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Abstract. In this paper, we embed the minimization scheme of an au-
tomatic 3D non-rigid registration method in a multi-scale framework.
The initial model formulation was expressed as a robust multiresolution
and multigrid minimization scheme. At the finest level of the multires-
olution pyramid, we introduce a focusing strategy from coarse-to-fine
scales which leads to an improvement of the accuracy in the registration
process. A focusing strategy has been tested for a linear and a non-linear
scale-space. Results on 3D Ultrasound images are discussed.

1 Introduction

Non-rigid registration can be considered as a motion estimation problem which
can be solved by minimizing an objective function. This function is the energy
which usually consists of two terms. The first term represents the interaction
between the unknown variables and the data while the second one explores
some kind of prior information. In the context of dense motion field estimation,
Mémin and Pérez [8] proposed a motion estimator which makes use of the opti-
cal flow constraint along with an associated smoothness regularizing prior. Both
terms have been constructed with an outlier rejection mechanism, originated
from robust statistics. For the minimization of their functional they use a mul-
tiresolution and multigrid scheme. The multiresolution part is dedicated to grasp
large displacements while the multigrid approach is invoked for accelerating the
estimation. Extension of this work to treat 3D data has been done by Hellier et
al [5].

In this paper, we embed the above mentioned minimization scheme in a multi-
scale framework aiming to improve the estimates by making them less sensitive
to noise of acquisition. In the same spirit, Weber and Malik [7] propose a model
for multi-scale motion estimation. They convolve an image sequence with a set
of linear, separable spatiotemporal filter kernels and apply a robust version of
the total least squares on the filtered responses in a two step method. Niessen
et al. [11] report a reconciliation of optical flow and scale-space theory. They
compute both zeroth and first order optic flow at multiple spatial and temporal
scales and they apply a scale selection criterion which attributes in each pixel
the optic flow at the chosen scale. Alvarez et al. [1] present an interpretation of
a classic optical flow method by Nagel and Enkelmann [10] as a tensor-driven
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anisotropic diffusion approach. They avoid convergence to irrelevant local min-
ima by embedding their method in a linear scale-space framework.

Our work was motivated by the application of tissue deformation tracking
during surgery using 3D ultrasound. The problem of registration (motion estima-
tion) in ultrasound images has been treated by different researchers. Morcy and
Von Ramm [9] investigate the implementation of a correlation search scheme to
estimate the 3D motion vectors and demonstrate the advantages over 2D corre-
lation search using the Sum Absolute Difference (SAD) as a similarity measure.
Strintzis and Kokkinidis [14] introduce a maximum likelihood block matching
technique which corresponds to an accurate statistical description of ultrasound
images. In [16] an adaptive mesh has been proposed for non-rigid tissue motion
estimation from ultrasound image sequences. A deformable blocking matching
algorithm has been developed which takes into consideration both similarity
measures and strain energy caused by mesh deformation. In [12], Pennec et al.
disseminate results regarding 3D Ultrasound registration using the demon’s al-
gorithm and a straightforward minimization of the sum of square of intensity
differences criterion.

Non-rigid registration of 3D Ultrasound images poses a significant challenge
due to the following shortcomings: (i) Low SNR of ultrasound images which are
characterized by Rayleigh-governed speckle noise and corrupted by Gaussian-
distributed electronic noise; (ii) motion ambiguities which arise when there is
insufficient representation of spatial information. This holds in regions of image
saturation or specular reflection and in homogeneous regions of weak acous-
tic scatterers; (iii) Speckle decorrelation. Since speckle patterns result from the
constructive and destructive interference of ultrasonic echoes from numerous
subresolvable elements, nonuniform movement of these scatterers in the tissue
volume can cause temporal decorrelation of the speckle patterns.

The algorithm which is presented in this paper is designed to overcome the
above shortcomings and lead to an accurate registration.

The paper is organized as follows. In Section 2 we present in detail the mul-
tiresolution and multigrid optimization scheme. Section 3 describes the multi-
scale framework that the optimization scheme is embedded. Section 4 is dedi-
cated to experimental results and conclusions are drawn in Section 5.

2 Primary Registration Model

2.1 Formulation of the Registration Problem

In this work, the registration problem is considered as a motion estimation prob-
lem. The optical flow hypothesis, introduced by Horn et Schunck [6], leads then
to the minimization of the following cost function:

U(w; f) =
∑
s∈S

[∇f(s, t) · ws + ft(s, t)]2 + α
∑

<s,r>∈C
||ws − wr||2, (1)

where s is a voxel of the volume, t is the temporal index of the volumes, f is
the luminance function, w is the expected 3D displacement field, S is the voxel
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lattice, C is the set of neighboring pairs and α controls the balance between
the two energy terms. The first term is the first order Taylor-expansion of the
luminance conservation equation and represents the interaction between the field
and the data, whereas the second term expresses the smoothness constraint.

