.

Definition: The placement of the target and the search are accomplished on
a space E. Each element x ∈ E is called a cell. The target mixed strategy
is represented by a density function α defined on E. Function α is a variable
of the problem. The summation of α on E is known and is denoted Ao. The
following constraint then holds:∫

E

α(x) dx = Ao .

Since α is a density probability, Ao generally equals 1. Two bounding functions
α1 and α2 with property α1 ≤ α2 are given. These functions are constants of
the problem and yield a bounding constraint on the mixed target strategy:

α1 ≤ α ≤ α2 .

The searcher pure strategy is represented by a resource sharing function ϕ
defined on E. Function ϕ is also a variable of the problem. The total amount
of resources φo is fixed, so that :∫

E

ϕ(x) dx = φo .

Two bounding functions ϕ1 and ϕ2 with property ϕ1 ≤ ϕ2 are given. These
functions are constants of the problem and yield a bounding constraint on the
pure search strategy:

ϕ1 ≤ ϕ ≤ ϕ2 .

For each cell x, a decreasing and convex non detection function px is defined.
The value px(ϕ(x)) represents the conditional probability of non detection,
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8 Frédéric Dambreville , Jean-Pierre Le Cadre

when the target is located on cell x. The value of game for a couple of strategies
(α, ϕ) is given by the averaged probability of non detection:

Pnd(α, ϕ) =

∫
E

α(x)px(ϕ(x)) dx .

Again, since the game is convex, there is a couple of optimal strategies involving
a mixed strategy for the target and a pure strategy for the searcher. The
associated min-max optimization problem stands as follow:

Find:

αo = arg max
α

min
ϕ

∫
E

α(x)px(ϕ(x)) dx

and

ϕo = arg min
ϕ

max
α

∫
E

α(x)px(ϕ(x)) dx ,

under constraints:

∀x ∈ E, α1(x) ≤ α(x) ≤ α2(x) , and

∫
E

α(x) dx = Ao ,

∀x ∈ E, ϕ1(x) ≤ ϕ(x) ≤ ϕ2(x) , and

∫
E

ϕ(x) dx = φo .

Summary of the problem setting:

• α1: Lower bound for the target mixed strategy

• α2: Upper bound for the target mixed strategy

• ϕ1: Lower bound for the searcher strategy

• ϕ2: Upper bound for the searcher strategy

• Constraints on the target mixed strategy:

� α1 ≤ α ≤ α2

� ∫
E

α = Ao

• Constraints on the searcher strategy:
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Minimax Optimization of Search Efforts 9

� ϕ1 ≤ ϕ ≤ ϕ2

� ∫
E

ϕ = φo

• px(ϕ(x)): Conditional probability of non detection, when resource ϕ(x)
is applied on cell x

� px > 0

� px decreases and p′x < 0

� Px is convex and P ′′
x > 0

Additive properties may be supposed in order to ensure the existence of solu-
tions:∫

E

α1(x) dx ≤ Ao ≤
∫

E

α2(x) dx and

∫
E

ϕ1(x) dx ≤ φo ≤
∫

E

ϕ2(x) dx .

3 Optimality equations

Considering an optimal couple of strategies (αo, ϕo) as a saddle point for the
game value Pnd(α, ϕ), two optimality equations are obtained by variational
means.

3.1 de Guenin’s equation:

Since (αo, ϕo) is a saddle point, it appears that:

ϕo ∈ arg min
ϕ

Pnd(αo, ϕ) .

Constraints ϕ1 ≤ ϕ ≤ ϕ2 apply to the minimization. A result very similar to
classical de Guenin’s equation is thus obtained. More precisely, let a ∈ E and
b ∈ E verifying ϕo(a) > ϕ1(a) and ϕo(b) < ϕ2(b). Let dt > 0 be a positive
infinitesimal variation, and define a new sharing function ϕ̃ by:{

ϕ̃(a) = ϕo(a) − dt and ϕ̃(b) = ϕo(b) + dt ,

ϕ̃(x) = ϕo(x) for x 6= a, b .

PI n˚1403



10 Frédéric Dambreville , Jean-Pierre Le Cadre

Then, by definition of a and b, constraint
∫

E
ϕ̃(x) dx = φo is also satisfied by

the function ϕ̃. Thus, since ϕo is a minimizer, the probability increases, i.e.
Pnd(αo, ϕo) ≤ Pnd(αo, ϕ̃). Hence, 0 ≤ −αo(a)p′a(ϕo(a))dt + αo(b)p

′
b(ϕo(b))dt, by

means of a first order derivation and a side to side simplification. Since dt > 0,
the following inequality holds true:

αo(a)p′a(ϕo(a)) ≤ αo(b)p
′
b(ϕo(b)) .

It is easy, then, to derive a weak optimality condition, i.e. the existence of a
(negative) dual variable η such that:{

ϕ1(x) < ϕo(x) < ϕ2(x) ⇒ αo(x)p′x(ϕo(x)) = η ,

ϕo(x) = ϕ1(x) or ϕ2(x) else .
(6)

But this property is somewhat insufficient or poorly formulated for really defin-
ing ϕo. A more precise property will be proven. However, it requires further
(but not restrictive) assumptions. First assumption is ϕ1 < ϕ2. This assump-
tion is absolutely not restrictive, since for cells x verifying ϕ1(x) = ϕ2(x),
ϕo(x) is defined by ϕo(x) = ϕ1(x) = ϕ2(x). So, it is of no consequence
not to consider these cases. We state also, that ∃x, ϕo(x) > ϕ1(x) and
∃x, ϕo(x) < ϕ2(x). This case is also no more restrictive, since otherwise,
we would have ∀x, ϕo(x) = ϕ1(x) or ∀x, ϕo(x) = ϕ2(x), which are exact-
ly equivalent to property φo =

∫
E

ϕ1(x) dx or φo =
∫

E
ϕ2(x) dx respectively.

These specific cases are also directly checked, if necessary. Then, if all these
assumptions are in use, the following property holds:

Proposition 1 There exists a negative scalar η for which, the following alter-
native holds true for all x ∈ E:{

ϕ1(x) < ϕo(x) < ϕ2(x) =⇒ αo(x)p′x(ϕo(x)) = η ,

ϕo(x) = ϕ1(x) or ϕ2(x) else ,

in accordance with the following discriminating equations:


αo(x) >
η

p′x(ϕ1(x))
=⇒ ϕo(x) > ϕ1(x)

αo(x) <
η

p′x(ϕ2(x))
=⇒ ϕo(x) < ϕ2(x)

(7)
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proof:
case a: The existence of a cell b ∈ E such that ϕ1(b) < ϕo(b) < ϕ2(b)
is assumed for this case. Let a ∈ E be a cell such that ϕo(a) = ϕ1(a)
and αo(a) > η

p′a(ϕ1(a))
. Let dt > 0 be a positive variation. Construct a

perturbation ϕ̃ of ϕo defined by:{
ϕ̃(a) = ϕo(a) + dt and ϕ̃(b) = ϕo(b) − dt ,

ϕ̃(x) = ϕo(x) for x 6= a, b .

The function ϕ̃ also satisfies to constraint
∫

E
ϕ̃(x) dx = φo. Since ϕo is a

minimizer of the mapping ϕ 7→ Pnd(αo, ϕ), the non-detection probabili-
ty increases so that Pnd(αo, ϕo) ≤ Pnd(αo, ϕ̃). First order derivation and
side to side simplifications yield 0 ≤ αo(a)p′a(ϕo(a))dt − αo(b)p

′
b(ϕo(b))dt.

Since dt > 0, equation αo(a)p′a(ϕo(a)) ≥ αo(b)p
′
b(ϕo(b)) is obtained. Now,

from hypothesis on b and equation (6), we have α(b)p′b(ϕo(b)) = η. A
combination of the two previous results yields αo(a) ≤ η

p′a(ϕo(a))
. This

contradicts assumption on a. We have just refuted the existence of
x ∈ E such that ϕo(x) = ϕ1(x) and αo(x) > η

p′x(ϕ1(x))
. Similarly, there

is no x ∈ E such that ϕo(x) = ϕ2(x) and αo(x) < η
p′x(ϕ2(x))

. Thus, equa-

tions (7) are proven, whenever the existence of b is assumed.
case b : It is assumed now that there is no cell b ∈ E, such that
ϕ1(b) < ϕo(b) < ϕ2(b). In such case, variable η is not given by de Guenin’s
equation, and we will have to build it ourselves. Since ∃x, ϕo(x) < ϕ2(x)
and ∃x, ϕo(x) > ϕ1(x), there is a cell a so that ϕo(a) = ϕ1(a) and a cell
b such that ϕo(b) = ϕ2(b). Consider variation dt > 0 and perturbation ϕ̃
of ϕo defined by:{

ϕ̃(a) = ϕo(a) + dt and ϕ̃(b) = ϕo(b) − dt ,

ϕ̃(x) = ϕo(x) for x 6= a, b .

