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Abstract: The study is concerncd with multiple target motion analysis (MTMA), when thc system 
state is not directly observed. The Cram&-Rao lower bound (CRLB) is widely used refereiicc for 
assessing cstiniatioii performance. The lack of explicit bounds on the performance of MTMA 
remains an important issuc in tlie tracking community. Thc problem is an aspect of tlie estimation 
of normal mixture parameters. A general formulation of tlie CRLR is given. The authors 
contribute the calculation of coiivcnient explicit approximations of the bounds relative to 
source kinematic paranictcrs, especially for close tracks. 

1 Introduction 

This study is concerned with multiple target motion 
analysis (MTMA for the sequel), when the system state 
is not directly observed. a classical examplc is that of 
passive MTMA wbcre measurements are only made of 
estimated bearings [ I ] .  Such systems are used i n  passive 
sonar [I], infrared tracking or electronic warfare. The 
Cramkr-Rao Iowcr bound (CRLB) is widely used rcfer- 
etice for assessing estimation performance. The lack of 
explicit bounds on the performance o f  MTMA remains an 
important issue in the tracking community [2-41. As a 
result, a great dcirl of attention has been paid to measures 
of performance, such as track purity, correct assignment 
ratio [5:6], etc. These methods are bascd on the discrete 
assignments of measurements to tracks and arc thus not 
universally applicable. Thcir interest is, for B large part, 
due to the fact that numerous MTMA algorithms rely on 
“hard” association. This typc of analysis is quitc pcrtinent, 
and sophisticated tools havc thus been developed. 
However, there is a need for simple and (relatively) explicit 
formulations of the CRLB in the MTMA context. These 
bounds are developed here in a general framework which 
employs a probabilistic structure on the measurement to 
target association. 

The difficulty of obtaining CRLB for MTMA is due to a 
need for an association between measurements and tracks, 
and to incorporate this basic step in the CRLB calculation. 
In fact, wheu properly cast, a CRLB for the MTMA docs 
exist, even if its evaluation inay be difficult [7]. This 
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problem will be overcomc by means of a “mixture model- 
ling” of the likelihood [X, 91. I t  is then possiblc to immerse 
the problem in the general framework of the estimation of 
normal mixture parameters, for which important statistical 
literature exists. Furthermore, this modelling has been 
widely used in the derivation of the probabilistic multiple 
hypothcsis tracking (PMHT) developed by Streit and 
Luginhuhl [ I O ,  I I]. Practically, thc main difficulty is to 
obtain an explicit expression of the Fisher information 
matrix by using approximations of the interaction tcrms 
(associated with the mixture components) on tlie one hand, 
and by mcans of the special structure induced by iiiodified 
polar co-ordinates on the other. 

This study emerges from the general framework dcvel- 
oped by Graham and Streit [2], which will be of constant 
use subsequently. It is also motivated by the dcvelopincnt 
o f  MTMA mcthods that do not explicitcly estimate 
measurements to target associations [IO, 121. Our contri- 
bution is iii the calculation of accurate approxiinatioiis of 
the bounds relative to source kinematic parameters. It is 
worth stressing that approximations of the interaction 
terms reduce tlie validity of our approach to close source 
tracks (Section 3.4). 

2 General calculations 

For this Section and the rest of the paper we consider the 
following scenario: two sources move with a constant 
velocity vector. They are (partially) observed through a 
(passive) receiver (sonar, IR, ESM). Measurements arc 
bearings. For the sake of simplicity, we restrict our atten- 
tion to planar problems. For deterministic motions, the 
source trajcctories arc dcfiiied by initial conditions i.e. a 
four-dimensional vcctor whose components arc (x, y)-posi- 
tion and (x, y)-velocity. The corresponding bearing 
sequcncc (i.e. /fl(Xl, /I), p2(Xz, k ) )  are complctcly deter- 
mined by the sourcc statc vectors (i.e. XI and X2) .  

