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Abstract—In this paper we present a vision-based method to control the
displacement of robot arm mounted on an underwater ROV. A closed-loop
system based on an eye-to-hand visual servoing approach has been designed
to achieve this task. We show that, using such an approach, measuring the
manipulator motion with proprioceptive sensors is not required to precisely
control the end-effector motion. To maintain the end effector in the field of
view, the camera orientation is also controlled. Presented results show the
validity of the approach.

I. INTRODUCTION

In this paper we present a vision-based method to control the
manipulator of the Victor 6000 ROV. Victor 6000 [11] is a deep
underwater ROV, built and operated by Ifremer, used for the ex-
ploration of the ocean floors. It is a cabled vehicle which is
controlled from a support vessel and is designed to make opti-
cal surveys and to carry out local assignments for imagery, im-
plementing instrumentation and sampling water, sediments or
rocks.

v

Fig. 1. The Ifremer Victor 6000 underwater ROV (© Ifremer)

Victor 6000 is equipped with with two manipulators: a 6
dof manipulator called Maestro and a 4 dof manipulator called
Sherpa. The Sherpa manipulator is not instrumented and is
open-loop controlled with a joystick. Due to the lack of pro-
prioceptive sensors, the odometry, and in particular the joints
positions q are not available. Therefore there is no way to mea-
sure the manipulator motion and any control will be imprecise
if no external sensor is used to provide a closed-loop system.

To cope with this problem we consider the control of the ma-
nipulator within the visual servoing framework. Visual servoing
has proved to be a very efficient method to control manipula-
tor in hostile environments. Dealing with underwater robotics,
eye-in-hand visual servoing has been used to control Remote
Operated Vehicle (e.g., [12], [8], [7]). Our goal is not to control
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the ROV itself, but to control the motion of its non-instrumented
manipulator using informations provided by a camera mounted
on a pan/tilt head mounted on the ROV and observing the end-
effector of the manipulator. In this paper we show that the mea-
surement using proprioceptive sensors is not required to pre-
cisely control the end-effector motion and that the approach is
quite robust to calibration errors wrt. to the camera and the sys-
tem. Furthermore, from the end-user point of view it is not real-
istic to consider a static camera. Indeed the defined manipulator
motions may allow the end-effector to move outside the image
and, in that case, control will fail. It is therefore important to
control the camera pan and tilt in order to ensure that the end
effector of the manipulator remains in the camera field of view.

Fig. 2. The Victor 6000 six dof manipulator Maestro ((© Ifremer)

The reminder of this paper is organized as follows: in a first
section we present how to control the manipulator motion by vi-
sual servoing both in position (the operator specifies a displace-
ment to achieve) and in velocity (in that case the operator speci-
fies a velocity to follow) ; then we describe the image processing
algorithm ; finally we show on various experimental results the
efficiency of our approach.

Il. IMAGE-BASED CONTROL
A. Notation
Let us define by “M, the transformation between frame R,
and frame R;. “M,, is an homogeneous matrix defined as:

" “aR a
Mb< R lb)

where R, and “T, define respectively the rotation matrix and
the translation vector between the two frames.



More precisely, the frames used in this paper are represented
on Figure 3. The first letter represents the origin of the frame (¢
for camera, e for effector and o for object) and the second letter
the position of this frame (: for initial position, ¢ for current
and d for desired). Finally, F,,, represents the base frame of the
manipulator while 7, represents the base frame of the pan/tilt
head. For example ““M,, defines the desired position of the
object in the initial camera frame.
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Fig. 3. Overview of the various frames

B. Estimating various transformation

In the reminder of this paper, we will refer to many frame
transformations. Prior to a good behavior of the proposed algo-
rithms, some transformations must be estimated in a rough cali-
bration step using either information provided by the camera or
by the system itself:

o rtMg, is hand-measured ;
o “My; = M, = “M,; = *M,, is hand-measured ;
o 7M., is measured using the pan/tilt head odometry.

C. Visual servoing: overview

Visual servoing technics [4], [6], [5] allow to automatically
position a robot with respect to its environment using visual
data. It consists in specifying a task as the regulation of a set
of informations extracted from the images [4], [5].

In our case, a vision-based task e is defined by [4], [13]:

e=J"P —Pg) 1

where P denote the set of selected visual features used in the vi-
sual servoing task and P4 their desired value. J* is the pseudo-
inverse of the Jacobian Matrix that links the image space to the
operational space of the manipulator.