Function ϕ̃ satisfy constraint
∫

E
ϕ̃(x) dx = φo. Thus, the probability in-

creases and consequently Pnd(αo, ϕo) ≤ Pnd(αo, ϕ̃). After simplifications,
the equation αo(a)p′a(ϕo(a)) ≥ αo(b)p

′
b(ϕo(b)) is obtained. We have just

proven:

ϕo(x) = ϕ1(x)

ϕo(y) = ϕ2(y)

}
⇒ αo(x)p′x(ϕo(x)) ≥ αo(y)p′y(ϕo(y)) .
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12 Frédéric Dambreville , Jean-Pierre Le Cadre

Then, it becomes possible to define the dual variable η:

∃η,

{
ϕo(x) = ϕ1(x) =⇒ αo(x)p′x(ϕo(x)) ≥ η ,

ϕo(y) = ϕ2(y) =⇒ αo(y)p′y(ϕo(y)) ≤ η .

Directly follows:

∃η,

{
ϕo(x) = ϕ1(x) =⇒ αo(x)p′x(ϕ1(x)) ≥ η ,

ϕo(y) = ϕ2(y) =⇒ αo(y)p′y(ϕ2(y)) ≤ η .

Since ϕ1 ≤ ϕo ≤ ϕ2, the properties ϕo(x) = ϕ1(x) and ϕo(y) = ϕ2(y) are
equivalent to ϕo(x) ≤ ϕ1(x) and ϕo(y) ≥ ϕ2(y) respectively. At last:

∃η,

{
ϕo(x) ≤ ϕ1(x) =⇒ αo(x)p′x(ϕ1(x)) ≥ η ,

ϕo(y) ≥ ϕ2(y) =⇒ αo(y)p′y(ϕ2(y)) ≤ η .

In other words, proposition 1 is also verified in this case.

222

Proposition 2 There exists a negative scalar η for which, the following alter-
native holds true for all x ∈ E:{

ϕ1(x) < ϕo(x) < ϕ2(x) =⇒ αo(x)p′x(ϕo(x)) = η ,

ϕo(x) = ϕ1(x) or ϕ2(x) else ,

in accordance with the following discriminating equations:


αo(x) >
η

p′x(ϕ1(x))
⇐⇒ ϕo(x) > ϕ1(x)

αo(x) <
η

p′x(ϕ2(x))
⇐⇒ ϕo(x) < ϕ2(x)

(8)

proof: The first parts are derived from proposition 1. In particular, impli-
cations (7) are proven. Now, assume ϕo(x) > ϕ1(x). It is possible that
ϕo(x) = ϕ2(x) or that ϕ1(x) < ϕo(x) < ϕ2(x).
case a: Make the hypothesis ϕ1(x) < ϕo(x) < ϕ2(x). Then, de Guenin’s

Irisa



Minimax Optimization of Search Efforts 13

equation perfectly holds and αo(x)p′x(ϕo(x)) = η. Now, the function p′

increases, η < 0 and ϕo(x) > ϕ1(x). Hence αo(x) = η
p′x(ϕo(x))

> η
p′x(ϕ1(x))

.

case b: Make the hypothesis ϕo(x) = ϕ2(x). Equation (7) yields the
inequality αo(x) ≥ η

p′x(ϕ2(x))
. Now, p′ increases, η < 0 and ϕ2(x) > ϕ1(x).

Hence αo(x) ≥ η
p′x(ϕ2(x))

> η
p′x(ϕ1(x))

.

The reversed implication ϕo(x) > ϕ1(x) ⇒ αo(x) > η
p′x(ϕ1(x))

is proven now

for both cases. Implication ϕo(x) < ϕ2(x) ⇒ αo(x) < η
p′x(ϕ2(x))

similarly
holds. Proposition 2 is now proven.

222

3.2 Constantness equation:

This part is almost similar to the preceding. First, it is noticed that:

αo ∈ arg max
α

Pnd(α, ϕo) .

Constraint α1 ≤ αo ≤ α2 applies to this minimization. Let a ∈ E and b ∈ E
so that αo(a) > α1(a) and αo(b) < α2(b). Let dt > 0 be a positive infinitesimal
variation, and define a new mixed strategy α̃ by:{

α̃(a) = αo(a) − dt and α̃(b) = αo(b) + dt ,

α̃(x) = αo(x) for x 6= a, b .

Constraint
∫

E
α̃(x) dx = Ao still holds true. Thus, since αo is a maximizer, the

probability decreases, i.e. Pnd(αo, ϕo) ≥ Pnd(α̃, ϕo). Side to side simplifications
of the inequality results in −pa(ϕo(a))dt + pb(ϕo(b))dt ≤ 0. Since dt > 0 we
obtain:

pa(ϕo(a)) ≥ pb(ϕo(b)) .

There is also a dual (positive) variable λ such that:{
α1(x) < αo(x) < α2(x) ⇒ px(ϕo(x)) = λ ,

αo(x) = α1(x) or α2(x) else .
(9)
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14 Frédéric Dambreville , Jean-Pierre Le Cadre

A more precise optimality equation will be proven now. Again, assumptions
α1 < α2, ∃x, αo(x) > α1(x) and ∃x, αo(x) < α2(x) are made without loss of
generality.

Proposition 3 There exists a positive scalar λ for which, the following alter-
natives hold true for all x ∈ E:{

α1(x) < αo(x) < α2(x) ⇒ px(ϕo(x)) = λ ,

αo(x) = α1(x) or α2(x) else ,

in accordance with the following discriminating equations:{
ϕo(x) < p−1

x (λ) =⇒ αo(x) > α1(x) ,

ϕo(x) > p−1
x (λ) =⇒ αo(x) < α2(x) .

(10)

proof:
case a : The existence of a cell b ∈ E such that α1(b) < αo(b) < α2(b)
is assumed for this case. Let a ∈ E be a cell such that αo(a) = α1(a)
and ϕo(a) < p−1

a (λ). Let dt > 0 be a positive variation. Construct a
perturbation α̃ of αo defined by:{

α̃(a) = αo(a) + dt and α̃(b) = αo(b) − dt ,

α̃(x) = αo(x) for x 6= a, b .

Constraint
∫

E
α̃(x) dx = Ao still holds true. Thus, the probability de-

creases and consequently Pnd(αo, ϕo) ≥ Pnd(α̃, ϕo). After side to side sim-
plifications and dt elimination, the equation pa(ϕo(a)) ≤ pb(ϕo(b)) is ob-
tained. Now, from hypothesis on b and equation (7) we have pb(ϕo(b)) = λ.
A combination of the two previous results yields pa(ϕo(a)) ≤ λ. This con-
tradicts hypothesis on a. The existence of x ∈ E such that αo(x) = α1(x)
and ϕo(x) < p−1

x (λ) has been refuted. Similarly, there is no x ∈ E such
that αo(x) = α2(x) and ϕo(x) > p−1

x (λ). Now, α1 ≤ αo ≤ α2. Thus, e-
quations (10) are proven, whenever b is located.
case b : It is assumed now that there is no cell b ∈ E, such that
α1(b) < αo(b) < α2(b). Since ∃x, αo(x) < α2(x) and ∃x, αo(x) > α1(x),

Irisa



Minimax Optimization of Search Efforts 15

there is both a cell a and a cell b such that αo(a) = α1(a) and αo(b) = α2(b).
Consider variation dt > 0 and perturbation α̃ of αo defined by:{

α̃(a) = αo(a) + dt and α̃(b) = αo(b) − dt ,

α̃(x) = αo(x) for x 6= a, b .

Function α̃ obeys to constraint
∫

E
α̃(x) dx = Ao. The probability de-

creases so that Pnd(αo, ϕo) ≥ Pnd(α̃, ϕo). Equation pa(ϕo(a)) ≤ pb(ϕo(b))
is obtained after side to side simplifications and dt elimination. Thus,
we have just proven:

αo(x) = α1(x)

αo(y) = α2(y)

}
⇒ px(ϕo(x)) ≤ py(ϕo(y)) .

Then, it becomes possible to define the dual variable λ:

∃λ,

{
αo(x) = α1(x) =⇒ px(ϕo(x)) ≤ λ ,

αo(x) = α2(x) =⇒ px(ϕo(x)) ≥ λ .

Since α1 ≤ αo ≤ α2, the previous equation is equivalent to:

∃λ,

{
αo(x) ≤ α1(x) =⇒ px(ϕo(x)) ≤ λ ,

αo(x) ≥ α2(x) =⇒ px(ϕo(x)) ≥ λ .

Again, this property proves the existence of a dual variable λ satisfying
proposition 3.

222

Proposition 4 There exists a positive scalar λ for which, the following alter-
natives hold true for all x ∈ E:{

α1(x) < αo(x) < α2(x) ⇒ px(ϕo(x)) = λ ,

αo(x) = α1(x) or α2(x) else ,
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16 Frédéric Dambreville , Jean-Pierre Le Cadre

in accordance with the following discriminating equations:


ϕo(x) < p−1
x (λ) =⇒ αo(x) = α2(x) ,

ϕo(x) > p−1
x (λ) =⇒ αo(x) = α1(x) ,

αo(x) > α1(x) =⇒ ϕo(x) ≤ p−1
x (λ) ,

αo(x) < α2(x) =⇒ ϕo(x) ≥ p−1
x (λ) .

