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ABSTRACT

In this paper we address the problem of registering 3D scat-
tered data by the mean of a statistical shape model. This
model is built from a training set on which a principal com-
ponent analysis (PCA) is applied. A local system of refer-
ence is computed for each sample shape of the learning set,
what enables to align the training set. PCA then reveals the
main modes of deformation of the class of objects of inter-
est. Furthermore, the deformation field obtained between
a given shape and a reference shape is extended to a lo-
cal neighborhood of these shapes by using an interpolation
based on the thin-plate splines. It is then used to register ob-
jects associated with these shapes in a local and non-linear
way. The data involved here are cerebral data both anatom-
ical (cortical sulci) and functional (MEG dipoles).

1. INTRODUCTION

Within the scope of three-dimensional cerebral imaging we
are more particularly interested in anatomo-functional nor-
malization. We aim at merging scattered data from vari-
ous subjects and/or acquired according to various modali-
ties (e.g.magnetic resonance imaging (MRI) for anatomical
data, magnetoencephalography (MEG) or functional mag-
netic resonance imaging (fMRI) for functional data). The
strong inter-individual variability implied by such data can
be grasped by a shape model. Deformable models are a
powerful tool to image analysis [1]. Some of them use
modal analysis technique lying on a physical approach [2, 3]
or on a statistical approach [4, 5, 6]. In this kind of model,
adequation between model and data is improved by intro-
ducing prior knowledge thanks to a training set. These
models are able not only to represent the shape of an object
but also the way it can vary. They are generally used for
segmentation purpose. Within the framework of anatomo-
functional normalization it is interesting to use the modeling
of deformations to register scattered data associated with
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modeled structures of interest. With this aim a technique
based on thin-plate splines interpolation is considered [7, 8].

In this paper, we treat multi-subjects MRI/MEG scat-
tered data. We model particular anatomical structures: the
cerebral cortex sulci, and use this modeling to register MEG
dipoles (localizations of functional activity). We describe in
section 2 the construction of the statistical model of cortical
sulci by learning a set of shapes. The training stage is first
detailed, then we present the statistical analysis we use,i.e.
the principal component analysis (PCA). In section 3 we
present the thin-plate spline method and its use combined to
the model exploitation in the local and non-linear registra-
tion of MEG dipoles.

2. STATISTICAL MODEL OF CORTICAL SULCI

2.1. Training

The training set consists of typical shapes of the class of ob-
jects to study. We are interested here in cortical sulci which
are anatomical structures whose shape is complex. We dis-
pose of a parametric representation of these shapes of in-
terest [9], describing them by their median surface. This
one is extracted from MRI volumes by the “active ribbon”
method and is eventually modeled by a cubic B-spline sur-
face, which is a well adapted modeling to free form objects.
The spline, parameterized byu andv, is described bynbp
knots andnbc = nbc u ∗ nbc v control points wherenbc u
(resp. nbc v) is the number of control points in the direc-
tion associated with the parameteru (resp. v). In the case
of sulci, the parametric directionu represents the length of
the sulcus and the directionv its depth. Givingnbc con-
trol points completely defines the sulcal surface. Conse-
quently, we can represent a sulcus by the vector of its knots
or its control points. The rationbc/nbp defines the smooth-
ing factor: the smaller this ratio, the smoother the surface
(herenbc/nbp = 1/24). The main advantages to use con-
trol points are their lower number and their complete repre-
sentation of each surface.

The statistical technique used here needs to establish the
point to point correspondences between all shapes of the



training set. This implies a resampling stage so that the sulci
have the same number of points and a registration stage in
order to express them in the same system of reference. Each
sulcus is initially expressed in its image referential system
which is different from one patient to another. The idea is
to associate its own system of reference with each sulcus,
built so that it is common to all sulci. We call it “local sys-
tem of reference”. It is then just needed to determine the
rigid transformation (rotation+translation) aligning all local
systems of axes and to apply it to the associated shapes.

LetRs(Os,us,vs,ws) be the system of reference local
to the sulcus. The axesus, vs andws are defined as the
axes of inertia of the sulcal surface, and are decided to be
so thatus follows the length of the sulcus,vs its depth and
ws its normal. This discrimination between the 3 axes is
first carried out by considering thatus (resp.vs) is the axis
of inertia the “most collinear” with thenbc u (resp.nbc v)
pseudo-parallel directions ; each of them being defined by
the two extremities of a sulcus’ line in directionu (resp.v).
Thenws is obtained by vector product:ws = (us∧vs). At
last the originOs is the center of mass of the sulcus.

The sulci have now to be expressed in their local sys-
tems of reference. It amounts to determining for each sul-
cus the matrixM defining the change of basis from the local
system of referenceRs towards the image system of refe-
rence, let it beR(O,u,v,w). Let R andt be the rotation
matrix and the translation vector of the inverse change of ba-
sisM−1 (i.e. fromR towardsRs). Then in homogeneous
coordinates:

R =
(
us vs ws

)
, t = −−→

OOs and M−1 =
(

R t
0 0 0 1

)

SinceR orthogonal:M =
(

RT −RT t
0 0 0 1

)

Applying this rigid transformation to all the points of each
sulcus aligns the training set as illustrated on figure 1. No
homothety is necessary since the image data are acquired to
the same scale.