Associated with these dcteriniiiistic models and a Baye- 
sian framework are their a priori probabilitics zl and 
z2(nl + IT, = I ) .  Denote 4 = z I ,  then the scenario para- 
meters are reprcsented by the following @-vector, 
CD =(XI, X, ,  4). The batch data are denoted by %. At each 
scan, two measurements (possibly collapscd) are observed, 
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each of which comes from one of the two models with 
probability q and 1 - q,  respectively, i.e. 

fli(Xl, k )  + M'i(k), 

&(Xz, k )  + M'z(k), (1) 
if zj(k) originates from source 1 I if zj (k)  originates from source 2 

zj(k) = 

w, and w2 are the measurement noises. We assume them to 
he independent (from scan to scan), gaussian, with known 
and constant (throughout the measiirement batch) 
variances (U: and 02). 

The likelihood function then takes the following form 
(For the sake of brevity, clutter and detection processes are 
not included in this model, we refer to [13] for a complete 
modelling.): 

T 2  

P(ZI@) = n n P ( Z j U ) I @ )  
k=l j=l 

T Z  

= r I n l q P i ( z j ( k j l X i )  + (1 -q l~z(z j (k ) lXz) l  (2) 

We are now dealing with the calculation of the Fisher 
information matrix (FIM), when measurements are bear- 
ings. The validity of the related hounds in our context 
(measurements are not identically distributed) must be 
considered with care. For a detailed analysis refer to 
[14], chapt. 4. First, recall the classical expression of the 
FIM [ I ]  for the unique source casc (no assignment problem 
then exists): 

k=l j = l  

(3) 
This calculation may be easily extended [15, 161 to the 
mixture model (eqns. 1 and 2), thus yielding: 
Proposition 1: Let FIM be the Fisher information matrix 
associated with the mixture model (eqns. 1 and 2), then 

i, j E [ I ,  21; m, n t (0, 1,2]. 
Proof: 

Consider, for instance, the calculation of I , ,  

(4) 
I l l  is then obtained by calculating the expectation of the 
dyadic product of the tcrm (eqn. 4). The calculation is 
greatly simplified by the following remark : all the cross 
products yield null contributions. We then obtain 

Denoting Gl(k)  the gradient vector V,,fl(Xl, k)  and M2,0 
defined as in eqn. 4, exp. 4 of Il I then follows. Calculation 
of I,,  and IZ2 is quite similar. 0 

It remains l o  calculate and approximate the scalar inter- 
action terms M,n,n. Using an elcmentary transformation 

E = k l ) ,  the interaction terms M,,,,(pi,pj, k )  arc consider- 
ably simplified. For the sequel, we adopt the very concise 
notations of Behhoodian [17] (i.e. d=  Ip2 - pll/2C, 
p =gi/u2, d, = -d d2 = d and p 1  =p, p 2  = U p ) ,  yielding 
(PI =bl(Xl,k),  ~(2482(X2,k) )  [171. 
Lemma I :  Let M,,,(pi,pj, k)  be the scalar interaction terms 
of proposition 1, the following simplifications hold: 

m.n r r , '  Pi ~j Gm,ttki,gjl k )  

[17] ( y=~(z - j~ ) / r? ,  fik(p1 +p2)/2, r?=(ulu2j11z, a 

M ( p ,  p ,  k )  =E'"+" +I2 

where 

G,d&,  Sj, k)=s (Y-di,k)m(y--,k)nki(y)g;(y))/g(y)dy 

and 

m 
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Now, our analysis is divided into two parts. First, we 
examine approximations of the scalar interaction terms 
M,n,, .  The second part consists in using thcse results for 
approximating the CRLB bounds rclative to thc kinematic 
parameters of the sourccs. Since this analysis is multi- 
dimensional, this part is essentially based on (linear) 
algebra. 

3 Approximation of interaction terms 

We now restrict to tracts in close proximity (i.e. dk 5 I). 
The parameter dk (cqn. G for its definition) reprcsents the 
normalised angular separation between the two tracks a1 
the instant k. Since expansions of the interaclion terms 
Mv8,n will play a fundamental role, we restrict to the close 
track hypothesis (i.e. dk < 1). 