Shortcomings of this formulation are well-known:

(a) The optical flow constraint (OFC) is not valid in case of large displacements
because of the linearization.

(b) The OFC might not be valid everywhere, because of the noise, the intensity
non-uniformity, and occlusions.

(c) The “real” field probably contains discontinuities that might not be pre-
served.

To cope with (b) and (c) limitations, the quadratic cost has been replaced by
robust functions. To face problem (a), a multiresolution and multigrid strategy
has been designed.

2.2 Robust Estimators

Cost function (1) does not make any difference between relevant data and in-
consistent data, and it is sensitive to noise. Therefore, robust M-estimators have
been introduced in the formulation [2]. An M-estimator is a function ρ that is
increasing on R

+, such that (i) φ(u) 4= ρ(
√
u) is strictly concave on R

+ and
(ii) limx→∞ ρ′(x) < ∞. The main benefit of robust M-estimators is the semi-
quadratic formulation that can be deduced from (i):

∃ψ ∈ C1([0,M ],R) : ∀u, ρ(u) = min
z∈[0,M ]

(
zu2 + ψ(z)

)
(2)

Two robust estimators have therefore been introduced: the first one on the
data term (ρ1) and the second one on the regularization term (ρ2). According to
(2), the minimization of the cost function (1) is equivalent to the minimization

of the augmented function, noted
?

U :

?

U(w; f) =
∑
s∈S

δs (∇f(s, t) · ws + ft(s, t))
2 + ψ1(δs)

+α
∑

<s,r>∈C
βsr (||ws − wr||)2 + ψ2(βsr), (3)

where δs and βsr are auxiliary variables acting as “weights”. This cost function
has the advantage to be quadratic with respect to w. Furthermore, when the
adequation of a data with the model is not correct, its contribution gets lower as
the associated weight δs decreases (δs = φ′1([∇f(s, t) · ws + ft]2), and function
φ′ decreases), making this formulation more robust.
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2.3 Multiresolution and Multigrid Minimization

In order to cope with large displacements, a classical incremental multiresolu-
tion procedure has been developed. A pyramid of volumes {fk} is constructed
by successive Gaussian smoothing and subsampling. At the coarsest level, the
linearization of the conservation equation can be hopefully used. For the next
resolution levels, only an increment dwk is estimated to refine estimate ŵk,
obtained from the previous level (Equation 4).

?

Uk(dwk; fk, ŵk) =
∑
s∈Sk

δk
s

(
∇fk(s+ ŵk

s , t2)dwk
s + fk(s+ ŵk

s , t2) − fk(s, t1)
)2

+ψ1(δk
s ) + α

∑
<s,r>∈Ck

βk
sr

(
||(ŵk

s + dwk
s) − (ŵk

r + dwk
r )||

)2

+ ψ2(βk
sr), (4)

Furthermore, at each level of resolution, a multigrid minimization based on
successive partitions of the initial volume is achieved (see Fig. 1). For each cube
of a given grid level ` (partition of cubes), a 12-parametric increment field is esti-
mated. The result over the grid level is a rough estimate of the desired solution,
and it is used to initialize the next grid level. This hierarchical minimization
strategy improves the quality and the convergence rate.

The partition at the coarsest grid level is initialized with a binary segmen-
tation mask of the structure of interest (template). The octree partition which
is thus defined is anatomically relevant. When we change grid level, each cube
is adaptively divided. The criterion of subdivision may be either the measure of
the way that model fits the data, or a prior knowledge such as the presence of
an important anatomical structure where estimation must be accurate. Conse-
quently, we can distinguish between the regions of interest where the estimation
must be precise and the other regions where computation efforts are useless.

3 Embedded Multi-scale Framework

The multigrid scheme which has already been described is bound to a good
initialization of the flow. To improve the quality of the initial estimates we
propose to incorporate the scale of image measurements by exploring the scale-
space of the data-derived information. Specifically, since we deal with the optical
flow constraint we experiment with two scale-spaces which are characterized by
the luminance conserving principle. These are the linear scale-space [15] and the
one which is constructed by the regularized version [4] of Perona-Malik (P&M)
algorithm [13]. Let f0

τ be the luminance of a voxel at the finest spatial resolution
which has been diffused at the scale quantization level τ . Then, a linear scale-
space is denoted as:

fτ = fo ∗Gσ (5)

where ∗ denotes convolution, fo is the original image and Gσ is the Gaussian
kernel for standard deviation σ.
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Fig. 1. Example of multiresolution/multigrid minimization. For each resolution
level (on the left), a multigrid strategy (on the right) is performed. For clarity
reasons, this is a 2D illustration of our 3D algorithm.