(11)

proof: The first parts are derived from proposition 3. In particular, implica-
tions (10) are proven, yielding:{

ϕo(x) < p−1
x (λ) =⇒ αo(x) = α2(x) ,

ϕo(x) > p−1
x (λ) =⇒ αo(x) = α1(x) .

Now, assume αo(x) > α1(x). Suppose ϕo(x) > p−1
x (λ). Then, from the

implications (10), equation αo(x) < α2(x) holds true. Since then the
hypothesis α1(x) < αo(x) < α2(x) is checked, it follows px(ϕo(x)) = λ,
contradicting our assumption. Now, αo(x) > α1(x) =⇒ ϕo(x) ≤ p−1

x (λ)
has just been proven. The implication αo(x) < α2(x) =⇒ ϕo(x) ≥ p−1

x (λ)
is proven quite similarly.

222

3.3 Associated curves

The previous propositions 2 and 4 have an obvious geometric interpretation.
For a given cell x, the optimal strategies (αo, ϕo) are locally defined by the in-
tersection of two curves Hx

η and Λx
λ. In other words, (αo(x), ϕo(x)) ∈ Hx

η ∩ Λx
λ.

These two curves are defined respectively from propositions 2 and 4:

(a, f)∈Hx
η ⇔




a ≤ η
p′x(ϕ1(x))

⇒ f = ϕ1(x)
η

p′x(ϕ1(x))
<a< η

p′x(ϕ2(x))
⇒ a p′x(f) = η

a ≥ η
p′x(ϕ2(x))

⇒ f = ϕ2(x)

(12)
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and

(a, f)∈Λx
λ ⇔




f < p−1
x (λ) ⇒ a = α2(x)

f = p−1
x (λ) ⇒ a ∈ [α1(x), α2(x)]

f > p−1
x (λ) ⇒ a = α1(x)

(13)

However, propositions 2 and 4 have a more precise meaning. There is a com-
mon choice of dual variables, which defines the whole optimal strategies as
local intersection of the associated curves.

∃ηo, ∃λo, ∀x ∈ E, (αo(x), ϕo(x)) ∈ Hx
ηo
∩ Λx

λo
. (14)

We will use this viewpoint to develop an algorithmic resolution.

Graphical meaning: Since px is convex, p′x is increasing and a 7→ p′x
−1
(

η
a

)
is increasing (η < 0). Thus, Hx

η is flat (f = ϕ1(x)) for a ≤ η
p′x(ϕ1(x))

, then be-

comes an increasing curve and is flat again (f = ϕ2(x)) for a ≥ η
p′x(ϕ2(x))

. On the

other hand, Λx
λ is vertically decreasing down to p−1

x (λ) for a = α1(x). Then the
curve becomes flat (f = p−1

x (λ)) for α1(x) ≤ a ≤ α2(x) and, at last, the curve
is vertically decreasing down from p−1

x (λ) for a = α2(x). These two curves are
schematized in figure 1.

Figure 1: Curves Λx
λ and Hx

η .

Now, the flatness of the curves has a consequence. Intersections may be a
segment and not a point, as it is shown in figure 2. Non uniqueness of the
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18 Frédéric Dambreville , Jean-Pierre Le Cadre

Figure 2: Undefined cases

intersection is related to possibly indetermined cases for the optimality equa-
tions. In these cases it is necessary to use the constraint equations

∫
E

α = Ao

and
∫

E
ϕ = φo. But it may happen that several solutions are optimal. For

instance, assume an optimal solution (αo, ϕo), with two cells a and b, verifying
for both x = a and x = b:

p−1
x (λo) = ϕ1(x) and α2(x) ≤ η

p′x(ϕ1(x))
.

These cells are in the undefined status represented in figure 3. In particular,

Figure 3: Example

for these cases, the available choice of α(x) is given by a set [α1(x), α2(x)].
Assume that our particular optimal solution verifies α1(a) < αo(a) < α2(a)
and α1(b) < αo(b) < α2(b). Let dt be an infinitesimal variation and define α̃o

by: {
α̃o(a) = αo(a) + dt and α̃o(b) = αo(b) − dt ,

α̃o(x) = αo(x) for x 6= a, b .
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The couple (α̃o, ϕo) still verifies the optimality equations and the constraints of
the problem. It appears that (α̃o, ϕo) is still an optimal solution of the game.

3.4 Inverting the optimality equations

Optimality equations have been derived in the previous sections (3.1, 3.2 and
3.3). In order to develop a practical algorithm, the next step is to invert them.

Mapping (η, λ) 7→ (αηλ, ϕηλ): The previous remarks permit us to build a
mapping from the dual variable (η, λ) to the associated strategies (αηλ, ϕηλ),
which inverts the optimality equations. As seen previously, this mapping may
point to more than one strategy. What we have to define is a multivalued
function. Now, the curves shape induces that Hx

ηo
∩ Λx

λo
is always an horizon-

tal closed interval. In other word, the mapping is 1 : 1 for ϕηλ; while, for
each αηλ(x), it is given by a continuum from a minimum value αηλ

min(x) to a
maximum value αηλ

max(x), even if we have generally αηλ
min(x) = αηλ

max(x). In fact,
because of the middle flatness of Λx

λ and the two extremal flatness of Hx
η , there

is at most two λ such that αηλ
min(x) < αηλ

max(x). Now, the following mapping
may be defined, for the solutions associated to the optimality constraints on
(η, λ) :

(η, λ) 7−→
[
αηλ

min, α
ηλ
max

]
× {ϕηλ

}
.

The crucial point, is that αηλ
min, αηλ

max and ϕηλ are simply and entirely defined
and computable by means of the problem data. However, we shall not give
an explicit definition of these functions in the main part of this paper, since a
lot of case checking is required. Reader should refer to apprendix A for more
details.

Knowing αηλ
min, αηλ

max and ϕηλ it is useful to define the following global val-

PI n˚1403



20 Frédéric Dambreville , Jean-Pierre Le Cadre

ues: 


φηλ =

∫
E

ϕηλ(x) dx

Aηλ
min =

∫
E

αηλ
min(x) dx

Aηλ
max =

∫
E

αηλ
max(x) dx

Values φηλ, Aηλ
min and Aηλ

max will be of constant use in the development of our
algorithm.

Variation of φηλ, Aηλ
min and Aηλ

max: Our interest now focuses on the variation
of φηλ, Aηλ

min and Aηλ
max according to the variables η and λ. First, it appears

that an increase of η produces an up swelling (associated to a left shifting) of
the curve Hx

η , more precisely:

η1 < η2 ⇒
[
∀x, ∀a,

(a, f1) ∈ Hx
η1

(a, f2) ∈ Hx
η2

}
⇒ f2 ≥ f1

]
(15)

proof: Assume η1 < η2. Let x ∈ E. For a be given, define f1 and f2 by
(a, f1) ∈ Hx

η1
and (a, f2) ∈ Hx

η2
. Three cases are considered. In the first

case, suppose a ≤ η1

p′x(ϕ1(x))
. Then (refer to definition (12)), f1 = ϕ1(x),

and thus, f1 ≤ f2. In the second case, suppose a ≥ η2

p′x(ϕ2(x))
. Then,

f2 = ϕ2(x), and thus, f2 ≥ f1. Now let us consider the remaining case

a ∈
]

η1

p′x(ϕ1(x))
, η2

p′x(ϕ2(x))

[
. Hypothesis η1 < η2 yields η1

p′x(ϕ1(x))
> η2

p′x(ϕ1(x))
and

η1

p′x(ϕ2(x))
> η2

p′x(ϕ2(x))
, so that are verified both a ∈

]
η1

p′x(ϕ1(x))
, η1

p′x(ϕ2(x))

[
and

a ∈
]

η2

p′x(ϕ1(x))
, η2

p′x(ϕ2(x))

[
. It follows that f1 = p′x

−1
(

η1

a

)
and f2 = p′x

−1
(

η2

a

)
.

Now, η1 < η2 and p′x
−1 is increasing, hence f1 ≤ f2. Ending the proof

of (15).

222
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The increase of η yields also an up-left move of the intersection Hx
η ∩ Λx

λ:

η1 < η2 =⇒




αη1λ
min(x) ≥ αη2λ

min(x)

αη1λ
max(x) ≥ αη2λ

max(x)

ϕη1λ(x) ≤ ϕη2λ(x)

(16)

This property is a direct consequence of the following lemma.

Lemma 1 Let η2 > η1. The two following implications hold:

∀(a1, f1) ∈ Hx
η1
∩ Λx

λ , ∃(a2, f2) ∈ Hx
η2
∩ Λx

λ , f2 ≥ f1 and a2 ≤ a1 .

∀(a2, f2) ∈ Hx
η2
∩ Λx

λ , ∃(a1, f1) ∈ Hx
η1
∩ Λx

λ , f1 ≤ f2 and a1 ≥ a2 .

proof of lemma: Only the first implication is proven. The second implica-
tion holds similarly. Let (a1, f1) ∈ Hx

η1
∩ Λx

λ. Define f̃1 by (a1, f̃1) ∈ Hx
η2

.