The next stage consists in resampling the sulci of the
training set. We resample the elements of the training popu-
lation on the one which has the most sample points, spline
properties ensuring that the original shapes are preserved.
Once the sulci are resampled and aligned, the matching is
performed by just assigning control point to control point
according to their curvilinear abscissa.

Fig. 1. A side view of a database of 18 left central sulci
aligned in the local system of reference.

2.2. Statistical Analysis of Deformations

The statistical analysis of the training set leads to a mo-
deling of cortical sulci and of their variations. The model
captures the shape variability observed within the training
set. Indeed, the statistical analysis reveals the main modes
of variation relative to a prototype shape, representative of
the considered class. We use a principal component analy-
sis which enables to represent data in a new basis, orthog-
onal, and which suppresses the redundancy of information.
Moreover, this analysis enables a modal approximation.

2.2.1. Principal Component Analysis

Let P be the training population made up ofN elements,
xi ∈ P a shape,̄x the mean shape onP , C the covariance
matrix. A shapexi is represented by the vector of control
points of the spline which models the median surface of the
sulcus:

xi = (xi1 , yi1 , zi1 , . . . , xin , yin , zin)T with n = nbc

The mean shapēx, representative of the studied class, and
the covariance matrixC are given by:

x̄ =
1
N

N∑
i=1

xi and C =
1
N

N∑
i=1

dxidxT
i with dxi = xi − x̄

Diagonalize the covariance matrixC provides the new modal
basisΦ:

C = ΦΛΦT ,

with Λ = diag(λ1, . . . , λ3n) and λ1 ≥ λ2 ≥ . . . ≥ λ3n

Then any shapex can be written:x = x̄ + Φb whereb =
(b1, . . . , b3n)T is the vector of modal amplitudes of defor-
mation and(−Φb) corresponds to the deformation vectors
in each point ofx towards the mean shape. Since the eigen-
valueλi is the variance explained by theith mode, a large
part of the variability can be explained by retaining only the
first m modes. The valuem is chosen so that

∑m
i=1 λi, the

variance explained by the firstm modes, represents a pro-
portion, sufficiently important of the whole variance:λT =∑3n

i=1 λi. Retaining onlym modes enables to achieve a
modal approximation:{

x = x̄ + Φmbm

bm = Φm
T (x− x̄)

whereΦm is a submatrix ofΦ containing the firstm eigen-
vectors ofC, thus defining the modal approximation basis.
The vectorbm = (b1, . . . , bm)T represents a shape in the
m-dimensional space defined by the principal components.
This space is interesting since it is of lower dimension (dim
m). However,bm must be constrained in order to repre-
sent an “allowable” shape (i.e. a shape consistent with the
learnt shapes). Given the assumption that the distribution
of vectorsxi is normally distributed (i.e. gaussian distribu-
tion), the range of variability of eachbi is typically such as:
−3
√

λi ≤ bi ≤ +3
√

λi.



a b c

Fig. 2. a) mean sulcus, b) variations of the first mode around the mean sulcus,−3
√

λ1 ≤ b1 ≤ +3
√

λ1, c) variations of the
15th mode around the mean sulcus,−3

√
λ15 ≤ b15 ≤ +3

√
λ15.

2.2.2. Results

Several tests have been carried out by making the cardinal
of the training population varied (up to 85 sulci) and also
by changing the type of sulci (central right and left sulcus,
sylvian sulcus, superior frontal sulcus,. . . ). We present the
results obtained on a training set made up of the 18 central
left sulci registered in the previous stage. Figure 3 shows the
predominance of the first modes. Indeed, the first 5 modes
explain a large part of the total variation (about 70%). The
first mode explains on its own almost 30% of the total vari-
ation (whereas a sulcus is described by 104 control points,
that is to say 312 variables, and by more than 8000 variables
if knots are considered). So the chosen modeling seems to
be well appropriate to express the shapes and the variations
by a very reduced number of parameters. Figure 2b shows
the variations due to the first mode. They are mainly rel-
ative to the length and to the torsion of the sulcus. On the
contrary, figure 2c illustrates the minor influence of the15th

mode: the deformations are hardly distinct, all the sulci are
almost superimposed to the mean shape.

Fig. 3. Cumulative variance according to the number of
principal components retained.

3. DEFORMATION FIELDS AND NON-LINEAR
REGISTRATION

The deformation field (−Φmbm) obtained between a given
sulcus and the reference sulcus (the mean sulcus in our case)
can be extended to a local neighborhood of the considered
sulcus by using the thin-plate spline interpolation [10, 7]. It
can then be applied to any object associated with this sul-
cus. We take advantage of this extension of the deformation
field (−Φmbm) to register scattered data located in the left
central sulcus area towards a mean space.