If no scale is preferred, the natural way to travel through a linear multi-scale
can be realized via a sampling which should follow a linear and dimensionless
scale parameter δλ which is related to σ by :

στ = eλ0+τδλ (6)

where τ denotes the scale quantization levels.
The regularized P&M scale-space in its discretized form is denoted as:

fτ = fτ−1 + λ
∑

ci(Gσ ∗∆if) (7)

where i ∈ {N,S,E,W,F,B} and N ,S,E,W ,F ,B denote Northern, Southern,
Eastern, Western, Forward and Backward neighbor respectively.

ci = g ‖ Gσ ∗∆if ‖ (8)

ci is a decreasing function of the image gradient that has been determined at
a scale σ to compensate for noise and to assure well-posedness of the diffusion
equation.∆if = fi − f? where f? denotes the central pixel in a 3-dimensional
mask with 6-neighbor connectivity.

g ‖ ∆if ‖= e−(
∆if

k

2
) (9)

g ‖ ∆if ‖= 1

(1 + ∆if
k

2
)

(10)

where k is a contrast parameter and can be interpreted as a threshold, which
determines whether a gradient is significant or not.
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For non-linear diffusion schemes there is no global scale parameter because
they adapt the diffusion locally. However, we may synchronize their scale pa-
rameter with the one of linear diffusion. This holds due to the fact that the
scalar diffusivity ci in Equation 8 is constructed such that ‖ c ‖≤ 1. Therefore,
an upper bound is derived for the nonlinear schemes which permits us to re-
call the relation between the evolution parameter and the standard deviation
of the Gaussian τn = (1/2)σ2

n for the creation of the regularized P&M scale
quantization space.

The construction of any of the above scale-spaces leads to a stack of volumes
{f0

τ } which is the source of the data measurements for every successive quanti-
zation scale during a coarse-to-fine parameter estimation. This can be explained
by Equation 11.

?

U0
τ (dw0; f0

τ , ŵ
0) =

∑
s∈S0

δ0s
(∇f0

τ (s+ ŵ0
s, t2) · dw0

s + f0
τ (s+ ŵ0

s, t2) − f0
τ (s, t1)

)2

+ψ1(δ0s) + α
∑

<s,r>∈C0

β0
sr

(||(ŵ0
s + dw0

s) − (ŵ0
r + dw0

r)||
)2

+ ψ2(β0
sr), (11)

f0
τ denotes the data measurement at the finest pyramid resolution and the τ

scale quantization level.
Our goal is the estimation of parameter ŵ0 which is refined at each quantiza-

tion scale by only an increment dw0
s. Minimization remains in the same multigrid

fashion.

4 Experimental Results

We have already mentioned in Section 1 that our efforts were motivated by
the application of tissue deformation tracking which can result in brain shift
correction. In view of this, we have conducted a number of experiments using
an original 3D Ultrasound image (256x256x128) of the brain of an 8 months
old baby and its deformed counterpart. The acquired original volume is the
result of an examination through the fontanella. In the ideal case, the accuracy
of our algorithm in registering volumes should be tested in a situation that the
actual motion should be known. Due to the difficulty to produce known non-rigid
motion fields in biological tissues we have chosen to simulate this phenomenon.
We have created an artificially deformed volume by using a Thin Plate Spine
deformation [3]. Although this approach produces a global smooth deformation,
we were very careful in the distribution of the point landmarks over the whole
volume to cope with local deformations. The produced deformed volume and
velocity field can be seen in Figure 2(b) and Figure 2(c), respectively.

In our experimental work we strived towards an overall comparison between
the primary non-rigid registration model of Section 2 and the model with an em-
bedded scale-space framework of Section 3. Our evaluation is both qualitative
and quantitative. As a qualitative measure we have chosen to use the differ-
ence image between the original volume and the reconstructed one. All of the
registration models produced difference images without significant differences,



Robust Multi-scale Non-rigid Registration of 3D Ultrasound Images 395

implying a visually correct registration (Figure 3(b)). For the sake of compar-
ison we provide you the difference image between the original volume and the
deformed one in Figure 3(a). The difference image in Figure 3(b) has come out
after the application of the algorithm which uses the embedded regularized P&M
scale-space.