To make e decreases exponentially and behaves like a first
order decoupled system, the velocity T = (VT , QT)T of the
end-effector given as input to the manipulator controller is given

by:
( o ) — e @)

where X is a proportional coefficient.

D. Control manipulator position
D.1 Overview of the algorithm

The goal for the manipulator is to achieve the displacement
specified by the ROV operator. Two methods are available to
specify this desired displacement:

« a direct definition of the desired manipulator displacement
AT, AR in, possibly, three different frames R.i, Roi, Rx,,, -

« adefinition in the image space. It corresponds to reach again
a position that has been learned in an off-line learning step.

We present in this section an overview of the control algo-
rithm that allows to achieve this task.

1. In a first time we have to compute the initial position of the
object in the initial camera frame (i.e., the initial pose ““M,;).
This is done using the proposed image processing algorithm (see
Section I11-A). The joint position q is then computed (see Sec-
tion 11-F). If more than one solution are found for the inverse
geometrical model, the user has to choose the most convincing
one.
2. From the specified displacement, we determine the desired
object position in the initial camera frame ““M.,,; (see Section Il-
D.3).
3. A visual servoing closed loop is then used to reach the de-
sired position:

— Acquire the image and track the object (see Section I11-A) ;

— Compute the current pose ““M,. and desired pose ““M g4
(see Section 3) ;

— Compute the articular joint positions g (see Section 2.3.3) ;

— Compute the control law for the manipulator (see Section
2.3.2);

— Compute the control law for the pan/tilt camera (see Sec-
tion 11-G).

This process is now described in details.

D.2 Visual features and resulting control law

The choice of the visual features (i.e., of the vector P) is very
important with respect to the desired properties of the system:
stability, robustness, lack of singularities or local minima, ade-
quate trajectories in both the image and articular space.

It is possible to use 2D visual data [4], [6] (say, coordi-
nates of points extracted from the images) or 3D data ob-
tained after a pose computation (for example, coordinates of 3D
points [10] or the six parameters that represent the displacement
to achieve [14]). Finally, it is possible to combine 2D and 3D
visual features: this is 2D 1/2 visual servoing [1].

In our case, since we use an eye-to-hand camera whose ori-
entation is controlled in order to maintain the object centered
in the image, the optimal solution is to choose as visual features
P = (Y»TT 6u”)T where °“T,.. is the translation that the ob-
ject has to realize (expressed in the final object frame) and where
6 and u are respectively the angle and the rotation axis of ®*R,..
In this case, we have P4 = (7~T7,,01)7". The rotation and the
translation motions are thus fully decoupled. Furthermore, if no
errors (wrt. measures and calibration) occur, then the object tra-
jectory is a pure straight line as well in the image as in the 3D
cartesian space. We thus obtain a better behavior than classical
image-based and position-based visual servoing.



The equations that link the variation P of the visual features
P to the object velocity in the reference frame are given by:

}-mr:I‘oc _( Wsx3z Osxs A% 3)
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with
Jo =L,Rg,, 4)
where L,, is such that L' 6u = 6u [1].
We finally get the following control law :
A% _ 33 O3xs
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where the transformations °“M,,. and °“M,, that allow to
compute all the values involved in the computation of the con-
trol law, are given by:

OCM}‘m _ OCMCCCCM]__pt Fopt 1\/[‘7__m (6)
Fm Mod = Fm M]:pt Tt Mci ClIl\/Iod (7)
OdMoc = Ondcchoc (8)

In these equations:

o %M. is the pose computed at each iteration using the image

processing algorithm ;

o %M. is estimated through pose computation (see (10)).
Our goal is to control the manipulator in the articular space.

We finally get:
J(2)
0 R

9)
where J;i is the Jacobian matrix that allows to transform ve-
locities expressed in the manipulator reference frame to joint
velocities and where T is the skew related to vector T.
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D.3 Reaching the desired position

As already stated, four methods are possible to define the final
desired position of the object. User is able to define a displace-
ment in the initial camera frame, in initial object frame, in the
reference frame and finally as a desired image.

Let us first examine the three former cases. We define by
AT, AR the required displacement in, respectively, translation
and rotation.

