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Abstract

With emphasis on the graph structure of energy-based models devoted to image analysis, we investigate e$cient
procedures for sampling and inferring. We show that triangulated graphs, whom trees are simple instances of, always
support causal models for which noniterative procedures can be devised to minimize the energy, to extract probabilistic
descriptions, to sample from corresponding prior and posterior distributions, or to infer from local marginals. The
relevance and e$ciency of these procedures are illustrated for classi"cation problems. ( 2000 Pattern Recognition
Society. Published by Elsevier Science Ltd. All rights reserved.

Keywords: Energy-based models; Independence graph; Causality; Triangulated graphs; Trees; Noniterative procedures

1. Introduction and background

Many issues of image analysis can be modeled and
coped with by designing an energy function;(x, y) which
captures the interaction between the unknown variables
x"(x

i
)
i
to be estimated, and the observed variables } the

measurements or data } , y"(y
j
)
j
. A standard, although

complex in general, problem is then the minimization
of this function with respect to x, y being known. Other
intricate issues, such as estimation of internal parameters
or validation of selected models, also arise within this
framework.

Depending on the number of variables, the nature of
the single variable state space (discrete or not), and the
properties of the function (convex or not, local or not),
various situations with speci"c types of di$culty occur.
The number of variables, which may be extremely large
in usual image analysis problems, remains however a
generic source of concern.
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Such an energetic modeling is encountered in various
"elds (e.g., statistical physics, multivariate statistics,
combinatorial optimization, arti"cial intelligence). We
are here interested in its use in di!erent approaches to
image processing problems, such as in Markov random
"elds (MRFs)-based approaches [1,2] and partial di!er-
ential equations (PDEs)-based approaches [3].1 In the
former class of approaches x and y are random vectors
and the energy function is naturally related to the joint
distribution2 through P(x, y)JexpM!;(x, y)N. In the lat-
ter one, ; is a functional of continuous functions x and
y which are discretized afterward (e.g., within the func-
tion minimization process). In the following we shall only
refer to energy functions of a "nite number of variables,

1Many aspects of energetic modeling do not need to be
related to any probabilistic framework, as in PDFs-based ap-
proaches, although we think it is a good thing to do. Thus, in
order to remain quite general, we tried in this paper to emphasis,
when possible, the non-probabilistic aspect of issues of interest.
However, certain issues are intrinsically probabilistic, such as
drawing samples for instance.

2We adopt the convention that all the probability masses will
be denoted by P(.). We shall refer to them simply as `distribu-
tionsa.
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while keeping in mind the strong (and sometimes
straight-forward) connection to continuous energetic
models. We shall also assume that x

i
's take values in

a "nite set ".
The "rst critical step toward energetic modeling obvi-

ously relies on the choice of the energy form. A tailor-
made parameterized class of functions is generally
chosen. An important ingredient of functions usually
used, is their decomposition as a sum of simple interac-
tion potentials depending just on a few variables. Thus, by
specifying very simple local interactions (possibly non-
linear and involving variables of di!erent natures) which
sum up as an energy function of all variables and para-
meters, one can de"ne a global model. This local/global
duality is behind the #exibility and power of these
modeling approaches.

With such a setting, each variable only directly inter-
acts with a few other `neighboringa variables. From a
more global point of view, all variables are mutually
dependent, but only through the combination of succes-
sive local interactions. This key notion of local functional
dependencies is naturally captured by de"ning an inde-
pendence graph associated to;. It is an undirected graph
for which i and j are neighbors if x

i
and x

j
appear within

a same local component of the chosen energy decomposi-
tion. This graph structure turns out to be a powerful tool
to account for important local and global structural
properties of the model. As we shall see, in some speci"c
cases it su$ces to deduce causality properties, thus allow-
ing the design of e$cient estimation algorithms. This
paper is particularly dedicated to the exploration of this
type of situations in case of discrete models (i.e., x

i
's take

values in a "nite set ").
After the speci"cation of an energetic model, one deals

with the actual use of it for modeling a class of problems
and for solving them. At that point, three main general
issues may be of interest:

1. Sampling: in order to evaluate the statistical properties
of the speci"ed energy-based model, one might want
to draw samples from the prior and posterior distribu-
tions (P(x) and P(xDy) respectively) associated to the
energy function. It is then a purely probabilistic issue;

2. Inferring: one of the primary goals in early vision
problems is to infer the `besta estimate of x given y,
with respect to a criterion to be devised.

3. Learning: also, one has to tune the parameters in-
volved in the de"nition of ;. The estimation of the
optimal parameter vector is tricky since the whole
energy landscape depends on it. Apart from manual
tuning, consistent estimation procedures (e.g., EM-
type algorithms [4,5]) exist, but they remain extremely
heavy, if practicable.

In general, there is no way to directly draw samples
from the prior and posterior distributions. Among other

problems, these distributions are known up to propor-
tionality constants (the partition functions) whose compu-
tation (by summing up exponentials over all possible
values of x) is not tractable in general. One has to use
iterative Monte Carlo Markov chain (MCMC) methods
(where these constant do not appear) to get samples from
distributions converging toward the target distribution.
This Monte Carlo framework then allows in addition to
compute approximations of partition functions or any
other expression involving sums over very large set of
con"gurations (like posterior marginals or posterior ex-
pectations). However, the overall procedure is computa-
tion demanding due to slow convergence.

