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Abstract – The classical particle filter deals with the es-
timation of one state process conditionally to a realization
of one observation process. We extend it here to the esti-
mation of multiple state processes given realizations of sev-
eral kinds of observation processes. The new algorithm is
used to track with success multiple targets in a bearings-
only context. Making use of its abilities to mix different
types of observations, we then investigate how to join pas-
sive and active measurements to improve tracking results.
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1 Introduction
Multitarget tracking (MTT) deals with state estimation

of an unknown number of moving targets. The available
measurements may both arise from the targets if they are
detected, and from clutter. To perform multitarget track-
ing the observer has at his disposal a huge amount of data,
possibly collected on multiple receivers. Elementary mea-
surements are receiver outputs, e.g., bearings, ranges, time-
delays, Dopplers, etc. But the main difficulty comes from
the assignment of a given measurement to a target model.
For critical situations, these assignments are unknown, as
are the true target models. This is a neat departure from
classical estimation problems. Thus, two distinct problems
have to be solved jointly: data association and estimation.
As long as the association is considered in a deterministic
way, the hypothesis associations must be exhaustively enu-
merated, which leads to a NP-hard problem (as in JPDAF

and MHT algorithms [3] for instance). As soon as the as-
sociation variables are considered as stochastic variables
and moreover statistically independent like in the Proba-
bilistic MHT (PMHT), the complexity is reduced. However,
practically, the above algorithms may suffer from non lin-
ear state or measurement models and non Gaussian state
or measurement noises. Under such assumptions, particle
filters are particulary adapted. They mainly consist in prop-
agating a weighted set of particles which approximates the

probability density of the state conditionally to the obser-
vations. Particle filtering can be applied under very general
hypotheses, is able to cope with heavy clutter, and is very
easy to implement. Such filters have been used in very var-
ious areas for Bayesian filtering, under different names: the
bootstrap filter for target tracking in [4] and the Conden-
sation algorithm in computer vision [6] are two examples
among others. Despite a long history of studies, in which
the ability of particle filter to track multiple posterior modes
is claimed, it is striking that the extension of the particle fil-
ter to multiple target tracking has not received much atten-
tion. In image analysis, a probabilistic exclusion principle
has been developed in [8] to track multiple objects but the
algorithm is very dependent on the observation model and
seems costly to extend for more than two objects. We pro-
pose here a general algorithm for multitarget tracking in the
passive sonar context and take advantage of its versatility
to extend it to multiple receivers. This work is organized as
follows. In section II, we recall the principles of the basic
particle filter. In section III, we present the MTPF, our ex-
tension of this filter to multiple targets. The new algorithm
combines the two major steps, prediction and weighting, of
the classical particle filter with a Gibbs sampler-based esti-
mation of the assignment probabilities. Results in bearings-
only context with moderate or high clutter validate the algo-
rithm. To end this section, we propose to add two statistical
tests to decide if a target has appeared or disappeared of
the surveillance area. Carrying on with the approach of the
MTPF, the MRMTPF, our extension to multi-receiver data in
the context of multiple targets, is presented in section IV.
The suitable quantity and distribution of active measure-
ments are then studied in a particular scenario to improve
the performances obtained with passive measurements only.

2 The basic particle filter
For the sake of completeness, the basic particle filter is

now briefly reviewed. We consider a dynamic system rep-
resented by the stochastic process (Xt) 2 Rnx whose tem-
poral evolution is given by the state equation (1). It is ob-
served at discrete times via realizations of the stochastic
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Figure 1: Basic particle filter with adaptive resampling .

process (Yt) 2 Rny governed by the measurement equa-
tion (2):

Xt = Ft(Xt�1; Vt); (1)

Yt = Ht(Xt;Wt): (2)

The two processes (Vt) 2 Rnv and (Wt) 2 Rnw are only
supposed to be independent white noises. Moreover, it is to
be noted that no linearity hypothesis on F t and Ht is done.
We will denote by Y0:t the sequence of the random variables
(Y0; : : : ; Yt) and by y0:t one realization of this sequence.
Our problem consists in computing at each time t the con-
ditional densityLt of the state Xt given all the observations
accumulated up to t, i.e., Lt = p(XtjY0 = y0; : : : ; Yt =
yt), as well as estimating any functional g(Xt) of the state
by the expectation E(g(Xt )jY0:t). The Recursive Bayesian
filter, also named Optimal Filter, resolves exactly this prob-
lem in two steps at each time t. Suppose we know Lt�1.
The prediction step is done according to the following equa-
tion:

p(Xt = xtjY0:t�1 = y0:t�1) =Z
Rnx

p(Xt = xtjXt�1 = x)Lt�1(x)dx:
(3)