To use the presented control law, we must compute the trans-
formation ““M,4 that defines the desired position of the object
in the current camera frame. As the current and initial positions
of the camera wrt. to its reference frame F,,; are known, the de-
sired position of the object in the current camera frame ““M,4
is obtained as follows:

CClvlod = chfpt,fptMciCi M. (10)

We then have to compute the transformation ““M,,4. The dis-
placement is given in:

« theinitial camera frame. In that case we have:

“Ty = T+ AT (11)
“Roa = AR“Ry; (12)
» thereferenceframe. In that case we have:
ciTOd — ciToi + ciR]__m AT (13)
e Rod = R]:m AR]:m Roi (14)
« theinitial object frame. In that case we have:
CiMod = CiMoiAM (15)

with AM = (AR, AT).

Dealing with the last case, the desired position is given as a
position to be reached in the desired image. From this position,
it is possible using a pose computation algorithm to compute the
transformation matrix “M,,4. We then deduce ““M,,q using the
odometry of the pan/tilt head.

E. Control manipulator velocity
E.1 Overview

The control law is no longer specified as a position to reach
but as a velocity to follow. It is then necessary to determine the
trajectory in the image space that the effector, observed by the
camera, has to follow and to build a control law that tracks this
trajectory and minimizes the tracking errors.

The idea is to produce a trajectory P4 (t). As in the previous
paragraph, we want to minimize the error:

e(q(t),t) = P(a(t)) — Pa(t) (16)
We got:
... OPgq . _oP
e=Jq— 5 with J= a
and the control law is then given by:
) opP
a=—\" (P(a(t)) - Pa(t) + I =5

E.2 Velocity control law

Since we no longer specify a position to reach P4 but a tra-
jectory P4(t), the position 7= M, ;(;) to reach in the reference
frame is modified at each iteration. As in the previous case, the
error is then defined by:

Fm _ Fm
P_ Pd(t) _ < Toc Tof(t) )

FmR,.0u 17)

where # and u are the angle and the axis of the rotation °/ YR,
and where
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(18)
(19)
The trajectory to follow is thus function of ©“M, (1) (see (18)

and (19)) that is updated at each iteration using the velocity
specified by the operator. At the beginning, we have of course:

CiMof(O) = CiMoi (20)



Then, if the velocity is specified in
« the object frame, “M, ¢ ;1 a¢) IS given by:

CiMof(tJrAt) = CiMof(t)of(t)Mof(tJrAt) (21)
with

of N _Am-( AR AT 22
of (t+At) 015 1 (22)

» in the camera frame, CiMOf(t+At) is given by:
“Topuran = “Topuy + AT (23)
CiRof(tJrAt) = ARCiRof(t) (24)
« in the manipulator reference frame, CiMOf(HAt) is given by:
“Topirary = “Topw) + “Ry, AT (25)
“Ropiran = “Rr,ART"R,pq (26)

In these equations we have

AT VAt
AR = cos(wAt)I3x3 + (1 — cos(wAt))v.vT + sin(wAt)v

where V is the specified translation, v is the axis of the rotation
and w is the velocity of this rotation around v. All these value
are expressed in the frame specified by the operator. At is the
rate of the closed-loop. In the reminder we note Q2 = wv.

The final control law is given by:

3wz 7mReeTo“Ro,, )
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To use properly this equation, it must be noted that the term
(V, )7 is expressed in the reference frame. Since the operator
may specify the desired velocity in 3 different frames, a frame
manipulation may be necessary to express (V, Q)T in Rz, . If
the velocity is initially expressed in:

« the camera frame

(27)

\'% ]:chc 03><3 > < \% )
= 28
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« inthe object frame :
A\ }-mRoc 03><3 \%
= 29
( Q )Rfm ( O35 7" R Q2 Roe #9)

T

« in the reference frame, we directly have ( V. € ) R

F. Computing articular positions

As already stated, we do not have a direct access to the joint
position q of the manipulator. To compute the joints positions
we use the position of the effector in the manipulator reference
frame =M., and the inverse geometrical model f~(.) of the
manipulator. We get:

q= fﬁl(}-mMGC) (30)
where 7= M., is estimated knowing the pose by:
}-mMec = Fm M]:m}—ptMccchococMec (31)

G. Pan/Tilt control

It is important to control the camera pan and tilt in order to
ensure that the end effector of the manipulator remains in the
camera field of view. To achieve this task we simply use the 2D
visual servoing approach [4]. We define as visual features the
projection of the center of gravity of the target: P = (X,Y)7
and we control the camera in order to see it centered in the im-
age: Pg = (X4, Ya)T = (0,0).