As for estimation of x in case of discrete model, there
exist two standard estimators stemming from Bayesian
estimation theory. The maximum a posteriori (MAP)
estimator which is the most widely used, makes the
best estimate of the most probable x given
y : x("argmax

x
P(xDy)"arg min

x
;(x, y). It corresponds

to the global minimizer of the energy function, and its
estimation can therefore be seen as a non probabilistic
problem, the energy simply being a `costa function to be
minimized. The second estimator is as for itself intrinsi-
cally probabilistic. It is the so-called MPM (for marginal
posterior modes) which de"nes site-wise estimate as the
most probable given y : ∀i, x(

i
"arg max

xi
P(x

i
Dy).

The global minimization necessary to get MAP esti-
mate is not possible in general. Various iterative algo-
rithms can be devised to cope with the problem, but they
only provide approximate estimates in general (i.e.,
`locala energy minima). As for MPM estimates, they rely
on the computation of the posterior marginals which is
not tractable in general. Aforementioned MCMC iter-
ative techniques can provide us with approximations of
these marginals.

Problem of parameter estimation is even more com-
plicated. Standard Expectation}Maximization (EM)-type
iterative methods require the knowledge of prior parti-
tion function, as well as local posterior expectations
relative to the current parameter "t [4,5]. Both ingredi-
ents are out of reach in general, and (Monte Carlo)
approximations are once again necessary [6].

It turns out that for most energy-based models suitable
for image analysis problems, one has to devise determin-
istic or stochastic iterative algorithms exploiting the lo-
cality of the model. While permitting tractable single-step
computations, the locality results in a very slow propaga-
tion of information. As a consequence, these iterative
procedures may converge very slowly. It is particularly
unbearable for stochastic (sampling or minimization)
algorithms. This motivates the search for speci"c models
allowing noniterative or e$cient handling of the di!erent
listed issues.

In this spirit, probabilistic causal models have been
already thoroughly studied [7}15]. The class of causal
autoregressive xelds, unilateral MRFs, mesh MRFs, and
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mutually compatible MRFs on bidimensional lattices has
thus been introduced. As we shall recall later, these
models rely on a probabilistic causality concept captured
by the factorization of P(x) in terms of causal transition
kernels.

We examine here the causality from a more graphical
point of view, in order to identify causal models at xrst
sight, based on simple characteristics of the independence
graph of the model. We then explain how noniterative
two-sweep algorithms can be devised on these nice graph
structures whose simplest instances are trees. In particu-
lar, we present two algorithms for the exact computation
of MAP and MPM estimates. They are respectively re-
lated to Viterbi algorithm [16] and Baum algorithm [17]
which both stem from Hidden Markov (chain) Models
(HMMs) [18].

On trees, the general setting we intend to develop here
is very much related to discrete classi"cation models by
Bouman et al. [19] and by LaferteH et al. [20,21]. It is also
formally similar to Gaussian models on trees designed
by Chou et al. in seminal papers [22,23], and which have
been applied to various image processing problems (op-
tical #ow estimation [24], texture analysis [25], remote
sensing [26,27]).

The paper is organized as follows. In Section 2, we
de"ne the independence graph structure which can be
associated to any energy-based interacting model,
and show how the graph is transformed through three
basic mechanisms: freezing of variables (i.e., partial
conditioning), energy minimizing with respect to some
variables (i.e., conditional MAP estimation) and
summing over all possible values of some variables
(i.e., marginal computation). In Section 3, standard
causality is "rst de"ned as a probabilistic concept which
can be functionally characterized, and then examined
from an alternate graph-theoretic point of view. It is
shown that certain constraints on the independence
graph ensure at once that noniterative computations are
reachable. In Section 4, we detail such e$cient computa-
tions on trees. The relevance and e$ciency of the di!er-
ent procedures are then illustrated in Section 5 for classi-
"cation tasks.

2. Independence graph and Markovian properties

In the coming section and the following one, we
choose a general notational setting in which some
variables of interest (observed or not) are gathered
into a vector z"(z

i
)n
i/1

associated to an energy
function ;(z).

2.1. Dexnition and properties

As we said in the introduction, an important character-
istic of the energy function is its usual decomposition as

a sum of local terms:

;(z)"+
c|C

v
c
(z

c
), (1)

where elements of C are `smalla subsets of indices
(usually one or two), and the interaction potential v

c
only depends on z

c
O(z

i
)
i|c

. Equivalently, the joint distri-
bution of z factorizes into a product of positive factor
potentials:

P(z)J<
c

g
c
(z

c
), (2)

where g
c
OexpM!v

c
N. The interaction structure such in-

troduced is conveniently captured by a graph [2,28]:

De5nition. The independence graph associated to energy
decomposition ;(z)"+

c
v
c
(z

c
) is the simple undirected

graph G"[S,E] with vertex set S"M1,2, nN, and edge
set E de"ned as Mi, jN3EQ &c3C: Mi, jNLc.

As a consequence of this de"nition, elements of C are
cliques of G (i.e., subsets on which G generates complete
subgraphs). In the following, we will always assume that
the energy function is such that its independence graph is
connected. This graph structure is equivalently character-
ized by its neighborhood system NOMn(i)N

i
de"ned as:

i3n( j)Q j3n(i)Q Mi, jN3E. The independence graph will
be equivalently denoted as G"[S,N]. The vertex set
n(i) contains the neighbors of i in G. For practical con-
venience, the neighborhoods must be small, i.e., G should
be of reduced degree.