First, for reasons we present latcr, the case p = 1 is a 
special one for which approximations of terms 
M,,Jpi,pj: k)  are particularly simple and easy to obtain. 
More precisely, considering a fourth-order expansion of the 
functions (cqn. 6) G,,&,,g,,k), around 0 and relatively to 
dk, the following approximations are obtained [16], for 
p = l :  

3.7 Result 7 

Mo,o(PI.Pz>~)= 1 - M l  -q)$. 

MI.I(PI.P2% k )  = 1 - 1 2 d l  - 4 ) 4  

~2,0(Pl~Pl%w= 1 -4(3q-2)(1 -4)dk  
(7) 

M0,2(P23P2,k) xz 1 - 4 d 1  - 3 q ) 4  
I W , . o ( ~ i ~ ~ z . k j  " - 2 q d k t W q -  1Ml  -q)u',3 

MO.I(PI,PZ,~)=~(~ -q)d,+89(34-2)(1-q)$ :"-I 
\ ,  

0 .......... :\ ............ 
, .  

-1 
0 1 2 3 

a 

An illustration of the accnracy of their second-order 
approximations is provided with Fig. I. The value of q is 
0.5, the parameter dk is varying fiom 0 to 3 (horizontal 
axis), and we compare ( p  = I), the eract values of A4,n,fl 
(eqn. 6) with its approximations given by (eqii. 7). The 
approximations are satisfactory for vahies of the normal- 
ised separation dk as great as 0.7; which is, here, a 
convenient hypothesis (closc tracks). For greatcr values, 
thcse approximations become quite inaccurate. 

Rather surprisingly, the results obtained for the general 
case ( i s .  p # 1) are fnndaincntally different. Considering p 
as a free parameter, the previous approach does not provide 
explicit results since there is no explicit expression of the 
intcgrals of the cxpansion of the tcrms (g,(y)g.(y))/g(y) 
Then, analogously to [17, 181 a natural and rigorous 
approach consists in using a series expansion of the 
function (gi(y)~(y))/g(y). More precisely, we observe that 

where h ( y ) = q h ( y ) + ( I  - q ) p M 4  and h,(y)= 
exp[-(y - di,k)2/2p,] ,  i=1,2.  Now, it is easy to show 
that qh,(y)/(l - q)ph2(y)< I if y is in lhe intcrval 
(- CO, ul) or (E~ .  CO), with uI c u2,  and the converse 
(i.e. ( I  - q)ph2(y)/qhl(y) c I )  if y is in the inlerval 
(al, u2) ,  where rxI and u2 are the real roots of lhe following 
second-order cquation: 

1 .................................... 

0 . . . .  \... ..: ......................... 
. .  

-_ \ :  
0 1 2 3 

b 

-1 4F! 3 .......... .;. . . .  ..L.. ............... 
2 .............. / ..................... 

0 :  
1 .e. : ............................... 

0' I 
0 1 2 3 

0 1 2 3 

dk 

-1 

0 1 2 3 
d 

0.5 ...................... ..I.. ......... 
\. : 

0 . . . . . . . . . .  \: ............ : ....... 
,'\ 
I .  

_ _  -0.5 
0 1 2 3 

dk 
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If real roots exist. Using thc mcthod presented in [18, 171, 
thc following expression of GJ,&r,g,) is obtained: 

whcrc thc functions Hl(y)  arld I&) are straightforwardly 
deduced from abovc calculations and detailed in  [17]. Thc 
computation of the iiitegrals leads l o  deal with truncated 
moments of a normal distribution, which is already known. 
The advantagc of this method lies in the fact that we 
approximate G,,&, g;) by an alternating series. 