From property (15), it follows f̃1 ≥ f1. since Λx
λ is flat or vertically de-

creasing, the point (a1, f̃1) is either in the curve Λx
λ or above this curve.

When first case holds, i.e. (a1, f̃1) ∈ Λx
λ, then (a1, f̃1) ∈ Hx

η2
∩ Λx

λ. Thus,

it suffices to take a2 = a1 and f2 = f̃1, so as to fulfill the implication. Now,
assume that second case holds, i.e. point (a1, f̃1) is above the curve Λx

λ.
Since Λx

λ is a decreasing or flat curve, the point (a, f) is above Λx
λ when-

ever a ≥ a1 and f ≥ f̃1. Now Hx
η2

is an increasing or flat curve. Thus, for

a ≥ a1, property (a, f) ∈ Hx
η2

yields f ≥ f̃1 and consequently (a, f) is then
above Λx

λ. It follows that a2 ≤ a1 whenever (a2, f2) ∈ Hx
η2
∩ Λx

λ. Since
Λx

λ is a decreasing or flat curve, also holds f2 ≥ f1. Consequently, the
implication holds again.

222

An increase of λ produces similarly a left swelling (associated to a down shift-
ing) of curve Λx

λ:

λ1 < λ2 ⇒

∀x, ∀f,




(a1, f) ∈ Λx
λ1

⇒ a1 = α2(x)
or

(a2, f) ∈ Λx
λ2

⇒ a2 = α1(x)


 (17)
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proof: Assume λ1 < λ2. Let x ∈ E. For f be given, define a1 and a2 by
(a1, f) ∈ Λx

λ1
and (a2, f) ∈ Λx

λ2
. Two cases are considered. In the first

case, suppose f < p−1
x (λ1). Then (refer to definition (13)), a1 = α2(x).

In the second case, suppose f ≥ p−1
x (λ1). Function p−1

x decreases and
λ1 < λ2. Thus p−1

x (λ1) > p−1
x (λ2). Hence f > p−1

x (λ2). Then a2 = α1(x).
Property (17) is thus proven.

222

Property (18) holds as a direct corollary of (17):

λ1 < λ2 ⇒
[
∀x, ∀f,

(a1, f) ∈ Λx
λ1

(a2, f) ∈ Λx
λ2

}
⇒ a2 ≤ a1

]
(18)

The intersection Hx
η ∩ Λx

λ moves down-left. However, the intersection variation
is somewhat sharper here:

λ1 < λ2 =⇒
{

αηλ1

min(x) ≥ αηλ2
max(x)

ϕηλ1(x) ≥ ϕηλ2(x)
(19)

proof: Let λ1 < λ2 and x ∈ E. Let (a1, f1) ∈ Hx
η ∩ Λx

λ1
. Define ã1 a point such

that (ã1, f1) ∈ Λx
λ2

. From property (18), it follows ã1 ≤ a1. Since Hx
η is a

flat or increasing curve, point (ã1, f1) is either in the curve Hx
η or at the

left outer of this curve.
First case: (ã1, f1) ∈ Hx

η . Then also holds (ã1, f1) ∈ Hx
η ∩ Λx

λ2
. Thus

equation ϕηλ2(x) = ϕηλ1(x) is deduced. Now, the property (17) yields ei-
ther the implication (a1, ϕ

ηλ1(x)) ∈ Λx
λ1

⇒ a1 = α2(x) or the implication

(a2, ϕ
ηλ2(x)) ∈ Λx

λ2
⇒ a2 = α1(x). In other words, αηλ1

min(x) ≥ αηλ2
max(x).

Second case: Point (ã1, f1) is at left outer of curve Hx
η . Since Hx

η is
an increasing curve, points (a, f) such that a ≤ ã1 and f ≥ f1 are still at
left outer of this curve. Now, Λx

λ2
is a decreasing or flat curve. Thus, for

f ≥ f1, property (a, f) ∈ Λx
λ2

yields a ≤ ã1 and, consequently, (a, f) is then
at left outer of Hx

η . It follows that f2 < f1, whenever (a2, f2) ∈ Hx
η ∩ Λx

λ2
.

Hence ϕηλ2(x) < ϕηλ1(x). Now, Hx
η is an increasing or flat curve, and

moreover, this curve never increases vertically. This signifies:

(a1, f1) ∈ Hx
η

(a2, f2) ∈ Hx
η

f1 > f2


 =⇒ a1 > a2 .
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Thus, since ϕηλ2(x) < ϕηλ1(x), it follows that αηλ2
max(x) < αηλ1

min(x). Prop-
erty (19) is then proven.

222

Global results are derived:

∀λ, η1 < η2 ⇒




Aη1λ
min ≥ Aη2λ

min

Aη1λ
max ≥ Aη2λ

max

φη1λ ≤ φη2λ

(20)

and

∀η, λ1 < λ2 ⇒
{

Aηλ1

min ≥ Aηλ2
max

φηλ1 ≥ φηλ2
(21)

Implicit definition of η(λ) : Let λ be fixed. In this situation, the curve Λx
λ

is also fixed. Then, what happen, when η is varying? Define:

ηmin = min
x

(
α2(x)p′x(ϕ1(x))

)
,

and
ηmax = max

x

(
α1(x)p′x(ϕ2(x))

)
.

These two values form a bound for the dual variables η. In fact, inverting de
Guenin optimality equation, i.e. (α, ϕ) ∈ Hη thanks to definition (12), yields:

∀λ,

{
η ≤ ηmin =⇒ ϕηλ = ϕ1

η ≥ ηmax =⇒ ϕηλ = ϕ2
.

So, for η ≤ ηmin or η ≥ ηmax, function ϕηλ is entirely defined and independent
of the dual variable λ. More precisely, there are two possible configurations,
say η ≤ ηmin and ϕηλ = ϕ1, or η ≥ ηmax and ϕηλ = ϕ2. Now, consequently to
the definition (13) of curve Λλ), αηλ

min and αηλ
max are entirely defined by the

choice of λ and of the configuration:

∀λ,

{
[η1 ≤ ηmin and η2 ≤ ηmin] =⇒ (ϕη1λ, αη1λ

min, αη1λ
max) = (ϕη2λ, αη2λ

min, αη2λ
max)

[η1 ≥ ηmax and η2 ≥ ηmax] =⇒ (ϕη1λ, αη1λ
min, α

η1λ
max) = (ϕη2λ, αη2λ

min, α
η2λ
max)

.
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In other word, every possible configurations for the game may be represented
by a dual variable η ∈ [ηmin, ηmax] and it is this range, we will consider from
now on. Extremal global resource values are given then by:

φηmin = φηminλ =

∫
E

ϕ1(x) dx and φηmax = φηmaxλ =

∫
E

ϕ2(x) dx .

To prove the incoming result, the following lemma is needed:

Lemma 2 Dual parameters η and λ be given, let dη be an infinitesimal vari-
ation of η. Then, for any given cell x ∈ E, the variation of Hx

η ∩ Λx
λ is in-

finitesimal, i.e.:

(a, f) ∈ Hx
η ∩ Λx

λ

dη < 0

}
⇒ Hx

η+dη ∩ Λx
λ ∩
[
a, a +

2dη

p′x(ϕ2(x))

]
×
[
f +

2dη

α1(x)m′′
x

, f

]
6= ∅ ,

and

dη > 0

(a, f) ∈ Hx
η ∩ Λx

λ

}
⇒ Hx

η+dη ∩ Λx
λ ∩
[
a +

2dη

p′x(ϕ2(x))
, a

]
×
[
f, f +

2dη

α1(x)m′′
x

]
6= ∅ ,

(22)

where m′′
x = min

f∈[ϕ1(x),ϕ2(x)]
p′′x(f).

proof: Refer to Apendix B.

222

Now, λ being fixed, the function η 7→ φηλ appears to be a continuous and in-
creasing (or flat) mapping from interval [ηmin, ηmax] onto interval [φηmin , φηmax ].

proof: Let dη be a variation of η. Assume dη > 0. Locally to a particular cell
x ∈ E, previous lemma says ϕηλ(x) ≤ ϕη+dηλ(x) ≤ ϕηλ(x) + 2dη

α1(x)M ′′
x
. A

summation of ϕηλ yields so φηλ ≤ φη+dηλ ≤ φηλ +
(∫

E
2dx

α1(x)M ′′
x

)
dη. Thus,

mapping η 7→ φηλ is continuous and increasing (or flat). As a conse-
quence, it is also surjective.

222
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It follows that every φ ∈ [∫
E

ϕ1,
∫

E
ϕ2

]
admits a non empty connected set of

antecedents. It is in particular true for φo. The set of antecedents is often
reduced to one element, when mapping η 7→ φηλ is increasing, otherwise it
is an interval when mapping η 7→ φηλ is flat. This remark implicitly defines
the bounds ηmin(λ) ∈ [ηmin, ηmax] and ηmax(λ) ∈ [ηmin, ηmax] of parameters η,
verifying de Guenin’s equations according to λ:

∀η ∈ [ηmin, ηmax] , φηλ = φo ⇔ η ∈ [ηmin(λ), ηmax(λ)] .