Since a same joint distribution can obviously be de-
"ned by di!erent energy functions [1,28], and a same
energy function can be decomposed in a number of
di!erent ways, di!erent independence graphs can be as-
signed to P(z). However, a unique minimal independence
graph can be de"ned for this distribution [29]: the neigh-
borhood of i in this graph is the intersection of neighbor-
hoods of i in all possible independence graphs of joint
distribution P(z). As a consequence, the key probabilistic
information conveyed by an independence graph G

about two vertices, relies on the absence of edge between
them: this absence will remain in the minimal graph.
One can easily show that in this case, random variables
z
i
and z

j
are independent given all the remaining variables:

Mi, jNNENP(z
i
, z

j
Dz
S~Mi,jN

)

"P(z
i
Dz
S~Mi,jN

)]P(z
j
Dz
S~Mi,jN

). (3)

For the minimal independence graph, the implication is
replaced by an equivalence. This probabilistic statement
constitutes the pairwise Markov property. To prove it, it
su$ces to note that the distribution of z factorizes into
a product of two functions, one of which not depending
on z

i
, and the other one not depending on z

j
. More

generally, one can prove the following global Markov
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Fig. 1. Graphical consequence of (a) freezing the variables on v sites and (b) summing or maximizing out the variables on v sites.

property [30}32]: If a vertex subset a separates two other
disjoint subsets b and d in G (i.e., all chains from i3b
to j3d intersect a), then random vectors z

b
and z

d
are

independent given z
a
: P(z

b
, z

d
Dz
a
)"P(z

b
Dz
a
)]P(z

d
Dz
a
) and

P(z
b
Dz
a
, z

d
)"P(z

b
Dz
a
). The particular case where b"MiN

and a"n(i) constitutes the local Markov property
according to which:

P(z
i
Dz
j
, jOi)"P(z

i
Dzn(i)

)J<
c>i|c

g
c
(z

c
).

2.2. Graphical mechanisms

When handling an energy-based model, three mecha-
nisms are extensively used: (i) freezing variables: a set of
variables is "xed in a given state, either de"nitively (e.g.,
the observations), or momentarily for practical conveni-
ence (e.g., in case of alternate sampling). The frozen
variables then become like parameters of the energy
function; (ii) summing out: to compute probabilistic
quantities or distributions, one has to sum expM!;(z)N
over all possible values of one or several variables which
then `disappeara from the model; (iii) maximizing out:
when dealing with MAP estimation, the global maximi-
zation of expM!;N is often performed through coordi-
nate-wise maximizations (i.e., w.r.t. a few variables at
a time).

We now examine the structural transformations (if
any) generated on independence graphs by these basic
mechanisms.

Freezing } From independence graph de"nition, it is
straightforward to see that the subset of variables z

a
(with

aLS) with energy function deduced from ; by freezing
other variables z

a6
in a given state (with a6OS!a) exhibits

the subgraph generated by G on a as an independence
graph. From the probabilistic point of view, it is a matter
of conditioning: this means that an independence graph of
z
a

given z
a6

is simply obtained from G by deleting edges
with at least one endpoint in a6 (see Fig. 1a).

Summing and maximizing } It has been shown in [29]
that the marginal P(z

a
) for some subset aLS has an

independence graph in which two sites are neighbors if
they are neighbors in G, or if they belong to the neighbor-
hood of a same connected component of a6 "S!a. This
results from the summation of P(z)"P(z

a
, z

a6
) with re-

spect to z
a6

which provides the marginal distribution. It
turns out that the same graphical property holds in case

of maximization of P(z
a
,z
a6
) with respect to z

a6
. Let us

brie#y sketch the similar proofs of these two properties.
Let Ma6

k
N
k
be the connected components of a6 in G. The

neighborhood n(a6
k
)OMi3S!a6

k
: n(i)Wa6

k
O0N of a6

k
be-

longs to a and separates a6
k
from the rest. Consequently,

P(z) factorizes into:

P(z)Jg
a
(z

a
)<
k

g
k
(z

a6 k
, zn(a6 k)

). (4)

It follows that:

+
za6

P(z)Jg
a
(z

a
)]<

k

+
za6 k

g
k
(z

a6 k
, zn(a6 k)

) , (5)

hgigj
OGk(zn(a6 k))

max
za6

P(z)Jg
a
(z

a
)]<

k

max
za6 k

g
k
(z

a6 k
, zn(a6 k)

) . (6)

hgigj
OG

k(zn(a6 k))

This means that, in both cases, the components of each
zn(a6 k)

become in general mutually dependent through
function G

k
or G

k
. In case a6

k
reduces to a single site

(a6
k
"MiN), the neighbors of i become mutually neighbor-

ing through summation or maximization of the joint
distribution w.r.t. z

i
(see Fig. 1b).

This of course remains a graphical viewpoint. Depend-
ing on the analytical form of the original distribution
(even for a "xed graph structure), simpli"cations may
occur either in G

k
's or in G

k
's (factorization, or actual

dependence of these functions on less variables), thus
reducing the actual number of appearing edges (if any).
Such simpli"cations occur with causal models, as we
shall see. However, it is very unlikely that simpli"cations
simultaneously occur in both G

k
's and G

k
's.

Within estimation issues concerned by this paper, the
energy function is generally of the following form (or can
be rewritten that way): ;(x, y)"+

c
v
c
(x

c
)#+

i
l
i
(y

i
,x

i
).

This corresponds to pointwise measurements, i.e., compo-
nents of x and y are in one-to-one correspondence within
independence graph of (x, y), and with a mild abuse of
notation, they are indexed identically, even though asso-
ciated to diwerent vertices of the joint graph (Fig. 2a).
From the above description of graphical mechanisms,
one concludes that a priori distribution P(x) and a poste-
riori distribution P(xDy) have a common independence
graph, namely the one deduced from energy term
+

c
v
c
(x

c
). As for the exact form of prior distribution, it is

associated to this energy term (i.e., P(x)Jexp
M!+

c
v
c
(x

c
)N) only if for all i, +

yi
expM!l

i
(y

i
, x

i
)N is a
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Fig. 2. (a) Example of (x, y) independence graph for pointwise
measurements, with x

i
's on L sites and y

i
's on v sites; (b) the

independence graph of x and xDy is obtained by removing v sites
and edges connected to them.

constant. It is always possible to make this assumption
hold. In this case +

c
v
c

constitutes the so-called prior
energy.