The observation yt enables us to correct this prediction us-
ing Bayes’s rule:

Lt(xt) =
p(Yt = ytjxt)p(Xt = xtjy0:t�1)R

Rnx
p(Yt = ytjx)p(Xt = xjy0:t�1)dx

: (4)

These equations provide a closed-form recursion if we as-
sume restrictive hypothesis such as Kalman Filter’s ones.
The functions Ft and Gt are then supposed to be linear and
the noises Vt and Wt to be Gaussian. Unfortunately this
modeling is not appropriate in many problems in signal and

image processing, which makes the calculation of the inte-
grals in (3) and (4) infeasible (no closed-form). The orig-
inal particle filter, named bootstrap filter [4], proposes to
approximate the densities (Lt)t by a finite weighted sum of
N Dirac densities centred on elements of Rnx , named par-
ticles. The application of the particle filter requires that one
knows how:

� to sample from initial prior marginal p(X0);

� to sample from p(Vt) for all t;

� to compute p(Yt = ytjxt) for all t through a known
function lt such that lt(y;x) / p(Yt = yjXt = x)
where missing normalization must not depend on x.

The algorithm then consists in making evolve the particle
set St = (snt ; q

n
t )n=1;:::;N , where st 2 Rnx is the particle

and qt its weight, such that the density Lt can be approxi-
mated by the densityLSt =

PN
n=1 q

n
t Æsnt . The two steps of

prediction and correction are discretized as described in fig-
ure 1. The weak convergence of the probability densityLSt

towards Lt when N ! 1 with rate 1=
p
N can be proved.

To avoid the degeneracy of the particle set, i.e., only few
particles with high weights and the others with very small
ones, a resampling is done in an adaptive way when the
number of effective particles, estimated by N̂eff , is under
a given threshold [2]. Besides the discretization of the fil-
tering integrals, the use of such particles enables to voice
many hypothesis on the position of the object and to keep
in the long term only the particles whose position is likely
given the sequence of observations. In bootstrap filter, the
particles are “moved” by sampling from the dynamics (1),
and importance sampling theory shows that the weighting
is only based on likelihood evaluations. In the most general
setting [2], the displacement of particles is obtained by sam-
pling from an appropriate density f which might depend on



the data as well. The complete procedure is summarized in
figure 1. The reader will find more details on the different
filters in [4], [6] or [2] and on adaptive resampling in [7]
and [2]. After these recalls, we propose an extension of this
algorithm to multiple-object tracking.

3 Multitarget particle filter
3.1 Notations

Let M be the number of targets to track, assumed to be
known and fixed for the moment. The state vector we have
to estimate is made by concatenating the state vector of each
target. At time t, Xt = (X1

t ; : : : ; X
M
t ) follows the state

equation (1) decomposed in M partial equations:

X i
t = F i

t (X
i
t�1; V

i
t ) 8 i = 1; : : : ;M: (5)

The noises (V i
t ) and (V i0

t ) are only supposed to be white
both temporally and spatially, independent for i 6= i 0.
The observation vector at time t is denoted by y t =
(y1t ; : : : ; y

mt

t ). Following the seminal ideas of R. Streit
and T. Luginbuhl [10], we introduce the stochastic vector
Kt 2 f1; : : : ;Mgmt such that Kj

t = i if yjt is issued from
the ith target. In this case, yjt is a realization of the stochas-
tic process:

Y j
t = H i

t (X
i
t ;W

j
t ) if Kj

t = i: (6)