3.1. The Thin-Plate Spline Method

Let’s consider two same cardinal sets of points. The thin-
plate spline method provides a mapping function between
these two sets of homologous points. It associates the set of
target points with the set of source points. This function is
valid in some neighborhood of the set of source points. It
can then be applied to a point in the source space to find its
homologous in the target space.

In [7], Bookstein proposes an algebraic approach to des-
cribe deformations specified by two sets of corresponding
points. The analysis lies on the functionU , which is the
fundamental solution of the biharmonic equation∆2U =
δ(0, 0), δ being the Kronecker’s function. The functionU
is U(r) = |r| in 3D.

Let Pi = (xi, yi, zi), i = 1, . . . , n be n source points
in the Euclidean space, andVi = (x′i, y

′
i, z

′
i), i = 1, . . . , n

be n target points. The set of pointsPi describes a shape
x, expressed̄x + Φmbm according to our model. Note
rij = |Pi − Pj | the distance between pointsi andj. Define
matrices:

K =

0
BB@

0 U(r12) . . . U(r1n)
U(r21) 0 . . . U(r2n)

. . . . . . . . . . . .
U(rn1) U(rn2) . . . 0

1
CCA , P =

0
BBB@

1 x1 y1 z1

1 x2 y2 z2

...
...

...
...

1 xn yn zn

1
CCCA ,

L =

 
K P
PT 0

!

and the vectorY =
(

V 0 0 0 0
)T

whereV =
(v1, . . . , vn) is the vector of one coordinate of the target
set (for exampleV = (x′1, . . . , x′n)). Define eventually the
vectorsW = (w1, w2, . . . , wn) anda = (a1, ax, ay, az)
by: (

W a
)T = L−1Y

Regarding the target set as the mean shapex̄, the elements
of

(
W a

)
represent the deformation field (−Φmbm) ex-

tended. They can be used to define a functionf valid in a
neighborhood of the source set. Thus the homologous of a
point is given by:

f(x, y, z)=a1+axx+ayy+azz+
n∑

j=1

wjU(|Pj−(x, y, z)|)

(to decline forfx(x, y, z), fy(x, y, z), fz(x, y, z)).
The affine part off represents its behavior at infinity, the
second part being asymptotically flat.
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Fig. 4. Registration of MEG dipoles (somatosensory activation of the thumb): the sulcus is the mean left central sulcus.
a) the dipoles are rigidly registered. b), c) the dipoles are registered via the deformation field , b)m = 17, c) m = 5.

Rigid TPS (m = 17) TPS (m = 5)
thumb 90.80 25.41 69.99 77.33 21.98 7.3 80.88 20.39 16.67
index finger 90.89 31.58 71.85 85.46 26.25 5.96 82.39 26.99 11.81
little finger 97.79 33.36 81.94 90.18 34.26 8.05 88.29 32.99 21.91

Table 1. The covariance alongx, y andz of MEG dipoles for somatosensory activations (thumb, index, little finger) after
rigid registration and thin-plate splines (TPS) interpolation based registration form = 17 andm = 5.

3.2. Results

The scattered data we deal with are on one side anatomi-
cal data with cortical sulci, and on the other side functional
data with MEG dipoles corresponding to a somatosensory
activation of right hand fingers (thumb, index, little finger)
performed for 15 of the 18 subjects of our database (see
Sect. 2). Three dipoles per subject (one for each finger)
are selected and are thus available. These functional acti-
vations are located in the central sulcus area. We can then
jointly use the statistical modeling of cortical sulci with the
thin-plate spline method to merge, in a local and non-linear
way, this anatomical and functional information in the cen-
tral sulcus mean space. First, we rigidly register each dipole
towards the local space by applying the transformation des-
cribed by the corresponding matrixM (see Sect. 2). Then,
for each subject, we compute the “field”(W |a) between
his left central sulcus and the mean sulcus, and apply it to
his three dipoles; the field (−Φmbm) being computed with
all the modes (m = 17). Figure 4b shows that dipoles gather
around the plane of the mean sulcus. Moreover, the covari-
ance alongx, y and particularlyz is considerably reduced
(see Table 1). We present a second test in which we consider
only 5 modes in the construction of (−Φmbm). This ap-
proximation smoothes the sulcus and discards minor modes
possibly resulting from potential segmentation errors of ini-
tial data. Results are presented Fig. 4c and Table 1. The
gathering towards the mean plane and the decrease of the
covariance are less than the ones of the previous test, but
still significant.

4. CONCLUSION

In this paper, we have presented a local and non-linear inter-
individual fusion scheme of anatomical and functional data,
based both on a satistical modeling of anatomical structures,
the cortical sulci, and on the use of the thin-plate spline
method. The model, built by modal analysis on a training
population, accounts for the sulcal variability between in-

dividuals, the achieved tests showing the relevance of the
obtained deformation modes. Since this modeling lies in a
“mean space”, the modeled sulci can be used as landmarks
to register MEG dipoles towards the mean space. Addi-
tional experiments could be done. For instance, it would
be interesting to reproject registered dipoles onto fMRI vol-
umes. The present method can be applied to any field in
computer vision where statistical models would be used to
register scattered data.
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