3. Causality and graphs

The concept of causality relies on an ordering of sites,
and expresses that the conditional distribution of a com-
ponent z

i
given its `pasta reduces to the conditional

distribution given a `smalla neighborhood in the past. To
make it precise, one has to introduce a total ordering
according to which the variables z

i
's are now (re)indexed

from 1 to n, and seeks the following property [30,31,33]:

∀i'1, P(z
i
Dz
i~1

,2, z
1
)"P(z

i
Dzn8 (i)

), (7)

where n8 (i) is a small subset of i's past pa(i)O
M1,2, i!1N.3 If (7) holds, the distribution of (z

1
,2, z

k
),

for any k takes the factorized form:

P(z
1
,2, z

k
)"

k
<
i/1

P(z
i
Dzn8 (i)

), (8)

where, for notational convenience, we let n8 (1)"0, which
means that zn8 (1)

has to be ignored. There are no unknown
normalizing constants within the joint distribution (8),
and a noniterative forward recursive sampling of
this Markov chain-type distribution can be easily per-
formed.

Given the nice properties o!ered by causality, it is
worth addressing the following issue: the set of sites
S being ordered and ;(z)"+

c
v
c
(z

c
) being an energy

function with independence graph G"[S,N], could
random vector z with distribution P(z)JexpM!;(z)N
J<

c
g
c
(z) be causal with small past neighborhoods? It is

not the case in general. As explained in Section 2, for any
node i, an independence graph G

i
for marginal distribu-

3 `Pasta neighborhood system NI OMn8 (i)N
i
de"nes an oriented

independence graph GI "[S,EI ] on S according to:
(i, j)3EI Qi3n8 ( j). See [30,31,33] for more material about directed
independence graphs and their semantics.

tion P(z
1
,2, z

i
) can be easily derived from G. In this

graph, the neighborhood of i is composed of n(i)Wpa(i)
and of all sites of pa(i) that are connected to i in
G through Mi#1,2, nN. This neighborhood can be far
larger than n(i) (e.g., if G is a M]N grid lexicographi-
cally ordered and equipped with the "rst-order neighbor-
hood system, the previous graphical technique predicts
a neighborhood of M!1 sites for i in marginal
P(z

1
,2, z

i
), in case site i is away from the border). In this

case independence relation (7) a priori holds only for
a large set n8 (i) of predecessors, which makes the causal
representation hardly useful.

By successively considering marginals of vectors
zpa(n)

, zpa(n~1)
,2, z

1
, one can however establish two cases

where causal representation turns out to be at least as
local as the original non-causal one. Before we detail
them, note that <

c
g
c
can be rearranged as <

i
g
i
, where

g
i

is the product of g
c
's for all c containing i and no

further site: g
i
O<

c>.!9 c/i
g
c
. Then g

i
depends only on

z
i

and on variables attached to the subset
6

c>.!9 c/i
c!MiN of n(i)Wpa(i). Also, by convention

g
i
,1 if no clique c of C veri"es max c"i.

3.1. Functional characterization

The marginal independence graph G
i
previously con-

sidered is a sort of `upper bounda. However, in certain
cases depending on the expression of the factors under
concern, simpli"cations might occur in marginal
P(z

1
,2, z

i
), leading to a simpler independence graph. If

∀i, +
zi

<
c>.!9 c/i

g
c
(z

c
),k

i
(constant), (9)

it is easy to show, by successive marginalizations, that
P(z

1
,2, z

i
)J<i

k/1
g
k
. The local Markov property indi-

cates that the corresponding independence graph associ-
ates n8 (i)O6

c>.!9 c/i
c!MiNLn(i)Wpa(i) as a neighbor-

hood of i, and:

P(z
i
Dzpa(i)

)"P(z
i
Dzn8 (i)

)"
<

c>.!9 c/i
g
c
(z

c
)

k
i

.

The model then veri"es Eq. (7) with past neighborhoods
n8 (i)Ln(i)Wpa(i) which are small for n(i)'s are.

This way to introducing causality is at the heart of
the various bidimensional causal representations
[7,8,9}15,34]. As we already said, this causal probabilis-
tic decomposition allows to recursively draw samples
from P(z), starting from node 1, and all marginals can be
exactly computed. However, when Eq. (9) holds for the
prior model (z,x) (and therefore for the joint model
z,(x, y) in case of pointwise measurements), it does not
hold in general for the posterior model (z,xDy), al-
though prior and posterior independence graphs are the
same! This is particularly harmful since posterior model
is at the heart of inference and sampling procedures (at
least in inverse problems).
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3.2. Graphical characterization

Graphical considerations will allow to point out an
important class of interaction models for which the same
conclusion (i.e., causality relative to some in-past parts
of the original non-causal neighborhoods) systematically
holds, whatever the actual factors are.

To make notations general and simpler to handle in
the following, we now note g

i
(z

i
, zn(i)Wpa(i)

) even though
some of the components of zn(i)Wpa(i)

might be absent from
the arguments of the function (i.e., if 6

c>.!9 c/i
c!MiN

dn(i)Wpa(i)).
Return to successive marginalizations from z

n
to z

1
. As

explained in Section 2, the summation of <
i
g
i

w.r.t.
z
n

makes all sites of n(n)Wpa(n)"n(n) mutually neigh-
bors through function G

n
(zn(n)

)O+
zn
g
n
(z

n
, zn(n)

). A particu-
lar situation for which this structural change has no
incidence is when n(n) is already a clique.