Again, the noises (W j
t ) and (W j0

t ) are only supposed to be
white noises, independent for j 6= j 0. We assume that the
functions H i

t are such that they can be associated to func-
tional forms lit such that
lit(y;x) / p(Y j

t = yjKj
t = i;X i

t = x). We make the
assumption that one measurement can originate from one
target or from the clutter, and that one target can produce
zero or several measurements at one time. For that, we
dedicate the model 0 to false alarms. The false alarms
are supposed to be uniformly distributed in the observa-
tion area. Their number is assumed to arise from a Pois-
son density of parameter �V where V is the volume of
the observation area and � the number of false alarms per
volume unity. Of course, we do not associate any kine-
matic model to false alarms and then no particles repre-
sent their density. Let �t 2 [0; 1]M+1 be defined by
�it = P(Kj

t = i) for all j = 1; : : :mt. This definition
implicitly assumes that the probabilities � it are independent
of the measurements as their indexation is arbitrary. The
assumptions on the observation generation imply that m t

may differ fromM and that the association is exclusive and
exhaustive. In particular,

PM
i=0 �

i
t = 1. Furthermore, it

is assumed that the assignment vector Kt has independent
components (see[10] and [11]). � 0

t is a constant that can be
computed:

�0t = P(Kj
t = 0) =

mtX
l=0

l

mt

exp (��V )
(�V )l

l!
(7)

where N 0
t is the number of measures arising from the clut-

ter at time t. To estimate the density
Lt = p(Xt = (X1

t ; : : : ; X
M
t )jy0:t), we propose to use par-

ticles whose dimension is the sum of the ones of the individ-
ual state spaces corresponding to each target. Each of these
concatenated vectors then gives jointly a representation of
all targets. Let us describe the multiple target particle filter
(MTPF). Details on the choices and motivations which have
led to the MTPF can be found in [5].

3.2 The algorithm
The initial particle set S0 = (sn0 ; 1=N)n=1;:::;N is such

that each component sn;i0 for i = 1; : : : ;M is sampled from
p(X i

0) independently from the others. Assume we have ob-
tained St�1 = (snt�1; q

n
t�1)n=1;:::;N with

PN
n=1 q

n
t�1 = 1.

Each particle is a vector of dimension
PM

i=1 n
i
x where we

denote by sn;it�1 the ith component of snt�1 and where nix
designates the dimension of target i. The prediction is per-
formed by sampling from some proposal density f . In boot-
strap filter case, f coincides with the dynamics (5):

For n = 1; : : : ; N; ~snt =

0B@ F 1
t (s

n;1
t�1; v

n;1
t )

...
FM
t (sn;Mt�1 ; v

n;M
t )

1CA (8)

with (vn;it ) being realizations of (V i
t ). Examine now the

computation of the likelihood of the observations condi-
tioned by the nth particle. We can write for all n =
1; : : : ; N :

p(Yt = (y1t ; : : : ; y
mt

t )jXt = ~snt )

=

mtY
j=1

p(yjt j~snt ) /
mtY
j=1

[
�0t
V

+

MX
i=1

lit(y
j
t ; ~s

n;i
t )�it ]:

(9)

It must be noted that the first equality in (9) is true only
under the assumption of conditional independence of the
measures, which we shall make. Moreover, the normal-
ization factors between p(Y j

t = yjKj
t = i;X i

t = x) and
lit must be the same for all i to write the second equal-
ity in (9). It remains to estimate the association proba-
bilities (�it)i=1;:::;M , which can be seen as the stochastic
coefficients of the M�component mixture. To estimate
them we propose to use a Gibbs sampler whose principles
are briefly recalled (see [1] or [9] for more details). For
� = (Xt;Kt;�t), it consists in generating a Markov chain
that converges to the stationary distribution p(�jY0:t) which
cannot be sampled directly. Given a partition � 1; : : : ; �P of
�, one samples alternatively from the conditional posterior
distribution of each component of the partition. Assume the
� first elements of the Markov chain (�1; : : : ; �� ) have been
drawn. We sample the P components of ��+1 as follows:



� Initialization:

�
sn0 � p(X0)
qn0 = 1=N

n = 1; : : : ; N:

� For t = 1; : : : ; T :

Æ Proposal: sample ~snt from f(XtjXt�1 = snt�1; Yt = yt) for n = 1; : : : ; N:

Æ Weighting:

1: Initialization of the Gibbs sampler:

(
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M

i = 1; : : : ;M ;
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n=1 q

n
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t;�+1 = i) /
�

�it;� l
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j
t ;x

i
t;� ) if i = 1; : : : ;M ;