The calculation is siinplified if we assunx that eqn. 9 has 
no real root, and obtain (these approximations differ 
slightly from that of Behhoodian [17]) (see Appendix, 
Section 9.1) 

3.2 Result2 

1 
ul. ly 443  I + I )  - + 1 [ 2 p 3  ai+ I 1 

[ p + 4 4  $1 
exp[2d;I(L- l)P/%,l (1 1) 

where U, = l( I - p 2 )  + 1. A less rigorous hut simpler 
approach consists in using a second-order expansion of 
gl and gj,  both with respect to d (around 0) and p (e.g. 
around I). Calculations arc pcrformed by means of 
symbolic computation and yield 

Gn,zkz3 gz) Po.dc13 f) + <f*Qn,z(q, f) 

GI,  I (SI. ~ 2 )  X PI, I (4. P )  + d2Qi,z(q. P )  

Gz,obi SI) X ~ ~ , n ( q ~  P )  + d2Qz,o(q, p )  

The polynomials Pi,, and Oi,j are detailed in the Appendix 
(Scction 9.2). Their complexity is inherent to thc case 

(12) 

f # l .  

4 Approximations of CRLB 

4.1 Performance analysis for MTMA (reduced 
state vector) 
We show now that it is possible to obtain cxplicit approx- 
imations of the bounds for the variance of estimated 

108 

kinematic paramctcrs. The two following ingredients are 
fundamental: 

kincinatic parameters arc modified polar co-ordinates 
( M W  

approximations of intcraction terms (i.e. :Mm,,J given in 
Section 4 

The fundamcntal role of MPC (/$,, / j ,  Lir, I/r) in TMA was 
proposcd by Aidala and Haminel [I91 and is now well 
recognised. Further, recognising that the TMA problem is 
nonlinear leads us to consider the Lie derivatives of the 
observation (i.e. tho bearing), themselves spanned by lhe 
MPC [20]. We stress that the co-ordinate (Ur )  plays a 
particular role, since it is a 'control' co-ordinate; so 
cstimation of the relatcd component will be trcatcd sepa- 
rately. 

To facilitate the calculations, thc following (partial) 
source statc vectors are considcrcd throughout this Section: 

XI = (p: ,b~,F,)*,  X ,  = (@.&. &)* (13) 

@, 8 ,  Di, 'respectively' denote the initial (i.c. at time 0) 
hearing, tho bedringrate and thc time derivative of the 
bearing-rate of the ith source. Also, we assume that the 
probability q is known. Further, note that the 'usual' MPC 
have been slightly modified since we use /I in place of Lir. 
This is quite justifiq? sincc,, in the absence of obscrver 
maneuver, we have p = -2/l?/r (see [20] for the general 
case) and higher orcler derivatives of f l  can be expressed as 
polynomials in {/j, /I} of increasingly homogenous degree 
[20]. Thus, the following quadratic bearing model is 
considered in this section: 

k2 .. 
2 P,(k) = Bi(0) + Idi + - P i  

Thcu, from eqn. 4 the FIM (relative lo XI and X,)  talccs the 
following form: 

where 

G k = ( 1 , k , k z / 2 ) *  

Note that now the gradient vector Ck is identical for the 
two sources. This is doe to the co-ordinate choice (i.e. 
MPC). 

It is quite reasonablc to assume that the parameter dk is 
sufficiently small ( i s .  dk 5 I). A 3rd-order expansion 
(w.r.t. dk) of the components of the matrix M k  yields 

Mk = M d k )  + d i M l ( k )  (15) 

Calculation of thc CRLB will require convenient approx- 
imations of the interaction matrices M O  and MI .  These 
approximations havc been derived in Section 4. In this 
Section it has been shown that thc cases p = I and p # 1 
must he considered scparately since approximations are 
quite different. Indeed, algebraically, a major difference 
cxists: the approximated matrix M O  is rank-onc when 
p = 1, while it is full rank otherwise. The corresponding 
CRLB calculations will thus be considerably different. 