Assume now λ1 < λ2. Property (21) yields φηmin(λ2)λ1 ≥ φηmin(λ2)λ2 . Since by
definition φηmin(λ2)λ2 = φo = φηmin(λ1)λ1 , property φηmin(λ2)λ1 ≥ φηmin(λ1)λ1 hold-
s. Now, imagine ηmin(λ2) < ηmin(λ1). The property (20) yields the reversed in-
equality φηmin(λ2)λ1 ≤ φηmin(λ1)λ1 . It follows φηmin(λ2)λ1 = φηmin(λ1)λ1 = φo. Thus
ηmin(λ2) ≥ ηmin(λ1), by minimal definition of ηmin(λ1). Hence a contradic-
tion of hypothesis ηmin(λ2) < ηmin(λ1). So, property ηmin(λ2) ≥ ηmin(λ1) holds
true, and similarly, property ηmax(λ2) ≥ ηmax(λ1) may be proven. Variations
of ηmin(λ) and ηmax(λ) are monotonic:

λ1 < λ2 =⇒
{

ηmin(λ1) ≤ ηmin(λ2)

ηmax(λ1) ≤ ηmax(λ2)

Now, Aηλ
min and Aηλ

max are decreasing for both η and λ. Thus previous results
yield:

λ1 < λ2 =⇒




A
ηmin(λ1)λ1

min ≥ A
ηmin(λ2)λ2

min

A
ηmin(λ1)λ1
max ≥ A

ηmin(λ2)λ2
max

A
ηmax(λ1)λ1

min ≥ A
ηmax(λ2)λ2

min

A
ηmax(λ1)λ1
max ≥ A

ηmax(λ2)λ2
max

(23)

4 Algorithm

The previous properties are a guideline for developing our algorithm. Since
optimality equations are almost invertible and signs of variation are fixed for
Aηλ

min, Aηλ
max and φηλ, bi-sectional methods were chosen. Our algorithm is made

of three parts. First part find the optimal dual parameter λo. The second
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part sharpens the convergence and renders more precise some subdefinitions,
by calibrating the optimal dual parameter ηo. At this point, convergence is
almost achieved. The last part makes a final calibration of α, so as to equalize
to Ao and to reduce some indetermination.

Computing λo and ηo: The first ingredient is to build up the procedure,
which defines η(λ), that is, which computes ηmin(λ) and ηmax(λ). Thanks
to the increaseness property associated with the definition of ηmin(λ) and
ηmax(λ), two bi-sectional processes around φo are in use to compute ηmin(λ)
and ηmax(λ). Then, the main part of the process will consist in finding λ, such

that Ao ∈
[
A

ηmax(λ)λ
min , A

ηmin(λ)λ
max

]
. Thanks to the increaseness evoked in proper-

ty (23), this is done again by a bi-sectional process. However, this process will
call the procedure for ηmin(λ) and ηmax(λ) computation, constituting in fact
a double bi-sectional procedure. This procedure yields as a result the optimal
dual variable λo. It is noteworthy that for η ∈ [ηmin(λo), ηmax(λo)], φηλo = φo

and we will not have to care about the constraint on φo, now. Otherwise,

since Ao ∈
[
A

ηmax(λo)λo

min , A
ηmin(λo)λo
max

]
, there exists η ∈ [ηmin(λo), ηmax(λo)] such

that Ao ∈
[
Aηλo

min, A
ηλo
max

]
. This element η will be our optimal dual variable ηo.

To compute it, a bi-sectional process is again instrumental, because of the
constant sign variations of Aηλo

min and Aηλo
max (refer to property (20)). The whole

process is summed up below:

i. Find λo such that Ao ∈
[
A

ηmax(λo)λo

min , A
ηmin(λo)λo
max

]
; do it by means of a bi-

sectional process; a sub-procedure is used to compute ηmin(λ) and ηmax(λ),

ii. Find ηo, element of [ηmin(λo), ηmax(λo)], such that Ao ∈
[
Aηoλo

min , Aηoλo
max

]
; do

it by means of a bi-sectional process.

sub-procedure: Compute ηmin(λ) and ηmax(λ) by means of a bi-sectional
process.

Finalization: Now, ηo and λo are found. Function ϕo is entirely defined
by ϕηoλo. However, there could be some indetermination for αo, in particular
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when Aηoλo

min < Aηoλo
max . Now, definitions of Aηλ

min and Aηλ
max say Aηλ

min =
∫

E
αηλ

min

and Aηλ
max =

∫
E

αηλ
max. Thus, a candidate αo, such that

∫
E

αo = Ao, may be

defined as the barycenter of αηoλo

min and αηoλo
max , where weights are given by the

relative positions of Aηoλo

min , Aηoλo
max and Ao:




ϕo = ϕηoλo ,

αo = αηoλo

min +
Ao − Aηoλo

min

Aηoλo
max − Aηoλo

min

(
αηoλo

max − αηoλo

min

)

5 Extension to heterogeneous resources

The previous work concerns an optimization of resources or sensors toward
the best detection of a target. However, an implicit hypothesis is made on the
sensors in use, namely they are of same type. Nevertheless, the present work
may be extended to multi-type optimization problems within the same general
formalism. More precisely, each type of resource will be represented by a type
index ρ ∈ {1, . . . , r}. Then, for each type of resource ρ, are defined a specific
non detection probability function pρ and an associated resource allocation
function ϕρ. The total amount of resources of type ρ is also denoted φρ

o. A
proper constraint holds for each resource type:

∀ρ,

∫
E

ϕρ(x) dx ≤ φρ
o .

At last, the non detection probabilities for two differents types are supposed
independant. Thus, the global non detection probability (i.e. the game value)
is given by:

Pnd(α, ϕ) =

∫
E

α(x)

r∏
ρ=1

pρ
x(ϕ

ρ(x)) dx .

As already seen, equality constraints may be used instead of inequality con-
straints. Some properties are again assumed about the non detection functions
pρ

x. However, the only hypothesis pρ
x
′ < 0 and pρ

x
′′ > 0 are not sufficient, since

they do not guarantee the convexity on evaluation function. However, a nat-
ural property on resource efficiency yields good behavior of the non detection
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function. In fact, a natural assumption is that the power of resources is even
or decrease with concentration (refer to Appendix C). Formally, this signifies
that the non detection probability is of form:

pρ
x(ϕ) = exp(−wρ

x(ϕ)) ,

where wρ
x is a positive and concave function of the local resource amount ϕ.

The game problem may be written as:

Find:

αo = arg max
α

min
ϕ

∫
E

α(x)
r∏

ρ=1

pρ
x(ϕ

ρ(x)) dx

and

ϕo = arg min
ϕ

max
α

∫
E

α(x)
r∏

ρ=1

pρ
x(ϕ

ρ(x)) dx ,

under constraints:

∀x ∈ E, α1(x) ≤ α(x) ≤ α2(x) , and

∫
E

α(x) dx = Ao ,

∀ρ, ∀x ∈ E, ϕρ
1(x) ≤ ϕρ(x) ≤ ϕρ

2(x) , and ∀ρ,

∫
E

ϕρ(x) dx = φρ
o .

Quite similarly to the previous case, similar optimality conditions are straight-
forwardly obtained for this enriched formalism:



α1(x) < αo(x) < α2(x) =⇒
ρ=r∏
ρ=1

pρ
x(ϕ

ρ
o(x)) = λ ,

ρ=r∏
ρ=1

pρ
x(ϕ

ρ
o(x)) > λ =⇒ αo(x) > α1(x) ,

ρ=r∏
ρ=1

pρ
x(ϕ

ρ
o(x)) < λ =⇒ αo(x) < α2(x) .
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and


ϕ%
1(x) < ϕ%

o(x) < ϕ%
2(x) =⇒ αo(x)

(
ρ6=%∏

1≤ρ≤r

pρ
x(ϕ

ρ
o(x))

)
p%

x
′(ϕ%

o(x)) = η% ,

αo(x) >
η%(

ρ6=%∏
1≤ρ≤r

pρ
x(ϕ

ρ
o(x))

)
p%

x
′(ϕ%

1(x))

=⇒ ϕ%
o(x) > ϕ%

1(x) ,

αo(x) <
η%(

ρ6=%∏
1≤ρ≤r

pρ
x(ϕ

ρ
o(x))

)
p%

x
′(ϕ%

2(x))

=⇒ ϕ%
o(x) < ϕ%

2(x) ,

for all % ∈ {1 . . . r}. But these equations are uneasy to invert. In this section,
an iterative optimization process will be proposed. For this process, a step
will consist in a min-max optimization of target strategy within the strategy
of one type of resource (alone). For the concerned step, the strategy of the
other types of resource are maintained to the value of the previous step. This
method can be implemented simply as a direct extension of the main algorithm
described in this paper. However, the process constructs a searcher strategy
more and more efficient, increasing continuously the worse game value. The
final process steps yield both an optimal multi-type searcher strategy and an
optimal target strategy.