The image Jacobian related to the task is given by:

[ XY —(1+X?)
L= < 1+Y? -XY ) (32)
and the resulting control law is simply given by:
O _ Yy
( Qz ):_)\2( 1+ X24Y?2 )+HI (33)
Y TIEX24Y?

where [ is an integral term introduced to attenuate the tracking
errors [2].

I1l. EXPERIMENTAL RESULTS
A. Image Processing

The image processing algorithm has to be fast and robust. To
achieve these goals we propose a simple but efficient tracking
algorithm that relies both on the tracking of 2D features and the
estimation of the 3D position of the object in the camera frame.
As the end-effector of the Victor 6000 manipulator is cylindri-
cal, tracking the target (the object) raised many problems.

This target is made of white dots on a black background and
we assume that the CAD model of this target is fully known
(see for example Figure 4). Due to the end-effector cylindri-
cal shape, all the landmarks cannot be seen at the same time.
Appearance/disappearance of dots must then be handled by the
algorithm.

We give here a brief description of this algorithm. N points
are tracked over the image sequence. Knowing the position
of these dots in the image and their 3D position in the object
frame we are able to compute the pose “M,.. A number of
methods have been proposed to compute pose from points. We
have used the method designed by Dementhon [3] completed by
Lowe’s non-linear method [9]. Dementhon’s method calculates
the rigid transformation in an iterative way from the knowledge
of the coordinates of at least four points in the object coordi-
nate system, and of their corresponding projections in the im-
age. Its principle consists in approximating perspective projec-
tion by scaled orthographic projection, and then in iteratively
modifying the scaled orthographic projection to converge to the
perspective projection. We then apply the method proposed by
Lowe to improve the pose estimation: Lowe’s approach is based
on an iterative minimization of a residual using the non linear
Levenberg-Marquardt minimization technique. Once the pose
€M, is available, we can easily determine visible and invisi-
ble points of the target and add new points in the list P? on a
prediction/verification basis.

B. Control experiments

Experiments have been carried out on a 6 dof cartesian robot
at Inria Rennes. Control and image processing are performed



on a Sun Ultra Sparc 1. Unlike the Victor 6000 manipulator, our
robot is fully instrumented and the odometry is available. We
will use this knowledge to compare the displacement achieved
using measured q and using estimated q. It will also be used to
compare the specified displacement and the actual one.

Figure 4 shows four images of the object mounted on the ma-
nipulator end-effector acquired in a typical run of our algorithm.
Green lines represent the virtual links between the current and
desired position of the landmark in the image. As can be seen
the initial desired position is not (necessarily) in the image, how-
ever as the camera is controlled in pan and tilt to center the ob-
ject, this desired position is moving in the images over time (see
also Figure 5).

In all the reported experiments, in order to get a faster con-
vergence of the control law, we considered for A\ (see (2)) an
adaptive gain function of the error P — Pg4.

Fig. 4. Target tracking in an image sequence and control of both the manipulator
and the pan/tilt camera.

Fig. 5. Effect of the pan/tilt control: the desired position of the object in the
image is modified. (a) initial position, (b) desired position with no pan/tilt
control, (c) desired position with pan/tilt control.

B.1 Displacement specified as an image to reach

If the desired position of the manipulator is specified as an im-
age and if the camera calibration parameters used for the learn-
ing step and servo step are the same, then no error in the posi-
tioning process are observed (see Table 1). Even with very bad
camera calibration parameters, precision remains very good as
long as the resolution of the inverse geometrical model remain
possible. Errors are then lesser than 5mm in translation and one
degree in rotation and are due to the rough calibration of the
pan/tilt system and to the lack of precision of the pose computa-
tion.

Desired positionin R =,,, T, Ty T, 28 0y 6.

desired 154 4 -98 2933 693 3357
actual 150 47 -100 2933 6.07 3317
actual (calibration -20%) 155 52 -103 2979 319 33.05
actual (calibration +20%) 155 45 -100 2933 670 3357
actual (calibration +40%) 155 45 -99 2927 693 3351

TABLE |
DISPLACEMENT SPECIFIED IN THE IMAGE (THE DESIRED AND ACTUAL
POSITIONSARE COMPUTED USING THE ROBOT ODOMETRY)

B.2 Position-based control

We now present results dealing with displacement in the var-
ious possible frames This example reported in table 1l features
simple displacements ,specified in the object initial frame, in
translation and another in rotation as well as a complex displace-
ment of every axes. Plots on Figure 7 show the behavior of the
algorithm over time (error, control law, and achieved displace-
ment).