For a quantitative evaluation we have considered the following measures :
(i)Mean square error (MSE); (ii) the average angular error between correct −→vc

and estimated −→ve velocity : ψ = arccos(−→vc · −→ve) along with (iii) its standard
deviation. Table 1 demonstrates the improvement in velocity estimation which

Table 1. Quantitative Comparison Measures.

MSE Mean angular error Std deviation
Without multi-scale framework 10.2772 14.112656o 24.254787o

Embedded Linear scale-space 9.73472 13.878700o 23.987515o

Embedded Regularized P&M scale-space 9.6945 13.791579o 23.959972o

has been achieved for all three above measures in the case of the embedded
scale-space framework for both the linear and the regularized P&M case. The
latter one has a slightly better behavior than the linear one.

Our basic argumentation for the advantageous use of a multi-scale framework
was that it can lead to improvement in quality of the initial estimates at the
multigrid optimization scheme which subsequently will improve the quality of
the final estimates. A verification of this is presented in Figure 3(c) which shows
in terms of MSE the improvement that occurs during successive multigrid levels
at the finest spatial resolution for all the three examined cases. We may observe
that in the case of the absence of a multi-scale framework we get an initial
estimate with an MSE equals to 15.1756 while in the case of linear scale-space
we get an initial estimate with an MSE equals to 11.9146 and in the case of
regularized P&M scale-space we get an initial estimate with an MSE equals to
12.1082. The higher quality of the initial estimates was preserved till the final
stage at the multigrid optimization scheme.

5 Conclusions

In this paper, we propose a methodology which embeds a multi-scale frame-
work in a multiresolution and multigrid optimization scheme that can lead to
a successful non-rigid registration of 3D Ultrasound images. It grasps its power
from three fundamental features which operate as the remedy in the basic short-
comings of ultrasound images. Its multigrid nature responds to motion ambigu-
ities in the case of insufficient representation of spatial information, its estimate
smoothness functional term can fight the speckle decorrelation which character-
izes ultrasound while low SNR can be less disastrous for the estimates in the
case of embedding a multi-scale framework.
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In our last word will keep on defending the use of a multi-scale framework
but it will not provide any definite clue about the superiority of either the linear
or a non-linear scale-space. We opt on experimenting with more non-linear scale-
spaces in order to reach a definite and generalized conclusion.

(a) (b) (c)

Fig. 2. (a) Preoperative 3D Ultrasound; (b) Simulated intraoperative (De-
formed) 3D Ultrasound; (c) The artificial deformation field.

(a) (b) (c)

Fig. 3. (a) Difference between the original and the deformed volume; (b) Differ-
ence between the original and the reconstructed volume; (c) MSE improvement
wrt to multigrid levels at the finest spatial resolution.
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8. E. Mémin and P. Pérez. Dense estimation and object-based segmentation of the
optical flow with robust techniques. IEEE Transactions on Image Processing,
7(5):703–719, 1998.

9. A. Morsy and O. VonRamm. 3D ultrasound tissue motion tracking using correla-
tion search. Ultrasonic Imaging, 20:151–159, 1998.

10. H.H. Nagel and W. Enkelmann. An investigation of smoothness constraints for the
estimation of displacement vector fields from image sequences. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 8:565–593, 1986.

11. W.J. Niessen, J.S. Duncan, M. Nielsen, L.M.J. Florack, ter Haar Romeny B.M,
and M.A. Viergever. A multiscale approach to image sequence analysis. Computer
Vision and Image Understanding, 65(2):259–268, 1997.

12. X. Pennec, P. Cachier, and N. Ayache. Understanding the ”demon’s algorithm”: 3D
non-rigid registration by gradient descent. In MICCAI, pages 597–605, September
1999.

13. P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7):629–639,
1990.

14. M. Strintzis and I. Kokkinidis. Maximum likelihood motion estimation in ultra-
sound image sequences. IEEE Signal Processing Letters, 4(6):156–157, 1997.

15. A.P. Witkin. Scale-space filtering. In International Joint Conference on Artificial
intelligence, pages 1019–1023, Karlsruhe, W. Germany, 1983.

16. F. Yeung, S. Levinson, D. Fu, and K. Parker. Feature-adaptive motion tracking
of ultrasound image sequences using a deformable mesh. IEEE Transactions on
Medical Imaging, 17(6):945–956, 1998.


	Introduction
	Primary Registration Model
	Formulation of the Registration Problem
	Robust Estimators
	Multiresolution and Multigrid Minimization

	Embedded Multi-scale Framework
	Experimental Results
	Conclusions