Process step definition: Number p will represent a processing step index.
Values of p are non negative integers. For a given value p, the unique integer
ρ ∈ {1, . . . , r}, such that p − ρ is a r-multiple, is denoted p[r]. Functional

sequence
(
α(p)

)
p
and

(
ϕρ

(p)

)
ρ,p

and game evaluation sequence (V(p))p are defined
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as follows:


α(0) undefined ; ∀ρ, ϕρ
(0) =

ϕρ
1 + ϕρ

2

2
; V(0) undefined ,

α(p+1) ∈ arg max
α

min
ϕp[r]

∫
E

α(x)


ρ6=p[r]∏

1≤ρ≤r

pρ
x(ϕ

ρ
(p)(x))


 pp[r]

x (ϕp[r](x)) dx

ϕ
p[r]
(p+1) ∈ arg min

ϕp[r]
max

α

∫
E

α(x)


ρ6=p[r]∏

1≤ρ≤r

pρ
x(ϕ

ρ
(p)(x))


 pp[r]

x (ϕp[r](x)) dx

∀ρ 6= p[r], ϕρ
(p+1) = ϕρ

(p) .

V(p+1) =

∫
E

α(p+1)(x)

(
ρ=r∏
ρ=1

pρ
x(ϕ

ρ
(p+1)(x))

)
dx

This sequence is obviously computable by means of the algorithm, since it cor-
responds to a sequence of one-type game optimization. However, this sequence
has a good increaseness property on V. As a direct consequence of definition,
all choice of ϕp[r] verifies the inequality:

V(p+1) ≤ max
α

∫
E

α(x)


ρ6=p[r]∏

1≤ρ≤r

pρ
x(ϕ

ρ
(p)(x))


 pp[r]

x (ϕp[r](x)) dx .

In particular, setting ϕp[r] = ϕ
p[r]
(p) permits to recover V(p). Hence the property:

∀p ≥ 1, V(p) ≥ V(p+1)

Since (V(p))p is a sequence of non negative number, it then admits a limit
denoted V(∞). We are going to show that the last strategies α(p) and ϕρ

(p), for
p ∼ ∞, verify the optimality equations. Let us define:

V(ϕ) = max
α

∫
E

α(x)

(
ρ=r∏
ρ=1

pρ
x(ϕ

ρ(x))

)
dx ,

then the study of the algorithm behavior relies on the following lemmas.
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Lemma 3 The function V is continue.

The V function is a max of continuous functions and thus is itself continuous.

Lemma 4 The function V is convex.

proof: Let ϕa and ϕb be two resource sharing functions. Let θ ∈ [0, 1]. From
the concavity of wρ

x, property:

wρ
x(θϕ

ρ
a(x) + (1 − θ)ϕρ

b(x)) ≥ θwρ
x(ϕ

ρ
a(x)) + (1 − θ)wρ

x(ϕ
ρ
b(x))

holds true for each ρ ∈ {1, . . . , r}. It follows:

ρ=r∑
ρ=1

wρ
x(θϕ

ρ
a(x)+(1−θ)ϕρ

b (x)) ≥ θ

ρ=r∑
ρ=1

wρ
x(ϕ

ρ
a(x))+(1−θ)

ρ=r∑
ρ=1

wρ
x(ϕ

ρ
b(x)) .

Now, exp is a convex and increasing function and thus:

ρ=r∏
ρ=1

pρ
x(θϕ

ρ
a(x) + (1 − θ)ϕρ

b(x)) ≤ θ

ρ=r∏
ρ=1

pρ
x(ϕ

ρ
a(x)) + (1 − θ)

ρ=r∏
ρ=1

pρ
x(ϕ

ρ
b(x)) .

It follows:∫
E

α(x)

(
ρ=r∏
ρ=1

pρ
x(θϕ

ρ
a(x) + (1 − θ)ϕρ

b(x))

)
dx ≤ θV(ϕρ

a(x))+(1−θ)V(ϕρ
b (x)) .

Ending the proof.

222

Lemma 5 Let % ∈ {1, . . . , r} and ϕρ be fixed for ρ 6= %. Assume α1 > 0.
Then, the function ϕ% 7→ V(ϕ) is strictly convex. In particular, there is a
unique minimizer for the function ϕ% 7→ V(ϕ).

proof: Functions ϕρ are given for ρ 6= %. Let ϕ%
a and ϕ%

b be two distinct (i.e. the
difference between ϕ%

a and ϕ%
b has a non-zero measure) resource sharing
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functions for resource %. Let θ ∈]0, 1[. From the concavity of w%
x and

since exp is a convex function, we have:

p%
x (θϕ%

a(x) + (1 − θ)ϕ%
b(x))

∏
ρ6=%

pρ
x (ϕρ(x)) ≤ θp%

x (ϕ%
a(x))

∏
ρ6=%

pρ
x (ϕρ(x)) +

(1 − θ)p%
x (ϕ%

b(x))
∏
ρ6=%

pρ
x (ϕρ(x)) .

On the other hand, the function exp is also strictly convex and some
results may be refined:


|m − n| ≥ ε ⇒ exp(θm + (1 − θ)n) ≤ exp(θε)

1 + θ(exp ε − 1)
(θ exp m +

(1 − θ) exp n) ,

∀ε > 0,
exp(θε)

1 + θ(exp ε − 1)
< 1 .

Now, w%
x is increasing. Since ϕ%

a and ϕ%
b are measurably distinct, there is

then a non negligible set ε such that:

x ∈ ε ⇒ |w%
x (ϕ%

a(x)) − w%
x (ϕ%

b(x))| ≥ ε .

It follows:

∀x ∈ ε, p%
x (θϕ%

a(x) + (1 − θ)ϕ%
b(x))

∏
ρ6=%

pρ
x (ϕρ(x)) ≤ exp(θε)

1 + θ(exp ε − 1)
×

(
θp%

x (ϕ%
a(x))

∏
ρ6=%

pρ
x (ϕρ(x)) + (1 − θ)p%

x (ϕ%
b(x))

∏
ρ6=%

pρ
x (ϕρ(x))

)
.
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Integrating on ε and E \ ε, we thus have:∫
E

α(x)p%
x (θϕ%

a(x) + (1 − θ)ϕ%
b(x))

∏
ρ6=%

pρ
x (ϕρ(x)) dx ≤

θ

∫
E

α(x)p%
x (ϕ%

a(x))
∏
ρ6=%

pρ
x (ϕρ(x)) dx+

(1 − θ)

∫
E

α(x)p%
x (ϕ%

b(x))
∏
ρ6=%

pρ
x (ϕρ(x)) dx +

(
exp(θε)

1 + θ(exp ε − 1)
− 1

)∫
ε

α(x)
(
θp%

x (ϕ%
a(x)) +

(1 − θ)p%
x (ϕ%

b(x))
)∏

ρ6=%

pρ
x (ϕρ(x)) dx .

Since
(

exp(θε)
1+θ(exp ε−1)

− 1
)

< 0, it follows:

V(ϕρ|ρ<%, θϕ
%
a + (1 − θ)ϕ%

b , ϕ
ρ|ρ>%) ≤

θV(ϕρ|ρ<%, ϕ
%
a, ϕ

ρ|ρ>%) + (1 − θ)V(ϕρ|ρ<%, ϕ
%
b , ϕ

ρ|ρ>%)+(
exp(θε)

1 + θ(exp ε − 1)
− 1

)∫
ε

α1(x)
(
θp%

x (ϕ%
a(x)) +

(1 − θ)p%
x (ϕ%

b(x))
)∏

ρ6=%

pρ
x (ϕρ(x)) dx .

Now, ε is non negligible and α1 > 0, so that:

V(ϕρ|ρ<%, θϕ
%
a + (1 − θ)ϕ%

b , ϕ
ρ|ρ>%) <

θV(ϕρ|ρ<%, ϕ
%
a, ϕ

ρ|ρ>%) + (1 − θ)V(ϕρ|ρ<%, ϕ
%
b , ϕ

ρ|ρ>%) ,

which achieves the proof of lemma 5.

222

Now, let ϕ(∞) ∈ limp→∞ ϕ(p) a value of adherence of the sequence (ϕ(p))p. Then,
we can suppose ϕ(∞) ∈ limp→∞ ϕ(rp+1), without loss of generality. Then, let
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(un)n be increasing integer sequence, such that limn→∞ ϕ(run+1) = ϕ(∞). By
hypothesis:

ϕ1
(run+1) = arg min

ϕ1
V
(
ϕ1, ϕρ

(run+1)|ρ>1

)
.

Thus:
∀ϕ1, V

(
ϕ1, ϕρ

(run+1)|ρ>1

)
≥ V (ϕ(run+1)

)
.

Finally, the continuity of V yields ∀ϕ1, V
(
ϕ1, ϕρ

(∞)|ρ>1

)
≥ V (ϕ(∞)

)
and:

ϕ1
(∞) = arg min

ϕ1
V
(
ϕ1, ϕρ

(∞)|ρ>1

)
.