�0t =V if i = 0:

b: �1:Mt;�+1 � D((1 + ni(Kt;�+1))i=1;:::;M ) ; ni(K)
4

= ]fj : Kj = ig.

c: For each i such that 9j1; : : : ; ji=Kjl

t;�+1 = i;
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8<: �n�+1 = ~sn;it

�n�+1 =
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1
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n
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n
t�1

P
N
n=1

p(yj
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n
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t�1

n = 1; : : : ; N:
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n
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d: For each i such that @j=K j
t = i; X i
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PN

n=1 q
n
t�1Æ~sn;it

:

3: �̂it =
1

�beg��end

P�end
�=�beg

�it;� i = 1; : : : ;M:

4: lt(Yt = (y1t ; : : : ; y
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t )j~snt ) =
Qmt

j=1[
�0t
V

+
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i=1 l
i
t(y

j
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t )�̂it] n = 1; : : : ; N:

5: qnt / qnt�1
p(~snt )js

n
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n
t )

f(~stjst�1;yt)
n = 1; : : : ; N:

Æ Return bE g(Xt) =
PN

n=1 q
n
t g(~s

n
t ):

Æ Calculate N̂eff = 1P
N
n=1(q

n
t )

2
.

Æ Resampling: if N̂eff < Nthreshold :

�
snt �

PN
k=1 q

k
t Æ~skt

qnt = 1=N
n = 1; : : : ; N , else snt = ~snt for n = 1; : : : ; N

Figure 2: MTPF: multiple target particle filter with adaptive resampling.

Draw �1�+1 from p(�1jY0:t; �2� ; : : : ; �P� )
...

...
Draw �P�+1 from p(�P jY0:t; �1�+1; : : : ; �

P�1
�+1 )

In our case, at a given instant t, the partitionning of � is:8<: �j = Kj
t for j = 1; : : : ;mt;

�mt+i = �it for i = 1; : : : ;M ;
�mt+M+i = Xt for i = 1; : : : ;M:

(10)

and the algorithm is described in figure 2.

3.3 Application to bearings-only problems
with clutter

We first deal with classical bearings-only problem with
synthetic data and three targets. In the context of a slowly
maneuvering target, we have chosen a nearly-constant-
velocity model.

3.3.1 The model

The state vectors X i
t represent the coordinates and the

velocities in the x � y plane: X i
t = (xit; y

i
t; vx

i
t; vy

i
t) for

i = 1; 2; 3. For each target, the discretized state equation
associated with time period �t is:

X i
t+�t =

�
Id2 �t Id2
0 Id2

�
X i
t +

�
�t2

2 Id2
�t Id2

�
Vt;

(11)
where Id2 is the identity matrix in dimension 2 and Vt is
a Gaussian zero-mean vector of covariance matrix �V =�
�2x 0
0 �2y

�
. Let X̂ i

t be the estimation of X i
t computed by

the particle filters with g(x) = x, i.e., X̂ i
t =

PN
n=1 q

n
t ~s

n;i
t .

We use a bootstrap filter, i.e., the importance function f is
in fact the prior law p(xtjxt�1). A set of mt measurements
is available at discrete times and can be divided in two sub-



sets:

� A subset of “true” measurements which follow (12) if
they are produced by the ith target.

Yt = arctan (
xit � xobst

yit � yobst

) +Wt; (12)

whereWt is a zero-mean Gaussian noise of covariance
�2w (�w = 0:005 radians in the sequel) independent of
Vt, and xobs and yobs are the Cartesian coordinates of
the observer, which are known. We assume that the
measurement produced by one target is available with
a detection probability Pd (Pd = 0:9 in the following
simulations).

� A subset of “false” measurements which number fol-
lows a Poisson distribution with mean �V .

3.3.2 Results of the MTPF
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Figure 3: (1) Trajectories of the three targets and of the
observer; (2) The true and estimated trajectories of the three
targets with 1000 particles, adaptive resampling, Pd = 0:9,
and �V = 3.
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Figure 4: Bias, resp. std, for clutter parameter= 1; 2; 3 over
bias, resp. std obtained with no clutter obtained with 3000
particles for 30 runs; (1) Bias on x and y position for the
three targets; (2) Bias on vx and vy position for the three
targets; (3) Std on x and y position for the three targets; (4)
Std on vx and vy position for the three targets..