As a consequence random vector zpa(n)
exhibits the

subgraph generated by G on pa(n) as an independence
graph. Its joint distribution is proportional to
<n~1

i/1
g
i
]G

n
. Let n6Omax n(n) be the `greatera vertex of

n(n). Function G
n

depends on zn(n)
where n(n)L

(n(n6 )Wpa(n6 ))XMn6 N, since n(n) is a clique. Therefore G
n

and g
n6

both depend on z
n6

and on some subset of the
variables attached to the neighboring predecessors of n6 .
These two functions can then be `aggregateda in the joint
distribution of zpa(n)

, to form a single factor function of
(z

n6
, zn(n6 )Wpa(n6 )

). We can start again with reduced vector
zpa(n)

. By backward induction,4 one shows that, if

∀i, n(i)Wpa(i) is a clique of G, (10)

then any random vector admitting G as an independence
graph is causal relative to oriented neighborhoods de-
"ned by n8 (i)On(i)Wpa(i). Fig. 3 shows a graph that satis-
"es this condition w.r.t. the indicated site ordering (other
orderings were possible). Any energy function of six vari-
ables admitting this graph as its independence graph
de"nes a causal model relative to Mn8 (i)"n(i)Wpa(i)N

i
.

A nice result shows that the graphs for which an ordering
of sites verifying (10) exists are triangulated (or chordal),
i.e., they contain no cycles of length *4 without a chord.
This is obviously the case of graph in Fig. 3. A complete
proof can be found in [31].

Let us make more precise the recursion behind the
above induction. Functions G

i
's are recursively de"ned

for all i as:

G
i
(zn8 (i)

)

OG
+

zi
g
i
(z

i
, zn8 (i)

) if i
6
"0,

+
zi
[g

i
(z

i
, zn8 (i)

)<
j|i6

G
j
(zn8 (j)

)], otherwise
(11)

4 In the course of the recursion, other G
i
's (if any) such that

maxn(i)Wpa(i)"n6 will similarly `aggregatea to g
n6
.

where iOMj3S: max n8 (j)"iN. One can show that Eq. (10)
along with the connectedness of G ensures that
n8 (i)O0, ∀i'1 (therefore n6Omax n8 (i) exists). In this case,
it clearly turns out that one deals with a `leaves-to-roota
recursion on a tree structure ¹G de"ned as follows:
∀i'1, its parent is n6 and its child set is i

6
. The root is

vertex 1. The nodes for which i
6
"0 (the "rst to be

considered) are the `leavesa (Fig. 3e). The relevant recur-
sive structure for de"ning algorithms is not anymore the
ordering of sites, but the underlying tree structure which
can be de"ned if (10) holds.

The root prior distribution and transition kernels are
then obtained:

P(z
1
)"

g
1
(z

1
)

G
1

<
j|16

G
j
(z

1
),

P(z
i
Dzn8 (i)

)"
g
i
(z

i
,zn8 (i)

)

G
i
(zn8 (i)

)
<
j|i6

G
j
(zn8 (j)

),

from which the exact joint distribution is deduced. From
Section 2, we know that the completeness of n(i)Wpa(i)'s
ensures that the maximization counterpart of these deri-
vations exists as well. It yields a noniterative way to "nd
energy minimizers which generalizes chain-based Viterbi
minimization algorithm [16]. Also, the upward recursive
de"nition (11) holds both for prior model (z,x) and for
posterior model (z,xDy).5 In the latter case, it allows
either to compute (and sample from) posterior distribu-
tion, or to compute (and maximize) local posterior mar-
ginals, within a single downward sweep.

The functional characterization of causality is the most
general, but necessitates the prior de"nition of a site
ordering and of all transition probabilities (up to multi-
plicative constants). It therefore relies more on the form
of potential than on structural information. In particular,
causality of this type for the prior model is not inherited
by the posterior model, due to energy modi"cation by
data-based terms. Besides, it is strongly related to the
ordering originally de"ned. A new causal representation
w.r.t. another ordering of sites is not possible in general.

By contrast, graphical viewpoint allows in some cases
to identify at "rst glance (without need of any computa-
tional or probabilistic argument) interaction structures
that always support causal models. Hence, noniterative
sampling, energy minimization, marginal computation
and normalization constant calculation are possible
either for prior model or for posterior one if they are
respectively de"ned on triangulated independence
graphs. In particular, for any compatible ordering (there
are several of them in general), one can get back to the
classical causal representation (8) based on transition

5 In these cases, we shall change notation G
i
into F

i
and F

i
,

respectively.
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Fig. 3. (a) Example of graph G"[S,N] supporting causal energy-based models since in-past neighborhoods
n(2)Wpa(2)"M1N, n(3)Wpa(3)"M1,2N, n(4)Wpa(4)"M2,3N, n(5)Wpa(5)"M3,4N, and n(6)Wpa(6)"n(6)"M2,4N are cliques of G; (b-c-d)
successive subgraphs obtained by summing out (or maximizing out) (z

5
, z

6
), z

4
, and z

3
successively; (e) the associated algorithmic

tree ¹G.

kernels, by means of simple noniterative computations.
This probabilistic representation which can be derived
afterward is used for noniterative sampling and marginal
computation/maximization.

In the following, we will focus on particular case of
trees. They are triangulated for they do not have cycles
by de"nition. For them, each n8 (i) reduces to a singleton
with the parent of i, and G,¹G obviously.

