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Discrete Markov Image Modeling and Inference on
the Quadtree

Jean-Marc Laferté, Patrick Pérez, and Fabrice Heitz

Abstract—Noncasual Markov (or energy-based) models are
widely used in early vision applications for the representation of
images in high-dimensional inverse problems. Due to their non-
causal nature, these models generally lead to iterative inference
algorithms that are computationally demanding. In this paper,
we consider a special class of nonlinear Markov models which
allow to circumvent this drawback. These models are defined
as discrete Markov random fields (MRF) attached to the nodes
of a quadtree. The quadtree induces causality properties which
enable the design of exact, noniterative inference algorithms,
similar to those used in the context of Markov chain models.
We first introduce an extension of the Viterbi algorithm which
enables exact maximum a posteriori (MAP) estimation on the
quadtree. Two other algorithms, related to the MPM criterion
and to Bouman and Shapiro’s sequential-MAP (SMAP) estimator
are derived on the same hierarchical structure. The estimation
of the model hyper-parameters is also addressed. Two expecta-
tion–maximization (EM)-type algorithms, allowing unsupervised
inference with these models are defined. The practical relevance
of the different models and inference algorithms is investigated in
the context of image classification problem, on both synthetic and
natural images.

Index Terms—Discrete Markov random field (MRF), expec-
tation–maximization (EM), hierarchical modeling, maximum a
posteriori (MAP), modes of posterior marginal (MPM), noniter-
ative inference, quadtree independence graph, sequential-MAP
(SMAP), supervised and unsupervised classification.

I. INTRODUCTION

NONCASUAL Markov random field (MRF) models have
been extensively used for modeling spatial interactions

between various attributes of an image [19]. MRF models have
thus become a major ingredient for most Bayesian approaches
in early vision. For most noncausal representations, the graph
associated to the Markov model [48] is the rectangular lattice
equipped with the nearest (or second nearest) neighborhood
system. From an estimation point of view, this kind of graph
results in iterative procedures which propagate the available
information back and forth, so that each hidden variable is
eventually estimated given all the data. These algorithms,
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similar, in the case of continuous-valued variables, to the
resolution of discretized partial differential equations, are
computationally demanding.

Beside these standard lattice-based models, other Markovian
interaction structures have been considered, associated to
causality properties in the image plane or, more recently, to
causality in scale. Among others, dyadic trees and quadtrees
have been proposed as attractive candidates for modeling
monodimensional [1], [7], [14], [18], [38] and bidimensional
[4], [15], [16], [34]–[36], signals. With these hierarchical
probabilistic models, the standard spatial prior captured by
lattice-based models is replaced by a fractal-type prior based on
scale-to-scale interactions. Both experimental and theoretical
considerations indicate that such a prior is a good alternative to
spatial interaction priors [10], [17], [35]. In addition, tree-based
models are appealing from an algorithmic point of view for
they enable the design ofnoniterative inference procedures
similar to those used for discrete and continuous Markov chain
models.

Note that the causality property, which is at the midst of
the noniterative inference capabilities of these models, has also
been investigated for long from a purely spatial point of view.
The idea is then to define causality with respect to some spa-
tial ordering of variables (e.g., lexicographical ordering of the
image sites). Various instances of this approach have been re-
ported such as the Pickard random field [12], [40], the mutu-
ally compatible MRF’s [22], or the more standard Markov chain
image model [21]. Pickard random fields and Markov chain
models are however known to represent only a limited class of
spatial statistics and generally yield directional artifacts in the
image plane. On the other hand, accurate causal approximations
of noncausal MRF’s can be obtained [22], [37].