IEE Pnx-Harla,: Sonor Nrnzig., I'ol 147, No. 3, l i n e  2tititi 
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4.1.1 The case p = 1: For the case p = I ,  the matrices 
M O  and M I  are straightforwardly deduced from eqn. 7, 
yielding 

A H 

(16) 

It is now convenient to define the following matrices which 
will play B major role for the analysis: 

A = M O  @CO, B = M I  @ C l  

Here, we note that since rank (MO)= l(Mu = V,V;) and 
CO is invertible, the rank ofA is 3. On the another hand, the 
M I  matrix is invcrtiblc, as well as C, ,  hence U is invertible. 
However, inversion of FIM must be considered with a 
certain care, since for values of dk as small as 1/2, the norin 
of B is (generally) quite smaller than the A one. In fact, 
since A is rank dcficient, we connof use the general formula 
for inverting the sum of invertible matrices. This difficulty 
requires us lo consider the eigensystem of A and rather 
technical calculations. Despite rather indirect intermediate 
steps, the following result yields an explicit bound, rcinark- 
able by its siniplicity; which is the imain result of this paper. 
Denote FIM-' [ I ]  and FIM-.' [2] as the 3 x 3 diagonal 
block-matrices of FIM-' corresponding to variance 
bouiids for source I and source 2 parameters, respectively, 
then we have 
Proposition 2: For p = I ,  the €allowing approximations of 
the variance bounds hold ('PA ( C , j ' + u  Cj')-', U =  
- l/q(l - q): Note that if q is interchanged with 1 - q,  
F1M-I [ I ]  becomes F1M-I [2]) :  

( 1  8) 

Pmuf! We are now dealing with the calculation of an 
explicit form ofFIM'- l ,  where FIM is given by cqn. 16. 
Denote (VI, V ,  V , )  as the eigenvectors of CO, and 
A=diag(l,,, A,, A;) the (diagonal) matrix or the eigenva- 
lues. Further, note that under the assumption p = 1, the 
rank of the matrix M O  is one ( M O =  V , V ;  with 
Vc = (q ,  ( I  - 4))). Then it is easily shown that the vectors 
{Wl=Vo@V, ,  W2=V,@V,, W3=Vo@V3)  are eigen- 
vectors of' A, (7bi};=l being the associatcd eigenvalues. 
We then have 

A -UAU*, U = [WI, Wz,  W;t  = V ,  @ V  

where 

v 2 (VI, v,, V , )  

IEE Proc.-Roririt: sonor Uovic., vol. 147, No. 3, h n e  2000 

The following inversion formula, valid for B invertible, is 
then instrumental [21]: 

( B  +uAu*)-~ = B-' - B - - ~ u ( A ~  +u*B-~u)-~u*H-~ 
(19) 

So we have now to deal with the calculation of the various 
terms of the right member of cqn. 19. 
Step 1. Calculation of F ' U :  Since MI  and C, are 
invertible, and invoking the classical results [22, 231, i.e. 

(20) 
( A  @ B)-' =A- '  @ B-I 

(A  @ B)(C @D) = AC @ED 

we obtain (V e { v,, v,, V~ }) 

B-'U = - ( M i '  18 C i ' ) ( V u  @ V )  

= -(My' Vo)  @ (CY'V) 

Of course, a similar result holds for the coiljugate term (i.e. 
U*B-' = -(V:M; ' )@(lJ*Cr')) .  
Step 2. Cu/culation of U * B - ' u :  Using the previous result 
we obtain 

U*B-'U = -(V: 8 U*)(M;'V, @CC;'V) 

= -(V:MT'Vo) @ V*CilV 

= UV*Ci'V (21) 

U is simply a scalar (E = - V6M;' V , )  factor of the 3 x 3- 
mahix V*C;'V. The vahic of U is given later. 
Step 3. Cu/culufion of'(A-' t U * B - ' U ) - ~ ' :  From previous 
calculations we deduce (A'-' = VA-'V*): 

A-' + U*ll-lU = A'.' + aV*CjlV 

= V*(A'-' + aCil)V (22) 

Now, the following implication holds true (V unitary 
matrix): 

C, VAV* j A'-' = VA-''V* = C"' 

so that 

(A-' +U*,l-lu)-l = v*(~-l  +uCl' ) - 'V (23) 