4. Models on trees

Consider an energy-base joint model de"ned on a tree
as:

expM!;(x, y)N"<
i

f
i
(x

i
, x
n
)h

i
(y

i
,x

i
),

with +
yi
h
i
(y

i
, x

i
),m

i
. This means that P(yDx)"

<
i
P(y

i
Dx

i
)"<

i
hi(yi, xi)

mi and P(x)J<
i
f
i
. Recall n6 denotes

the unique parent of i (with convention 11 "0, and
x
11

having to be ignored) and i
6
is the set of i's children.

Also introduce ancestor site set n66 composed of the sites of
the chain between i and 1 (except i itself ) and descendant
site set i

7
OMj : i3$MM N (see Fig. 4).

As in Eq. (11) (with z,x, n8 (i)"Mn6 N, and appropriate
changes of notations) we can recursively de"ne functions
F
i
's. The causal probabilistic speci"cation of the prior

model is then obtained:

P(x
i
Dxn6)"

f
i
(x

i
,x

11
)

F
i
(xn6)

<
j|i1

F
j
(x

i
),

and

P(x)"
1

F
1

<
i

f
i
(x

i
,xn6 ).

This allows to draw easily samples from the prior distri-
bution according to a root-to-leaves recursive procedure.

If in addition, +
xi

f
i
(x

i
,xn6 ),k

i
, which is usually the case

for labeling priors used in detection, segmentation, and
classi"cation problems, we turn back to the setting of
Section 3.1. This yields the simple causal description
P(x

i
D xn6 )"f

i
(x

i
,xn6 )/ki

. Moreover, if f
i
's also verify f

1
,k@

1

Fig. 4. Independence graph whose prior component is a
(dyadic) tree: L vertices are for x

i
's while v vertices are for

pointwise measurements y
i
's.

and ∀i'1, +
xn6

f
i
(x

i
,xn6),k@

i
(which is also often the case,

with k
i
"k@

i
) then it comes that all prior marginals are

uniform. In this case, coming derivations are greatly
simpli"ed.

4.1. Leaves-to-root maximizations and global energy
minimizer

Using maximization instead of summation in the up-
ward scheme provides a two-sweep Viterbi-like method
that minimizes energy ;(x, y) w.r.t. x [35]. The maximi-
zation counterpart of (11) applied to posterior model
provides functions F

i
's which, in this case, `collecta

dependencies to more and more data as the recursion
proceeds: F

i
not only depends on xn6 , but also on

(y
i
, y

i7
)Oy`

i7
.

The MAP estimate has then to be recovered compon-
ent by component according to a downward recursion
where one has simply to read look-up tables built during
the previous sweep (Fig. 5a):

Two-sweep MAP computation on a tree
m upward sweep
Leaves

G
F

i
(xn6 , yi

)"max
xi

h
i
(y

i
,x

i
) f

i
(x

i
,xn6)

xH
i
(xn6 , yi

)"argmax
xi

h
i
(y

i
,x

i
) f

i
(x

i
,xn6)
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Recursion

G
F

i
(xn6 ,y`

i7
)"max

xi
h
i
(y

i
,x

i
) f

i
(x

i
, x
n
)<

j|i6
F

j
(x

i
,y`

j7
)

xH
i
(xn6 ,y`

i7
)"arg max

xi
h
i
(y

i
,x

i
) f

i
(x

i
, xn6 )<j|i6

F
j
(x

i
,y`

j7
)

Root

G
F

1
(y)"max

x1
h
1
(y

1
,x

1
) f

1
(x

1
)<

j|16
F

j
(x

1
, y`

j7
)

xH
1
(y)"argmax

x1
h
1
(y

1
,x

1
) f

1
(x

1
)<

j|16
F

j
(x

1
,y`

j7
)

. downward sweep

x(
1
"xH

1
(y) and ∀i'1, x(

i
"xH

i
(x(
n
,y`

i7
) .

The procedure can equivalently be expressed in terms of
interaction potentials v

i
"!log f

i
and l

i
"!log h

i
,

products being replaced by sums. Function
!lnF

i
(xn6 , y`

i7
) is the minimum value for the piece of

energy +
k|MiNXi7

l
k
#v

k
for a "xed value of xn6 , and the

resulting Viterbi-like algorithm provides a global minim-
izer of ; since

x(
i
"arg min

xi
Cmin
xk,kEi

;(x, y)D
"arg min

xi
Cli(yi,xi

)#v
i
(x

i
,x(
n
)#min

xi7

+
k|i7

l
k
#v

kD
"arg min

xi

[l
i
#v

i
(x

i
,x( n1)

#+
j|i1

min
xj
Cvj#l

j
#min

xj7

+
k|j7

l
k
#v

kD
"arg min
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Cli#v

i
(x

i
, x( n1 )#+

j|i1

!logF
jD.

4.2. Leaves-to-root summations given data

In the same spirit as `forward}backwarda Baum algo-
rithm on chains [17], a two-sweep procedure can be
devised to compute exactly the sitewise posterior mar-
ginals (from which the MPM estimate can be deduced).
Let us start by introducing xn6 within local posterior
marginal P(x

i
Dy):

∀i'1, P(x
i
Dy)"+

xn6

P(x
i
Dxn6 , y)P(xn6 Dy), (12)

where P(x
i
Dxn6 , y)"P(x

i
Dxn6 , y`

i7
) due to separation property.