We consider here discrete-valued (nonlinear) causal models
defined on the quadtree, as an appealing alternative to stan-
dard noncausal lattice-based models. The analogy of quadtree-
based models with chain-based representations has already been
thoroughly investigated in the continuous Gaussian case, where
Kalman filtering is a key tool [1], [14], [16], [30], [34]. The
discrete (nonlinear) case has received far less attention, apart
from the work by Bouman and his colleagues [4], [46], in which
an approximate noniterative inference algorithm is proposed.
In this paper we introduce several algorithms for both super-
vised and unsupervised inference with discrete hidden Markov
random field models supported by trees. More precisely, we
present:

1) Viterbi-like algorithm [18] computing, in a noniterative
way, the exact maximuma posteriori(MAP) estimate on
the quadtree;
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2) noniterative procedure that provides the exact computa-
tion of point-wise and pair-wise posterior marginals, with
the modes of posterior marginal (MPM) estimate as a
byproduct;

3) generalization of the noniterative algorithm introduced by
Bouman and Shapiro [4] for a statistical inference ac-
cording to the so-called “sequential-MAP” (SMAP) cri-
terion.

As for parameter estimation, we introduce two original
EM-type algorithms for tree-based models. The first one
corresponds to the exact deterministic application of plain EM
iterations. The second one is a stochastic variant of EM, based
on noniterative sampling from the posterior distribution, which
allows to circumvent the critical problem of initialization.

The paper is organized as follows. After a brief review of hier-
archical MRF’s in Section II, we introduce the notations in Sec-
tion III and specify the statistical properties of hidden MRF’s
on the (quad)tree. Three noniterative inference algorithms, as-
sociated to the MAP, MPM, and SMAP criteria, are derived in
Section IV. These algorithms are experimentally compared in a
standard supervised classification problem. Section V is devoted
to the parameter estimation problem: Nonsupervised EM-type
procedures are defined on the quadtree, for the estimation of
both prior model parameters and data likelihood parameters. Ex-
perimental results include comparisons with standard nonhier-
archical approaches.

II. HIERARCHICAL MARKOV IMAGE MODELS

Although the concept of hierarchical processing has almost
always been present in early vision, a satisfactory treatment of
this subject in the framework of statistical models dates from the
late eighties. Since then, it has received an increasing attention
from both the computer vision and signal processing communi-
ties.

The motivations for hierarchical models are threefold.

• Need in statistical image modeling for algorithms that are
able, like multigrid techniques in numerical analysis, to
provide fast computations and low sensitivity to initial
conditions and distracting local minima.

• Need for statistical models that are able to capture the in-
trinsic hierarchical nature of data (fractal images and sig-
nals, multiscale phenomena such as turbulence, etc.).

• Need for efficient tools able to process multimodal data
that, in many applications, come in ever increasing vol-
umes, with a variety of resolution and spectral domains
(e.g., multispectral and multiresolution satellite images in
remote sensing).

Three main types of approaches have been investigated:

• approaches related to the renormalization group theory
from statistical physics, that derive reduced probabilistic
models from a given original spatial model and fine-to-
coarse deterministic or stochastic transformations [13],
[20], [30], [32], [42];

• multigrid-like approaches in which the inference is con-
ducted within decreasingly constrained subsets of config-
urations [24];

• modeling approaches that aim at defining right away hi-
erarchical models on trees [4], [15], [31], [34] or on other
hierarchical graphs [8], [29].

The models we investigate here are of the third kind, since
they are specified on a hierarchical graph. They are thus
manipulated as a whole, leading to a unique statistical inference
problem instead of a sequence of multiresolution problems
loosely related. Apart from its simplicity, the tree yields
in-scale causality properties allowing fast noniterative infer-
ence procedures. Chouet al. [7] have thus defined Gaussian
models on dyadic trees for monodimensional signal modeling.
They derive noniterative estimation procedures on the dyadic
tree, corresponding to Kalman-type filtering through scales.
The theoretical study of in-scale causal autoregressive models
has been conducted on infinite-adic trees [1]. The Gaussian
representation has been extended by Luettgenet al. [34]–[36]
on the quadtree; it has been applied to various tasks in early
vision such as the estimation of optic flow [34], the recovery of
sea-surface height [16], or the reconstruction of surfaces [15].