In each case, a small bias between the desired displacement
and the actual one can be observed (mainly in the translation dis-
placement). This bias is due to calibration errors in the camera
parameters (as can be seen the amplitude of the bias is corre-
lated to the error introduced in the camera parameters), but also
to errors in the initial estimation of transformation =M , and
€M, and measurements errors in the pose computation. Calibra-
tion of the full system is a problem of its own that is not in the
scope of this paper.

Moreover if important errors are introduced in the camera pa-
rameters (typically over 40%), the resulting computed pose and
therefore of the object position 7~ M. may be nonsensical (e.g.,
out of the joint-limits) and the inverse geometrical model may
be unsolvable. In that case, visual servoing will fail.

Dealing with the online estimation of the articular position
q, results show that the errors in this estimation (due to cali-
bration and measure errors in mefm, M, and *M,,) have
no effect on the achieved displacement. Indeed, the achieved
displacements considering measured q or estimated q are very
similar (see table I1).

Figure 6 shows the effect of errors in the calibration of the
camera on the projection of the desired position. We considered
here errors of £40% wrt. to the initial parameters (which are
also certainly wrong since the camera has not been calibrated).
The desired position is therefore very different, and the actual
displacement will be therefore very dependent of these parame-
ters as can be seen in the various tables.

Fig. 6. Effect of the calibration errors on the desired position. The specified
displacement is a translation of -500mm along the camera optical axis. (a)
initial camera parameters with a noise of -40 % (b) initial camera parameters
(c)initial camera parameters with a noise of +40 %



AInR,; T, T, T, 0, 0, 0.
desired 0 0 0 0 0 30
actual -8.81 -0545 -166 -0.12 -0.31 31.64
actual with measured g -8.71 -0.89 -164 -0.07 -0.33 31.776
actual (calibration +20%) 0.94 0.03 122 023 126 3081
actual (calibration +40%) 3.75 -0.06 1.04 017 1.08 30.84
actual calibration -20% -3.49 -0.42 141 020 2.00 31.67
desired 300 0 0 0 0 0
actual 291.71 48.78 -1.01 0.00 0.35 1.93
actual with measured g 290.62 49.04 049 0.07 0.1 2.04
actual calibration +20% 253.84 41.16 -551 0.5 2.07 -0.85
actual calibration +40% 220.39 3964 -458 037 174 -1.15
actual calibration -20% 37157 4291 -659 052 3.60 0.55
desired 300 50 50 20 20 60
actual 281.07 102.7 56.87 15.42 2340 64.27
actual with measured g 281.06 102.28 57.15 1537 2349 64.15
actual calibration +20% 255.01 97.88 51.27 1735 27.13 59.20
actual calibration -20% 362.34 96.02 49.87 15.48 28.92 66.87
actual (PT) 283.02 94.75 69.08 1558 24.43 64.26
actual calibration +20% (PT) | 254.6 78.88 41.33 16.97 26.79 59.77
actual calibration -20% (PT) | 373.47 97.87 78.94 16.19 29.91 6147
TABLE II

DISPLACEMENT IN THE INITIAL OBJECT FRAME

Fig. 7. Results of a displacement specified in the initial camera frame AT =
(50,50, —300), AR = (20,15, —30). All the plots are over time. (a)
error P — Pg, (b) control law (c) displacement in translation (mm), (d)
displacement in rotation (deg).

B.3 Velocity control

Finally experiments dealing with velocity control have been
carried out. In this experiment, the required displacement was
specified in the reference frame. The specified trajectory is a
rectangle (that is translation along x and y axes) followed by a
rotation around the object axis (the object should not translate
during this step). This trajectory is then iterated a few time.

Figure 8 shows the trajectory achieved by the object in the ref-
erence frame. As expected the trajectory is correctly achieved
minus the small errors due to the system calibration errors (as

stated in the previous paragraph, these errors are mainly due
to the rough estimation of the “»¢M x, matrix). The rotation
achieved at the end of the rectangle trajectory is correctly han-
dled (no translational motion at this point, see the bottom left
corner of Figure 8.a). When a new velocity is given, due to
tracking errors, a few iterations are necessary to achieve cor-
rectly the new specified velocity (see Figure 8.c for the com-
puted velocity and 8.d for the actual measured velocity).