This makes appear a downward recursion on site-wise
posterior marginal, provided that the posterior marginal
at root, P(x

1
Dy), and the posterior transition probabilities

P(x
i
Dxn6 , y`

i7
) are available. These quantities are provided

by a previous upward sweep corresponding to successive-
ly summing out x

i
's from leaves to vertex 1, as in (11) for

z,xDy (i.e., ∀i, g
i
,h

i
f
i
) and n8 (i)"Mn6 N, yielding func-

tions F
i
's. The Markov chain-type representation is then

obtained as with prior model:

P(x
i
Dxn6 , y)"P(x

i
Dxn6 , y`

i7
)

"

h
i
(y

i
,x

i
) f

i
(x

i
, xn6 )

F
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(xn6 , yi7
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<
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F
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i
, y`

j7
),

and

P(xDy)"
1

F
1
(y)

<
i

h
i
(y

i
, x

i
) f

i
(x

i
,xn6). (13)

A noniterative sampling from the posterior distribu-
tion can be performed thanks to this probabilistic repres-
entation. Also the joint likelihood of data P(y) is acces-
sible: from P(yDx)"<

i
hi(yi, xi)

mi , P(x)"1
F1

<
i
f (x

i
,xn6) and

P(xDy) given above, it comes P(y)" F1(y)
F1C<

imi
.

The upward sweep computing F
i
's provides the neces-

sary ingredients for the downward recursion (12). We end
up with the following two-sweep procedure (Fig. 5b):

Two-sweep computation of local posterior
marginals on a tree
m downward sweep
Leaves
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. downward sweep
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where the MPM estimates are obtained within the top-
down part by maximizing the sitewise posterior mar-
ginals.6

6Note that a slightly di!erent, but more complex, procedure
can be devised based on the upward propagation of partial
posterior marginals P(x

i
Dy`

i2
) [21]. It is the exact counterpart of

Gaussian inference on a tree based on upward Kalman "ltering
[22]. Contrary to what we propose here, this method requires
however an explicit knowledge of the prior marginals P(x

i
) and

of the child-to-parent transition probabilities P(xn6 Dxi
).
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Table 1
Generic upward sweeps (summations on the prior model, summations on the posterior model, and maximization on the posterior
model) and downward sweeps (for computing various marginals, sampling from them, and inferring) for discrete energy-base model with
triangulated independence graph and expM!;(x, y)N"<
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It is interesting noting that Bouman et al. [19] de"ne
a very similar noniterative estimator on tree structure.
Starting from an original Bayesian estimator they call
`sequential MAPa, devised to improve MAP estimates,
they obtain a downward recursive approximation of it
which goes as follows:

x(
1
+arg max

x1

P(x
1
Dy),

x(
i
+arg max

xi

P(x
i
Dx( n6 , y`

i7
) ∀i'1. (14)

At root, their estimator provides the MPM estimate. As
for the estimates at other sites, the in#uence of observa-
tions which are not on descendants is simply replaced
by the dependency with respect to the parent variable,
set at its optimal value already computed. This inference
scheme can be plugged into our two-sweep summation
procedure to produce an alternate estimator close to the
MPM, that we could refer to as `semi-MPMa. Note that
the corresponding (exact) top-down recursive estimation
is formally very similar to the one of the MAP estimation
(see Fig. 5a): in both cases, the estimate at a site i is
obtained by maximizing a function of the estimated value

x( n6 on the parent vertex (contrary to MPM estimation), and
of the data yǹ

7
.

Table 1 gathers in a structured and synthetic way the
di!erent two-sweep procedures presented so far, but
within the general setting of triangulated graphs (i.e.,
not necessarily with n8 (i) reducing to an unique parent
node): it concerns a discrete energy-base model with
triangulated independence graph and expM!;(x, y)N"
<

i
f
i
(x

i
,xn8 (i)

)h
i
(y

i
,x

i
), with +

xi
h
i
(y

i
,x

i
)"m

i
. Note how-

ever that for sake of simplicity, downward recursions
(indicated with a black symbol) that require summations
over possible values of past neighborhood, i.e., w.r.t. xn8 (i)

,
are only written down for a tree, when n8 (i) reduces to Mn6 N.
Apart from providing a practical summary of the di!er-
ent noniterative computations on these models, this table
allows to emphasize the profound similarity of the
procedures.

5. Experimental results

To demonstrate the practicability and the relevance of
the causal models we have presented for low level image
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Fig. 5. Downward and backward steps for (a) MAP (resp. semi-mpm), and (b) MPM inference, on a (quad)tree.

Fig. 6. 5-class synthetic data.

analysis problems, we report experimental results of clas-
si"cation with a model based on the standard quadtree as
for its prior independence graph, with the leaves "tting
the pixels of the image y to be classi"ed. The energy
function is composed of a Potts-like prior term encourag-
ing likeness of children with parents, along with a Gaus-
sian data term:

;(x, y)" +
i ; 1

b[1!d(x
i
, xn6 )]# +

i>i6/
0

(y
i
!k

xi
)2

2p2
xi

# log(p
xi
), (15)

where x is a tree labeling with x
i
3M1,2, MN, b is a posit-

ive parameter, and M(k
k
,p2

k
)NM

k/1
are the mean and vari-

ances of the M classes.
First experiments were carried out on 256]256 syn-

thetic images involving "ve classes with known means
and variances (Fig. 6). The variances were set to a higher
level in the second image (standard deviations range from

15 to 40 in the "rst image, and from 15 to 70 in the second
one). We compared the three noniterative inference pro-
cedures on the quadtree, and the iterative ICM algorithm
running on the spatial counterpart of energy (15). The
obtained classi"cations are shown in Fig. 7 while Table 2
indicates the corresponding rates of good classi"cation
and CPU times in seconds.