Considering the preceding formula as well as the basic 
inversion formula (eqn. IO), a last step is required, namely 
the calculation of the term B-lUV* and of associated 
simplifications. 
Step 4. Ca/culution of B - ~ u ( A - ~  + U * U " U ) - ' ~ * B - ' :  
Collecting previous results we obtain 

B-'U(A-' + U*B-IU)-IU~B-I 

= [ M i '  V ,  @Cci-'v]v*(C,' + aCi.0-l 

V[V;;M;' @ V'CyI]. (24) 

A last simplification step is then 

V [ Y ; M ; '  @ V * C i ' ]  = ( I  @U)(ViMi '  @V*C; ' )  

= ( v ; M ; ' )  @ (VV "e;') 
=(V;M;')@Cyl (25) 

The following result summarises all the preceding calcula- 
tions: 
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Lemma 2: Under the Section 5 hypothcscs ( p  = I) ,  the FIM 
inverse takcs the following form: 

o-~(FIM)-' 

= -M;' @Cy' 
- (MF'V, @ C;')(C;' + uC;')-'(V:M;' @ C;') 

It simply remains to calculate explicit expressions of 
elementary terms (i.e. E ,  Mr'VO@Cj- ' ) .  For p = l ,  the 
following results are obtained: 

So ending the proof. 0 

A further step of approximation may be considered for 
very close sequence of bearings. More precisely, if wc 
assume that dk << 1 then we can reasonably assume that 
(element-wise) C;'<<C;', so that (?%E-'  Cl),  yielding 
Result 3 

The simplicity is rather striking, and the result appears 
quite natural. In particular, the sequence of 'normalised 
separation' (i.e. {dkIk)  plays the fundamental role. 

4.7.2 The case p # 7: This time, the matrices M O  and 
M I  are both invertible. Of course, it is possible to extend 
the previous calculations to this case, hut no explicit result 
can he obtained by this way. However, it is possible to 
apply the general inversion formula [21], valid forA and B 
invertible (A=M,@C,, B=MI@C,) 

( A  + = A-' - A-I(A-l + B-')-lA-' (29) 
Under the hypothesis dk << 1, it may be reasonably 
assumed that (element-wise) C;' <<e;', so 

(A-' +E-')- '  % B 

therefore, using classical properties of Kronecker products 
(eqn. 20), we have 

a2FIM-l % M i '  @ C;' 
- ( M i 1  @ C;')(Mi @ C,) (Mi l  @e,') 

= M i L  @ Ci' - ( M i l M I M i l )  @ (Ci'CICi') 

(30) 

In general (see Section 4), the matrices M O  and M I  are 
relatively complicated. Furthermore, the validity of such 
approximations is limited to "reasonable" values of p .  For 
large (or low) values of p,  the problem is more relevant to 
hypothesis testing [ 5 ] .  

4.2 Performance analysis for MTMA (complete 
state vector) 
The previous analysis may he easily extended to the 
estimation of the complete source state vector. Again, the 

I i n  

analysis hccomcs possible by considering MPC as the 
gencral framework. To avoid consideration of particular 
scenario wc shall deal with a system constituted of two 
separated rcccivcrs [24]. The TMA problem then becomes 
completely observable. First, kinematic relations are 
considered, allowing us to utilise the framework of the 
previous Section. 

The problem is defined as follows. Two (fixed) receivers 
are placed on the n-line, thc first one at (0,O) and the 
sccond at (d, 0). For both reccivers, measurements are 
bearings-only (PI and p2). Direct calculations yield 

. det(v, r l )  1 /I' =7-- - (v,cos/lI -v,sinPI) 
r 

. tlet(v,r,) r(v,cos/l, -v,sin/ll)-dv, p2 = -z - 
1'2 r2 + 2dr sin PI + d2 

= &  -dv,/r2)(l +2d/rsin/?, fd2/r2)-I  (31) 

We then consider an expansion of p2. b,, p,, with respect 
to c = d/r, around 0. Thc source trajectory itself is deter- 
mined by the four-dimensional state vector X, X = ( p y ,  bl ,  
[Il, lir) and, for a source, the gradient vectors 6'; and 6'; 
associated with the measurements of receiver 1 and recei- 
ver 2, respectively, stand as follows: 