The initial positions of the targets and of the observer
are the following, in meters for the positions and ms�1

for the velocities: X1T
0 = (200; 1500; 1:0; �0:5);

X2T
0 = (0; 0; 1:0; 0); X3T

0 = (�200; �1500; 1:0; 0:5);
Xobs T

0 = (200; �3000; 1:2; 0:5): The observer is follow-
ing a leg by leg trajectory. Its velocity vector is constant on
each leg and modified at the following instants, so that:

(vxobs; vyobs)f200;600;900g = (�0:6; 0:3);
(vxobs; vyobs)f400;800g = (2:0; 0:3):

(13)

The dynamic noise is a normal zero-mean Gaussian vector
with �x = �y = 0:001ms�1. We use the same dynamic
noise to predict the particle. The trajectories of the three
targets and of the observer are represented in figure 3.1.
The Poisson density mean used is varying between 0 (no
clutter) and 3. We consider a total observation volume, i.e.,
the interval [�� ;�]. In this scenario, the data association
is particularly difficult: the differences between two bear-
ings issued from two different targets is often lower than
the standard deviation of the observation noise. Figure 3.2
shows a particular run of the MTPF with 1000 particles and
adaptive resampling. To compare the performances of the
algorithm according to the clutter density, we have com-
puted, for �V = 0; 1; 2; 3, the bias and the standard devi-
ation for the four components of the vector X for P = 30
different runs with 3000 particles defined by:

biasl =
1

T

TX
t=1

j 1
P

PX
p=1

(X̂ i;p
t;l �X i

t;l)j;

stdl =
1

T

TX
t=1

(
1

P

PX
p=1

X̂ i;p
t;l

2 � (
1

P

PX
p=1

X̂ i;p
t;l )

2):

(14)

These different quantities, normalized by their values ob-
tained with no clutter, are plotted against the clutter param-
eter in figure 4. For the y positions of the three targets, the
ratio of the bias with clutter over the bias with no clutter is
contained between 1 and 1:2, that is very low. For the x po-
sitions, the changes are more important but the bias is not
necessarily rising with the clutter parameter. Except for the
x and vx component of the third target, the standard devia-
tion is neither very sensitive to clutter. Morever the absolute
values of the standard deviation are very low: about 5m for
the x and y positions and about 0:003 ms�1 for the vx and
vy positions. The clutter will not be taken into account in
the next sections where we focus on the issue of varying the
number of targets, and in the next part where the problem
of multiple receivers is adressed.

3.4 Varying number of targets
Until then, the number of targets to track was considered

constant and known, and the MTPF estimates the state pro-
cesses through the indissociable steps of data association
and of estimation.



6: Disappearing test:

4 Calculate

�
D̂i
t = 1 if �̂it > Dthreshold

D̂i
t = 0 otherwise

i = 1; : : : ;M

4 For i = 1; : : : ;M , test the hypothesis (HD
0 ) against (HD

1 ) with a �2.

If (HD
1 ) is decided, replace M by M � 1 and remove the concerned particle components.

7: Appearing test:

4 Calculate N̂0
t = 1

�beg��end

P�end
�=�beg

n0t (Kt;� ).

4 Test the hypothesis (HA
0 ) against (HA

1 ) with a �2.

If (HA
1 ) is decided, replace M by M + 1 and initialize the new particle components.

Figure 5: Disappearing and appearing tests for the MTPF with varying target number.

The vector �t can then in turn help the estimation: the
disparition of one target from the surveillance area (noted
SA in the following) can be detected by a drop of corre-
sponding �t component. We will use the estimation of �t
to decide between the two following hypotheses:
� (HD

0 ) The target is present in the SA.
� (HD

1 ) The target is not present in the SA.
If the target is still present in the surveillance area, the fall
of �t can only be due to its non-detection, which occurs
with a probability 1 � Pd. Let Di

t be the binary variable
equal to 1 if the ith target has been detected at time t and 0
otherwise. Over a test interval [t1; : : : ; td] and for a given
target i, the variables Di

t1
; : : : ; Di

td
are distributed accord-

ing to a multinomial law of parameters (Pd; 1�Pd). These
variables are unknown but we can use the estimates �̂ it to
estimate them. Let us define:�

D̂i
t = 1 if �̂it > Dthreshold;

D̂i
t = 0 otherwise.