On both images, the three noniterative estimators have
provided very close classi"cations which are better than
those obtained by iterative estimation with the grid-
based model (and noniterative estimations are less de-
graded that the iterative one for image d2), while taking
two to three times less cpu time. Their noniterative na-
ture results in a xxed computational complexity per site
(e.g., they exhibit an O(n) complexity). We experimentally
determined, using MATLAB implementations, that MAP,
semi-MPM, and MPM inferences are achieved with re-
spectively around 79, 94 and 107 #oating point opera-
tions (#ops) per site, when x

i
's can take two possible
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Fig. 7. From left to right: MAP, semi-MPM, and MPM estimates on the quadtree, ICM iterative estimate on the pixel grid, for the
classi"cation (a) of synthetic image d1, (b) of synthetic image d2.

Table 2
Comparative percentages of misclassi"cation, and CPU times in seconds on synthetic images

quadtree 2d grid

MAP sMPM MPM ICM

Image d1 4.79% (3.5 s) 4.73% (5.7 s) 4.73% (8.4 s) 5.30% (10.1 s)
Image d2 8.01% (3.5 s) 7.96% (5.7 s) 7.97% (8.4 s) 9.65% (10.5 s)

values. With a similar implementation, standard ICM
estimation on bidimensional grid [1] costs around 52
#ops/site, whereas the overall procedure is iterative with
no guarantee on the required number of iterations.

Among the three noniterative estimators, the MPM
estimator is the more time consuming due to the larger
amount of calculations required in the downward sweep.
However, this extra cost (for similar estimates) might
worth the pain since the obtained knowledge of posterior
marginals P(x

i
Dy) allows to assess for each site the degree

of conxdence that can be associated to the estimated
value, e.g., through the entropy } +

xi
P(x

i
Dy) log P(x

i
Dy) of

the marginal. Fig. 8 shows such `con"dence mapsa.
These con"dence measures, reminiscent of error
covariance matrices of Gaussian models on trees [24],
can be useful for a better appreciation and use of ob-
tained estimates.

Visually, the classi"cations provided by the three
noniterative estimators exhibit a `blockya aspect, re-
minding the underlying prior quadtree structure. The
amount of such artifact depends on the relative location

of spatial patterns with respect to the block partition
induced on the pixel grid by the quadtree. Also, these
artifacts are more apparent in the processing of more
noisy images, where the role of quadtree-based prior has
to be enforced to get rid of noise. In the prospect of
parameter estimation, this is not a serious problem, pro-
vided that the overall estimate is good (i.e., the percent-
age of misclassi"cation is low). However, if the visual
rendering of the estimate is at the heart of the concerned
application, a single ICM smoothing sweep su$ces to
remove the `blockynessa at reasonable cost.

There is an other source of concern lying in the huge
number of successive summations/multiplications usu-
ally involved in functions computed through upward
sweeps. If no attention is paid to that aspect, one will
often end up with quantities either too small, or too large
to be handled by computers. To prevent the algorithms
from being trapped in these tricky situations, it might be
necessary to devise a rescaling of the quantities of interest
(namely F

i
's, F

i
's, or F

i
's). A simple way to proceed,

consists in normalizing these functions such that
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Fig. 8. `Con"dence mapsa associated to noniterative MPM classi"cation of synthetic images d1 and d2 by the entropy of posterior
marginals at leaves (the darker, the less entropy and the higher con"dence).

Fig. 9. (a) 512]512 Spot image (courtesy of Costel, University of Rennes 2 and GSTB); (b) direct MV classi"cation; (c) ICM iterative
classi"cation on the pixel grid; (d) MAP noniterative classi"cation on the quadtree.

summing out xn8 (i)
yields 1. For instance

F
i
"+

xi
h
i
f
i
<

j|i6
F
j
/(+

xn8 (i),xi
h
i
f
i
<

j|i6
F
j
). It is easy to see that

these normalizations have no incidence whatsoever on
the procedures we have described.

Finally we consider the supervised classi"cation of
a 512]512 Spot image (Fig. 9a) provided by the Costel
laboratory (University of Rennes 2), into 8 classes with
physical meanings (mainly the types of culture). Max-

imum likelihood classi"cation (often used in remote
sensing applications) is poor (Fig. 9b), but provides a
simple and sensible initial con"guration for the iterative
grid-based classi"cation whose "nal result is obtained
after 65 s (Fig. 9c). In less time, the three tree-based
noniterative estimators have provided close results of
good quality. See for instance in Fig. 9d the MAP classi-
"cation, obtained within 40 s.
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6. Conclusion

In this paper, we intended to provide a comprehensive
and uni"ed picture of models on `causal graphsa. We
presented in detail the manipulation of such discrete
models, with emphasis on (a) the use of graph theoretic
concepts as tools to devise models and get insight into
algorithmic procedures; (b) the profound unity which
underlies the di!erent procedures whether they compute
probabilities, draw samples, or infer estimates.

In particular, we presented three generic exact non-
iterative inference algorithms devoted to models exhibi-
ting a triangulated independence graph. The "rst algo-
rithm allows to compute the MAP estimate (and can be
considered apart from any probabilistic framework as
performing global energy minimization). The second one,
whose aim is intrinsically probabilistic, allows to com-
pute local posterior marginals which can be used to get
the MPM estimate or to estimate parameters within an
EM-like algorithm [20]. The third one mixes, to some
extent, the characteristics of the two others. On simple
quadtrees, these two-sweep procedures provide a hier-
archical framework suitable for discrete image analysis
problems such as detection, segmentation or classi"ca-
tion. Apart from providing a lower cost alternative to
iterative inference schemes, these tree-based models are
good candidates for handling multiresolution data, as
advocated in [21,27].
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