On the other hand, also holds from definition:

∀ϕ2, V
(
ϕ1

(run+2), ϕ
2, ϕρ

(run+2)|ρ>2

)
≥ V (ϕ(run+2)

)
. (24)

Now, ϕρ
(run+2) = ϕρ

(run+1) for ρ 6= 2 and limn→∞ V (ϕ(run+2)

)
= V(∞), and since

V is a continuous function and V(∞) = V(ϕ(∞)), we have:

∀ϕ2, V
(
ϕ1

(∞), ϕ
2, ϕρ

(∞)|ρ>2

)
≥ V (ϕ(∞)

)
,

so that:
ϕ2

(∞) = arg min
ϕ2

V
(
ϕ1

(∞), ϕ
2, ϕρ

(∞)|ρ>2

)
.

So, the result of this step is quite similar to the previous one. However, it is
obtained in a different manner and the process may not be continued for the
other steps. Now, let ϕ2

(ℵ) ∈ limn→∞ ϕ2
(run+2). From equation (24) and since

∀ρ 6= 2, ϕρ
(run+2) = ϕρ

(run+1), it is easily shown that:

∀ϕ2, V
(
ϕ1

(∞), ϕ
2, ϕρ

(∞)|ρ>2

)
≥ V

(
ϕ1

(∞), ϕ
2
(ℵ), ϕ

ρ
(∞)|ρ>2

)
.

Because of the strict convexity of lemma 5, the minimizer ϕ2
(∞) is unique and

thus, ϕ2
(∞) = ϕ2

(ℵ). We have just shown that limn→∞ ϕ(run+2) = ϕ(∞). The
process may be continued and the following holds:

∀k ≥ 0, lim
n→∞

ϕ(run+k) = ϕ(∞)
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and
∀% ∈ [[1, r]] , ϕ%

(∞) = arg min
ϕ%

V
(
ϕρ

(∞)|ρ>%, ϕ
%, ϕρ

(∞)|ρ>%

)
.

Considering min-max strategies as saddle-points, the definition of α(p+1) may
be changed into:

α(p+1) ∈ arg max
α

∫
E

α(x)
∏

1≤ρ≤r

pρ
x(ϕ

ρ
(p+1)(x)) dx

So, making hypothesis limn→∞ α(un) = α(∞) and limn→∞ ϕ(un) = ϕ(∞) yields
thanks to continuousness:

α(∞) ∈ arg max
α

∫
E

α(x)
∏

1≤ρ≤r

pρ
x(ϕ

ρ
(∞)(x)) dx

Finally:

∀
(

α(∞)

ϕ(∞)

)
∈ lim

p→∞

(
α(p)

ϕ(p)

)
,



∀% , ϕ%

(∞) = arg min
ϕ%

V
(
ϕρ

(∞)|ρ>%, ϕ
%, ϕρ

(∞)|ρ>%

)
α(∞) ∈ arg max

α

∫
E

α(x)
∏

1≤ρ≤r

pρ
x(ϕ

ρ
(∞)(x)) dx

(25)

This property indicates that the results of convergence satisfy fortunately the
optimality equations.

6 Results

6.1 One-type game

In this section, we present an exemple for one-type game computed by the
basic algorithm. The search space E is a set of 30 × 20 cells. Values Ao = 1
and φo = 30 are used. The local bounds α1, α2, ϕ1 and ϕ2 are represented in
first frames of figure 4. In the figures, dark cells are representing low values,
while bright cells represent high values. The conditional probability, p, is of
exponential form px(ϕ) = exp(−ωxϕ). The visibility parameter ωx is weak for
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poor detection and high for good detection. The parameter ω is represented by
last frame of figure 4. The functions αo and ϕo obtained after convergence are
represented in figures 5. Again, low values correspond to dark cells whereas
bright cells represent high values. Moreover, the color of the cell contours
indicate if bounds are reached or not. Blue contour on cell x means ϕo(x) =
ϕ1(x) or αo(x) = α1(x). Green contour on cell x signifies ϕ1(x) < ϕo(x) <
ϕ2(x) or α1(x) < αo(x) < α2(x). Red contour on cell x corresponds to ϕo(x) =
ϕ2(x) or αo(x) = α2(x).

α1 α2 ϕ1 ϕ2 Parameter ω

Figure 4: Game description.

αo ϕo

Figure 5: Strategies.

6.2 Multi-type game

In this section, we present an exemple for a two-type game computed by the
iterated algorithm. The search space E is a set of 30 × 20 cells. Two types
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of resources, a and b, are used. The global constraints are given by Ao = 1,
φa

o = 30 and φb
o = 20. The local bounds α1 and α2 are represented in the two

first frames of figure 6. The local bounds ϕa
1, ϕa

2, ϕb
1 and ϕb

2 are represented in
figure 7. The conditional probabilities, pa and pb, are still of exponential form,
pa

x(ϕ
a) = exp(−ωa

xϕ
a) and pb

x(ϕ
b) = exp(−ωb

xϕ
b). The parameters ωa and ωb

are represented by the two last frames of figure 6. The functions α(∞), ϕa
(∞)

and ϕb
(∞) obtained after convergence are represented in figures 8.

α1 α2 Parameter ωa Parameter ωb

Figure 6: Game description.

ϕa
1 ϕa

2 ϕb
1 ϕb

2

Figure 7: Game description.
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A Computing αηλ
min, αηλ

max and ϕηλ.

The purpose of this section is to give a systematic method for computing αηλ
min,

αηλ
max and ϕηλ, when variables η and λ are given (proofs are left to the reader).

Theoretically, this problem is very simple, but implementation is uneasy because lot
of cases have to be checked. So, let η, λ and x ∈ E be given. Five main cases are
considered.

Case I: p−1
x (λ) < ϕ1(x).

Values of αηλ
min(x) and αηλ

max(x) are directly stated:

αηλ
min(x) = αηλ

max(x) = α1(x) .

For defining ϕηλ(x), three subcases are considered:
case a: α1(x) < η

p′x(ϕ1(x)) . Then ϕηλ(x) = ϕ1(x).

case b: η
p′x(ϕ1(x)) ≤ α1(x) ≤ η

p′x(ϕ2(x)) . Then ϕηλ(x) = p′x
−1
(

η
α1(x)

)
.

case c: α1(x) > η
p′x(ϕ2(x)) . Then ϕηλ(x) = ϕ2(x).

Case II: p−1
x (λ) = ϕ1(x).

Four subcases are considered here:
case a: η

p′x(ϕ1(x)) > α2(x). Then ϕηλ(x) = ϕ1(x), αηλ
min(x) = α1(x) and

αηλ
max(x) = α2(x).

case b: α1(x) ≤ η
p′x(ϕ1(x)) ≤ α2(x). Then ϕηλ(x) = ϕ1(x), αηλ

min(x) = α1(x) and

αηλ
max(x) = η

p′x(ϕ1(x)) .

case c: η
p′x(ϕ1(x)) < α1(x) ≤ η

p′x(ϕ2(x)) . Then αηλ
min(x) = αηλ

max(x) = α1(x) and

ϕηλ(x) = p′x
−1
(

η
α1(x)

)
.

case d: η
p′x(ϕ2(x)) < α1(x). Then αηλ

min(x) = αηλ
max(x) = α1(x) and

ϕηλ(x) = ϕ2(x).
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Case III: ϕ1(x) < p−1
x (λ) < ϕ2(x).

First, define the numbers ϕL and ϕR by:


α1(x) < η
p′x(ϕ1(x)) ⇒ ϕL = ϕ1(x) ,

η
p′x(ϕ1(x)) ≤ α1(x) ≤ η

p′x(ϕ2(x)) ⇒ ϕL = p′x
−1
(

η
α1(x)

)
,

α1(x) > η
p′x(ϕ2(x)) ⇒ ϕL = ϕ2(x) ,

and 


α2(x) > η
p′x(ϕ2(x)) ⇒ ϕR = ϕ2(x) ,

η
p′x(ϕ1(x)) ≤ α2(x) ≤ η

p′x(ϕ2(x)) ⇒ ϕR = p′x
−1
(

η
α2(x)

)
,

α2(x) < η
p′x(ϕ1(x)) ⇒ ϕR = ϕ1(x) .

Then, three cases are considered:
case a: ϕL > p−1

x (λ). Then αηλ
min(x) = αηλ

max(x) = α1(x) and ϕηλ(x) = ϕL.
case b: ϕL ≤ p−1

x (λ) ≤ ϕR. Then αηλ
min(x) = αηλ

max(x) = η

p′x(p−1
x (λ)) and

ϕηλ(x) = p−1
x (λ).

case c: ϕR < p−1
x (λ). Then αηλ

min(x) = αηλ
max(x) = α2(x) and ϕηλ(x) = ϕR.

Case IV: p−1
x (λ) = ϕ2(x).