1V. CONCLUSION

In this paper we proposed a complete framework to control a
non-instrumented and roughly calibrated and non-instrumented
manipulator using a vision-based approach. To allow the con-
trol, we compute on-line the articular position of the manipu-
lator and we achieve the specified displacement using a visual
servoing control law. Experiments have been carried out on a
6 dof robot and shows the validity and the efficiency of our ap-
proach. Though not reported in this paper, other experiments
have carried out on the Victor 6000 arm at ifremer where simi-
lar results have been obtained.

Acknowledgment

This work has been supported by Ifremer under contract IN-
R1A/Ifremer1.00.C.001 and INR1A/Ifremer1.00.C.606.

REFERENCES

F. Chaumette and E. Malis. 2 1/2 d visual servoing: a possible solution
to improve image-based and position-based visual servoings. In IEEE Int.
Conf. on Robotics and Automation, volume 1, pages 630-635, San Fran-
cisco, CA, April 2000.

F. Chaumette, P. Rives, and B. Espiau. Positioning of a robot with respect
to an object, tracking it and estimating its velocity by visual servoing. In
IEEE Int. Conf. on Robotics and Automation, volume 3, pages 2248-2253,
Sacramento, California, USA, April 1991.

(1]

[



position dans le repere fixe position dans le repere fixe

‘posfixe.dat’

\ i

—o.11 - \‘\ \ l\\ — o.053

i r L \ o.0525

| | o.os2
| |

oa= L) ‘ | \ \ _ o.os15
| 0.051

o.os
o.0aes

o.0a9

.05 o ois o= =5 s @ b

Si(s-s™V (mm,deg)

ey
[

-s0

6 160 200 Soo aco  So6 oo 706  s6o 00  1ooo ( 6 360 200 Soo avo soo oo oo  soo oo 1ooo (]

Fig. 8. Velocity control : (a-b) Position of the object in the reference frame ( (a) X-Y view (b) X-Y-Z view ) (c) Velocity sent to the robot controller (d) Measured
velocity

[3] D.Dementhon and L. Davis. Model-based object pose in 25 lines of codes.
Int. J. of Computer Vision, 15:123-141, 1995.

[4] B. Espiau, F. Chaumette, and P. Rives. A new approach to visual servoing
in robotics. |EEE Trans. on Robotics and Automation, 8(3):313-326, June
1992.

[5] K.Hashimoto. Visual Servoing : Real Time Control of Robot Manipulators
Based on Visual Sensory Feedback. World Scientific Series in Robotics
and Automated Systems, Vol 7, World Scientific Press, Singapor, 1993.

[6] S. Hutchinson, G. Hager, and P. Corke. A tutorial on visual servo control.
|EEE Trans. on Robotics and Automation, 12(5):651-670, October 1996.

[7] J.-F. Lots, D. Lane, E. Trucco, and F. Chaumette. A 2-d visual servoing
for underwater vehicle station keeping. In |[EEE Int. Conf. on Robotics and
Automation, Seoul, Korea, May 2001.

[8] J.-F. Lots, D.M. Lane, and E. Trucco. Application of 2 1/2 d visual ser-
voing to underwater vehicle station-keeping. In |[EEE/OES Oceans 2000
Conference, Providence, Rhode Island, USA, September 2000.

[9] D.G. Lowe. Robust model-based motion tracking through the integration
of search and estimation. Int. J. of Computer Vision, 8(2):113-122, 1992.

[10] P. Martinet, J. Gallice, and D. Khadraoui. Robot control using 3d visual
features. In Word Automation Congress, WAC' 96, volume 3, pages 497—
502, Montpellier, May 1996.

[11] M. Nokin. Victor 6000, a deep teleoperated system for scientific research.
In MTSIEEE Oceans' 97, Halifax, 1997.

[12] P. Rives and J.J Borrelly. Visual servoing techniques applied to an un-
derwater vehicle. In IEEE Int. Conf. on Robotics ans Automation, Albu-
querque, USA, april 1997.

[13] C. Samson, M. Le Borgne, and B. Espiau. Robot Control: the Task Func-
tion Approach. Clarendon Press, Oxford, United Kingdom, 1991.

[14] W. Wilson, C. Hulls, and G. Bell. Relative end-effector control using
cartesian position-based visual servoing. |EEE Trans. on Robotics and
Automation, 12(5):684-696, October 1996.