A 

(32) 

Since we are interested with close source trajectories it is 
quite reasonable to assume that these gradients are inde- 
pendent of the source index. Now, let us denote FIMl and 
FIM, the Fisher information matrices associated with 
receivers 1 and 2, and FIM the global one. The measure- 
ments on receivers 1 and 2 being assumed uncorrelated, we 
have 

FIM = FIMI + FIM, 

where 

so that 

c 
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We restrict attention to the case p = 1. Then the matrix M O  
is also rank-one, so the calculation of FIM-' is identical in 
its principle, yielding again 

Considcr now the the estimation of both thc kinematic 
parameters and the mixing probability q. The PIM is then a 
herniitian 7 x 7 matrix, of the following form: 

Consider again the case (1 = 1. Then, using thc partitioned 
matrix inversion and the Woodhury lemmas [21, 221, we 
obtain (Appendix, Section 9.3) 

FIM& = F I M ~ ~  (37) 

This rcsult is important since it means that the CRLB 
(rclative to the estimation of kinematic parametcrs, i.e. 
FIM,;), is not significantly affected by the cstimation of 
the mlxmg parameter 4. 

5 Numerical results 

First we present the multiple-source scenario, common for 
all the results of this Section. Two (close) sourccs move 
with a constant velocity vector (rectilinear and uniform 
motion). Their trajcctories arc represented in the (x,  y ) -  
plane in Fig. 2. The kinematic parameters (r,(O) = I S  km, 
r,,(O) = 15 km, v,, = 12 mis, v,, = 6 mis) of target I are fixcd 
(solid line), while that of target 2 take IS  different values 
corrcsponding (rX(O)=22km+ 20.6km, r&O)= 18km, 
vx = 11.5 m/s, v,.,= 5 mis) to various initial positions 
(dashed lincs). 7 he corresponding trajectories arc thus 
deduced by a translation, marked 1 to 15. The receiver is 
fixed, at the origin. The (exact) observations (i.e. the 
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Fig. 3 Accuracy qfCRLR approximations (n(fi2(0)) and 08)) 
pmp. I ," 2 

~- 
~~~~ 

rcs, 3 

bcarings) associated with these scenarios are represcnted 
in Fig. 2. Thc measurements noise is identical for the two 
sources and constant throughout the whole scenario 
(@) = 1/8 rd % 7 dcg). Note that the two targets have 
close bearings, so that the assumption dk 5 1 be satisfied. 

Accuracy of the approximations of the variance bounds 
is illustrated in Fig. 3. The values of A&O) (ranging from 
5.7 to 3.7 deg) correspond to the various initial positions of 
targct 2 (marked from I to IS). Thc solid lines represcnt 
thc exact values of the lower bound relativc to the estima- 
tion of /&(O)  (left), respcctively g2(g= i i r ) ,  as given by 
prop. 1. The continuous-dotted lines illustrate approxima- 
tions given by prop. 2, while the dashed lines represent the 
simpler and more explicit approximation obtained in res. 3 .  
The approximation given by prop. 2 performs satisfacto- 
rily; while the simplcr one (res. 3) is still quite acceptable. 
Note that, relative to thc initial mcasitrement variance, the 
variance of /12(0) is considerably reduced. 

We are now dealing with the cstimation of the complete 
state vector. The source trajectories arc unchanged; but this 
time two (fixed) receivers are considcred (both on the n- 
axis, separated by a distance of 2km). In Fig. 4, exact 
bounds (prop. 1 )  arc compared with approximations given 

a b 

Fig. 4 Accsmcy of CXLE nppmximations (&(O)) and o@), two 
receivem) 
~ plop. I 
~~~ p". 2 (eq". 34) 

res. 3 (eq". 35) 
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Fig. 5 Accuracy of CRLB approximalions (U(?), mo receivers) 

-.- prop. 2 (eqn. 34) 
prop. 1 

res. 3 (eqn. 35) 

- 

by prop. 2, eqn. 34 and res. 3, eqn. 35. Then this analysis is 
extended to the lower hound (Fig. 5) relative to the 
estimation of the "missing" co-ordinate (i.e. Ur).  Again, 
the quality of the approximations is satisfactory. Note 
however that, in comparison with the unique source case, 
the value of U(?) is very important. This is due to the track 
interaction. 