(15)

where Dthreshold is a probability threshold. The �2 test
with the variables D̂i

t1
; : : : ; D̂i

td
decides on the true hypoth-

esis. In practice, the length of the interval td � t1 must be
chosen such that (td � t1)(1 � Pd) > 4. As far as the al-
gorithm is concerned, this reduction only leads to update
M (the number of targets) and to remove the components
of the particles related to the disapearred target. On the
other hand, the arrival of a new target might be related to
an observation whose likelihood is low whatever target it
is associated with. As a result, assignment variables simu-
lated by the Gibbs sampler might be more often equal to 0.
We propose to use the values of the assignment variables to
decide between the two following hypotheses:
� (HA

0 ) A new target is arriving inside the SA.
� (HA

1 ) Any new target is arriving inside the SA.
Let N̂0

t be the estimation of N 0
t , the number of mea-

sures arising from the clutter at time t, supplied by the
Gibbs sampler N̂0

t = 1
�beg��end

P�end
�=�beg

n0t (Kt;� ) where

n0t (K)
4

= ]fj : Kj = 0g. Over an interval [t1; : : : ; td], a �2

test enables to test the adequation between the Poisson law
of parameter �V followed by (N 0

t )t=t1;:::;td and the em-
pirical law of the variables (N̂0

t )t=t1;:::;td . These two tests,
summarized in figure 5 can be integrated to the MTPF after
the step 5. Nevertheless, the initialization of the new target
based on the observation sets is a tricky problem which we
have not solved yet. We will now extend the MTPF to deal
with observation processes of different kinds.

4 Multireceiver multitarget PF
4.1 The MRMTPF

A natural extension is to consider that observations can
be issued from multiple receivers. Let R be their num-
ber. We will see that we can easily adapt the particle fil-
ter to this situation. We always consider that the M tar-
gets (their number is fixed again) obey (5). Some useful
notations must be added to modify the measurement equa-
tions. The observation vector at time t will be denoted
by yt = (y1t;r1 ; : : : ; y

mt

t;rmt ) where rj refers to the receiver

which received the j th measure. This measure is then a
realisation of the stochastic process:

Y j

t;rj
= H i

t;rj (X
i
t ;W

j
t ) if Kj

t = i: (16)

We assume the independence of the observations issued
from the different receivers. We denote by l i

t;rj
(y;x) the

functions which are proportionnal to p(Y j

t;rj
= yjKj

t =

i;X i
t = x). The likelihood of the observations condi-

tionned by the nth particle is readily obtained:

p(Yt = (y1t;r1 ; : : : ; y
mt

t;rmt )jXt = ~snt ) =

mtY
j=1

p(yj
t;rj
j~snt )

/
mtY
j=1

[
�0t
V

+

MX
i=1

lit;rj (y
j

t;rj
; ~sn;it )�it]:

(17)



There is no strong limitation on the use of the particle filter
for multireceiver and multitarget tracking: the MRMTPF is
obtained from the MTPF by replacing the likelihood func-
tions lit(y;x) by the functions li

t;rj
(y;x). Moreover it

can deal with measurements of various periodicities. We
present in the next section a scenario where bearings are
available at all times whereas range measurements are only
available at some times.

4.2 Application to problems with active and
passive measurements
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Figure 6: (1) Trajectories of the targets and of the ob-
server; (2) Difference between the noisy bearings issued
from the targets compared to the standard deviation of
the measurement noise = 0:05, i.e., 2:8 degrees; (3)
Noisy ranges simulated for T = 30 and P = 100;
(4) Estimation obtained with only bearings-measurements;
(5) Estimation obtained with bearings-measurements and
20% of range measurements; (6) Estimation obtained with
bearings-measurements and 50% of range measurements.