Four subcases are considered here:
case a: η

p′x(ϕ2(x)) < α1(x). Then ϕηλ(x) = ϕ2(x), αηλ
min(x) = α1(x) and

αηλ
max(x) = α2(x).

case b: α1(x) ≤ η
p′x(ϕ2(x)) ≤ α2(x). Then ϕηλ(x) = ϕ2(x), αηλ

min(x) = η
p′x(ϕ2(x))

and
αηλ

max(x) = α2(x).
case c: η

p′x(ϕ1(x)) ≤ α2(x) < η
p′x(ϕ2(x)) . Then αηλ

min(x) = αηλ
max(x) = α2(x) and

ϕηλ(x) = p′x
−1
(

η
α2(x)

)
.

case d: η
p′x(ϕ1(x)) > α2(x). Then αηλ

min(x) = αηλ
max(x) = α2(x) and

ϕηλ(x) = ϕ1(x).

Case V: p−1
x (λ) > ϕ2(x).

Values of αηλ
min(x) and αηλ

max(x) are directly stated:

αηλ
min(x) = αηλ

max(x) = α2(x) .

For defining ϕηλ(x), three subcases are considered:
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case a: α2(x) > η
p′x(ϕ2(x)) . Then ϕηλ(x) = ϕ2(x).

case b: η
p′x(ϕ1(x)) ≤ α2(x) ≤ η

p′x(ϕ2(x)) . Then ϕηλ(x) = p′x
−1
(

η
α2(x)

)
.

case c: α2(x) < η
p′x(ϕ1(x)) . Then ϕηλ(x) = ϕ1(x).

B Proof of lemma 2

Only the first implication is proven, since the other case is similar. Now, let dη < 0
and (a, f) ∈ Hx

η ∩ Λx
λ. From lemma 1 exists (a + δa, f + δf), with δa ≥ 0 and δf ≤ 0,

such that (a + δa, f + δf) ∈ Hx
η+dη ∩ Λx

λ. Property (26) and (27) are now proven in
order to specify variations δa and δf (refer to figure 9 for some illustration).

a′ ≥ a +
2dη

p′x(ϕ2(x))
f′ ≤ f , ϕ1(x) < f , f′ < ϕ2(x)


⇒ (a′, f′) /∈ Hx

η+dη . (26)

ϕ1(x)

a

≤ 2|η|
α1(x)m′′

x

α2(x)

ϕ2(x)

α1(x)

Λx
λ

Hx
η+dη

Hx
η

2η
p′

x(ϕ2(x))

a a′

Eq. (27)Eq. (26)

a′Λx
λ

α1(x)

Hx
η+dη

ϕ1(x)

Hx
η

α2(x)

ϕ2(x)

Figure 9: Proof of implications

proof: We now make the hypotheses of the implication (26). By definition of
Hx

η , the hypothesis ϕ1(x) < f yields a ≥ η
p′x(f) . Thus, a′ ≥ η

p′x(f) + 2dη
p′x(ϕ2(x))

holds true. Since p′ < 0, property a′p′x(f′) ≤
(

η
p′x(f) + 2dη

p′x(ϕ2(x))

)
p′x(f) is ob-

tained. Now, p′x(ϕ2(x)) ≥ p′x(f) and a′p′x(f′) ≤ η + 2dη < η + dη. Property

PI n˚1403



42 Frédéric Dambreville , Jean-Pierre Le Cadre

a′p′x(f′) < η + dη added to the hypothesis f′ < ϕ2(x) yields (a′, f′) /∈ Hx
η+dη,

thanks to definition of Hx
η+dη.

222

a′ ≥ a

f′ ≤ f +
2dη

α1(x)m′′
x


⇒ (a′, f′) /∈ Hx

η+dη . (27)

proof: Make both the hypotheses a′ ≥ a and f′ ≤ f + 2dη
α1(x)m′′

x
. Since p′x is increas-

ing, the property a′p′x(f′) ≤ ap′x
(
f + 2dη

α1(x)m′′
x

)
holds true. A first order deriva-

tion of p′x on variable f then yields a′p′x(f′) ≤ ap′x(f) + ap′′x(f) 2dη
α1(x)m′′

x
. Now,

ap′′x(f)
α1(x)m′′

x
≥ 1 and consequently ap′′x(f) 2dη

α1(x)m′′
x
≤ 2dη < dη. Finally, it follows

a′p′x(f′) < ap′x(f) + dη. Two cases appear. Before going on with them, re-
mark that f′ < f, consequently to hypothesis f′ ≤ f + 2dη

α1(x)m′′
x
. First case:

f > ϕ1(x). Then, by definition of Hx
η , a ≥ η

p′x(f) holds true. Thus ap′x(f) ≤ η

and a′p′x(f′) < η + dη. Properties f′ < f and f ≤ ϕ2(x) yields f′ < ϕ2(x). Ac-
cordingly to definition of Hx

η+dη, property (a′, f′) /∈ Hx
η+dη holds from f′ < ϕ2(x)

and a′p′x(f′) < η + dη. Second case: f = ϕ1(x). Then hold f′ < ϕ1(x) and
consequently (a′, f′) /∈ Hx

η+dη.

222

Implications (26) and (27) are now proven. Three case are then considered (refer
to figure 10). First, if f = ϕ1(x), definition (12) yields (a, f) ∈ Hx

η ⇒ (a, f) ∈ Hx
η+dη,

whenever dη < 0. Thus, choices δa = 0 and δf = 0 are fitting and lemma holds. Sec-
ondly, assume ϕ1(x) < f < ϕ2(x). Hypothesis f′ ≤ f then yields f′ < ϕ2(x). In other
word, the only two hypothesis f′ ≤ f and a′ ≥ a + 2dη

p′x(ϕ2(x)) are then sufficient to fulfill
implication (26). Combined to (27), it signifies that (a′, f′) /∈ Hx

η+dη (where a′ ≥ a

and f′ ≤ f), whenever a′ ≥ a + 2dη
p′x(ϕ2(x)) or f′ ≤ f + 2dη

α1(x)m′′
x
. It follows that variations

δa and δf verify δa ≤ 2dη
p′x(ϕ2(x)) and δf ≥ 2dη

α1(x)m′′
x
. Again, lemma holds. At last, make

hypothesis f = ϕ2(x). Compared to previous case, hypothesis f′ < ϕ2(x) is necessary
to check implication (26). Combined to (27), it signifies that either δf = 0 with no
constraint on δa , or 0 > δf ≥ 2dη

α1(x)m′′
x

with constraint δa ≤ 2dη
p′x(ϕ2(x)) on δa. Hypothe-

sis δf 6= 0 yields also the lemma. But what happen if δf = 0? In such situation, curve
Λx

λ intersects both curves Hx
η and Hx

η+dη on their upper flat part (refer to figure 10).
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On the one hand, suppose a < η+dη
p′x(ϕ2(x)) . Then

(
η+dη

p′x(ϕ2(x)) , f
)
∈ Λx

λ (the flat part of

Λx
λ is an interval). Hence

(
η+dη

p′x(ϕ2(x)) , f
)
∈ Hx

η+dη ∩ Λx
λ. Now, definition of Hx

η yields

a ≥ η
p′x(ϕ2(x)) . Thus η+dη

p′x(ϕ2(x)) − a ≤ dη
p′x(ϕ2(x)) < 2dη

p′x(ϕ2(x)) . In other word, the choices

δa = η+dη
p′x(ϕ2(x)) − a and δf = 0 are fitting and yield the lemma. On the other hand,

suppose a ≥ η+dη
p′x(ϕ2(x)) . Consequently, (a, f) ∈ Hx

η+dη. Since then (a, f) ∈ Hx
η+dη ∩ Λx

λ,
variations δa = 0 and δf = 0 are fitting and lemma holds.

Case 2Case 1 Case 3

α2(x)

ϕ1(x)

ϕ2(x)

Hx
η

Λx
λ

Hx
η+dη

α1(x)

Hx
η

ϕ2(x)

ϕ1(x)

α1(x)α2(x)α1(x)

ϕ2(x)

ϕ1(x)

Hx
η

Λx
λ

Hx
η+dη

Λx
λ

Hx
η+dη

α2(x)

Figure 10: Proof of lemma 2

C Convexity of wρ
x = − log pρ

x

When search efforts vary from ϕ to ϕ + dϕ, the non-detection probability may be
rewritten:

pρ
x(ϕ + dϕ) = pρ

x(ϕ)pρ
x(dϕ|ϕ) ,

where pρ
x(dϕ|ϕ) represents the elementary probability of non-detection for a new

effort dϕ, knowing that ϕ resources have already been in use. It is assumed in this
paper, that pρ

x(dϕ|ϕ) is constant or increases with ϕ. The last case means that
resources concentration lowers the detection power of these resources: detection
holds with waste. On the other hand, the first case means that the detection
power of the resources does not depend on their concentration: detection holds
without waste. This hypothesis is commonly used in the literature. Now, writting
pρ

x(dϕ|ϕ) = 1 − ωρ
x(ϕ)dϕ, the following is obtained:

dpρ
x

pρ
x

= −ωρ
x(ϕ)dϕ .
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It follows d log pρ
x

dϕ = −ωρ
x(ϕ). Increaseness hypothesis made on pρ

x(dϕ|ϕ) yields the

decreseness of ωρ
x(ϕ). Then holds the concavity of wρ

x = − log pρ
x .
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