6 Conclusions 

Based on the use of modified polar co-ordinates and of 
convenient approximations of the interaction matrices, 
cxplicit approximations of the CRLB for MTMA have 
been derived. Their pertinence has been illustrated by 
numerical comparisons. In this way future directions, 
could include connections with multiple-target tracking 
algorithms and sensor management as well as incorporat- 
ing the track coalescence phenomenon in the observation 
model. 
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Appendix 

9.7 Calculation of Go,o(g,, g2, k)  
Consider the series expansion presented in eqn. 10, hut this 
time assume that the second-order eqn. 9 has no real root. 
Then (ci = - q)P)[(-d(l - q)p)' l )  

Thus, the basic point is the calculation of the integral 
J?'mh:+'(y)hc'(y)dy (wherc hi(y) = exp[ - (y  - dj)*/2pi]. 
i = l ,  2), i.e. . I ~ - M e x p [ - ( J + l ) ( y + d ) 2 i 2 p + J ( y - ~ z p /  
21. Considering the following quadratic-form factorisation 
(.=Jp - (lt l) lp,  p = l p + ( l + l ) / p ) :  

- ( I  + 1)b + d)2/2p + 10. - d)'p/2 
1 
2 = -[E$ - 2dpy + @d2] 

= 2 [ ~ ( y  - d : ) 2 + d 2 ( v ) ]  (39) 

we obtain 

Under the hypothesis p < 1, we have c( < 0. Thus, the 
preceding integral exists. Making necessary variable 
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changes, we have (integration of a normal density) 

(41) 
so that finally (with ai $-1(1 - p2) + 1) 

1) - I log(?)] (42) 

yielding eqn. 11. 

9.2 Polynomials and 
The polynomials, eqn. 12, are detailed as follows: 

P ~ . ~  = 3 ~ -  P )  + 3 4 ~  - p )  +qp(p - 1) 

+ PZ + lOq?p - 0 2  

PI,' = -7q + p + 16qp - 9qp2 + 10q2(p - 1)' 

P2,2 = 7 - 15p + 9p2 + q(-17 + 360 - 19r2) 
(43) 

+ 1042(P - I)Z 

and 

= 468q4(p - 1)' - 12q3(37 - 77p + 4 0 ~ ' )  

+ q2(70 - 1 5 6 ~  + X9p2) - 4 

Q1,, = 468q4(p - 1)' - 18q3(49 - loop + 5 1 ~ ' )  

+3q2(158-332p+175p2) 

- 3q(20 - 440 + 25p2) (44) 
Q2,O = (q - 1)(46Xq3(p - 1)' - 12q2(71 - 145p + 74p2) 

+q(436-916p+483p2)-51 + 1 1 2 ~ - 6 3 ~ ~ 1  

9.3 Complete state vector 
Denote H the bordering vector 

where (see eqn. 7, p = 1) 

and FIM;,:, the 6 x 6 block of FIM-' relative to kinematic 
parameters. Using the partitioned matrix inversion and the 
Woodhury lemmas [21], we obtain 

FIM& = FIM,~ 

We have now to deal with the calculation of the corrective 
terms H*FIMk,IH and FIM,'HH*FIM;l. Using prop. 2, 
we obtain (m = V,) 

H*FIM;~H = -o~(c*c;~G) + o ~ ~ ( c ; ~ c ) * P ( c ; ~ G )  (47) 

= 0  (48) 

= crC*(C;' - E C ~ " P C ; ~ ) G  

Similarly, we have 

FIM,;~HH*FIM;' G o 
so that, finally 

(49) 
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