We consider a scenario with two targets whose bearings
made with an observer are always very closed (see figure
6.2. The trajectories of the targets and of the observer are
plotted in figure 6.1 and the initial positions are: X 1

0 =
(500; 2000; 0:3; �0:7);
X2

0 = (500; �2000; 0:3; 0:7);
Xobs

0 = (600; �7000; 0:5; 0:3): It is to be noted that the
observer does not follow a leg by leg trajectory, that renders
the estimation of the trajectories quite difficult, and a lot of
runs of the MTPF lost the track as illustrated by figure 6.4.
To solve this problem, we study the impact of adding active

measurements (here ranges). We assume that noisy ranges
are available during intervals of length T every P times,
i.e., if the current time t is such that t modP 2 [0 ;T ]. A
noisy range issued from the ith target is supposed to follow
the equation:

Rj
t =

q
xit + yit + Zt (18)

where Zt is a Gaussian noise of standard deviation equal to
�z(x

i
t + yit) with �z = 10�5. This noise modeling seems

more realistic than the constant standard deviation model-
ing generally in use for such contexts. For instance, for
T = 30 and P = 100, the simulated ranges of the two
targets are shown in figure 6.3. The evolution of the bias
and the standard deviation of the estimation errors has been
studied according to the quantity of active measures on the
one hand and to their distribution on the other hand.

4.2.1 Quantity of active measurements
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Figure 7: Bias and std on the estimation of the hidden states
(x; y; vx; vy) with 1000 particles over 20 runs: (1) Bias on
x and y position of target 1 and 2; (2) Bias on vx and vy
position of target 1 and 2; (3) Std on vx and vy position of
target 1 and 2; (4) Std on vx and vy position of target 1 and
2.

For these experimentations, we have fixed P = 100 and
taken T = 10; 20; : : : ; 100. The figures 6.(5,6) show two
particular runs with resp. 20% and 50% of active measure-
ments. Figure 7 summarizes the evolution of the bias and
the standard deviation of the estimation errors as a function
of the active measurement percentage. First, the addition
of active measurements particularly improves the estima-
tion of the components y and vy judging from the bias and
std on the total trajectories. The x and vx-positions of the
two targets are actually very close. The bearings measure-
ments do not help to dissociate them because of the diffi-
culty of data association. The range measurements enable
to discriminate the targets because of the differences be-
twen their y-position. However, for this scenario, x and vx



measurements are considerably less informative than y and
vy ones. The improvement is larger for the standard de-
viation than for the bias. The percentage of 20% (of active
measurements) appears to be a good compromise between a
significant improvement of the estimation and a reasonable
quantity of active measurements.

4.2.2 Distribution of active measurements
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Figure 8: Bias and std on the estimation of the hidden states
(x; y; vx; vy) with 1000 particles over 20 runs: (1) Bias on
x and y position of target 1 and 2; (2) Bias on vx and vy
position of target 1 and 2; (3) Std on x and y position of
target 1 and 2; (4) Std on vx and vy position of target 1 and
2.

We now look at the impact of the distribution of the ac-
tive measurements: the ratio of passive over active measure-
ments is fixed to 5 (i.e., to 20% of active measurements).
The interval length T and the period P during which ac-
tive measures are available take respectively the values
10; 20; 40; 100 and 50; 100; 200; 500. Figure 8 presents the
evolution of the bias and of the standard deviation of the
estimation errors.

First of all, if the state evolution was deterministic, the
better distribution would be to obtain active measurements
at the beginning and at the end of the scenario. In our case,
the state evolution is stochastic. We observe that the bias
and the standard deviation increase with the interval length
T , except the bias on the x-position and the std on the vx-
position for the second target. As explained before, the
scenario implies we have few information about these two
components from both the bearings and the ranges. The ac-
tive measurements should then be available as frequently as
possible, by little sets.

5 Conclusion
Two major extensions of the classical particle filter have

been presented in order to deal first with multiple targets

(MTPF) and then with multiple receivers (MRMTPF). Con-
sidering the data association from a stochastic point of view,
Gibbs sampling is the workhorse for estimating association
vectors, thus avoiding combinatorial drawbacks. Moreover,
the particle filtering performs satisfactorily even in the pres-
ence of dense clutter. A next step would be to deal with
more realistic clutter models. Two statistical tests have also
been proposed for detecting changes of the target states
(emitting or not). Even if the MTPF is quite versatile, it can
suffer from initialization problems. This drawback cannot
be completely avoided in the multitarget context and it will
be the context for future studies. Finally, MTPF has been
extended to multiple receivers and multiple measurements
(here passive and active). In this area, the effects of active
measurement distribution have been investigated. Prelimi-
nary results on this aspect show all the importance of mea-
surement scheduling.
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