Whereas the previous models are Gaussian (hence, contin-
uous and linear), Bouman and Shapiro [4] worked at designing
discrete (nonlinear) models on the same hierarchical structure.
They also introduced a new Bayesian estimation criterion, the
“sequential MAP” (SMAP) criterion, which is better suited
to hierarchical modeling than the standard MAP criterion
(the SMAP is described in Section IV-C). They derived a
noniterative inference procedure on the quadtree that computes
an approximate SMAP estimate. This procedure requires two
passes on the tree, and is applied to image classification,
segmentation, and inspection problems [4], [46].

It should be mentioned that the quadtree structure induces
nonstationarity in space (the distribution at leaves is not shift-in-
variant since the correlation between two variables depends on
the “distance” to their common ancestor in the tree). This may
result in block artifacts in the final estimates. The blocky aspect
of the estimates has been reported by all authors [4], [7], [15],
[16], [31], [34]. Several techniques have been proposed to alle-
viate such undesired effects (e.g.,a posteriorismoothing [34],
definition of tree structures with overlapping data leaves [25]).
We do not deal with this issue here, although these techniques
could probably be extended to the models and algorithms de-
scribed in this paper.

Another way to circumvent block effects consists in using
hierarchical graph structures that are more complex than mere
trees. Unfortunately, the practical advantages of the tree struc-
ture are then partly or completely lost. Bouman and Shapiro [4]
add for instanceinter-level edgesto the original quadtree to get
a more interleaved structure that avoids, at least partially, block
artifacts. Exact inference on this new graph structure leads to
iterative algorithms, but an approximate noniterative method is
proposed by the authors. Katoet al. [29] consider a more com-
plex graph in which the original quadtree is combined with a
spatial lattice neighborhood at each level. This results in an in-
terleaved model whose manipulation is iterative, with a com-
plexity per pixel even higher than the one exhibited by stan-
dard spatial models. The inference is conducted using a modi-
fied annealing procedure where temperature is kept high at the
coarse levels of the structure. This approach provides excellent
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classification results but is computationally demanding: one of
the advantages of hierarchical approaches (i.e., reduction of the
computational complexity) is lost in this case [8], [29].

In Section IV, we derive three noniterative algorithms that
provide fast MAP, SMAP, and MPM estimates on the quadtree.
These estimates are exact in the case of MAP and MPM and
their quality should be considered as satisfactory in many appli-
cations. In the next section, we first recall the main properties of
the discrete Markov model on the quadtree and introduce some
necessary notations.

III. M ARKOV MODELS ON THEQUAD-TREE

A. Problem Statement and Notations

We consider a standard inverse problem in which one at-
tempts to estimate the “best” realization of some hidden vari-
able set given another set of observed variableswhich is
somehow related to the former one. As usual in statistical ap-
proaches, and are viewed as occurrences of some random
vectors and whose Markovian independencies can be rep-
resented by anindependence graph[48]: the components of vec-
tors and (i.e., the random variables) are attached to a set of
nodes, and any two nodes arenot neighborsif they support two
random variables that are independent given all others. Equiv-
alently, the joint distribution factorizes as a product of
“local” functions in such a way that two nodes are neighbors if
they support two random variables that simultaneously appear
in a same factor of the decomposition. As foritself (i.e., the
prior model), this graph is often the regular rectangular lattice
that fits the grid of pixels, and that is equipped with a four- or
eight-neighborhood system. The structure of the joint model is
then usually obtained by attaching one observation node (cor-
responding to one component of) to each node of the latter
prior graph.

It turns out that inference of given is all the more
computationally demanding since the independence graph is
complex. In most cases, iterative algorithms are required, and
their speed of convergence decreases as the number of cycles in
the graph gets larger.

For both computational and modeling reasons which will be-
come clear later, we consider here a particular hierarchical graph
structure, namely the tree. The components ofare thus as-
sumed to be indexed by the nodes of aquadtree(see Fig. 1),
i.e., a tree in which each node (apart from the leaves) has four
off-springs. We now introduce a few notations.

The set of nodes of the tree is denoted, and itsroot is re-
ferred to as site. Any node different from has a uniqueparent
nodedenoted , where superscript “−” recalls that the resolu-
tion (or depth) decreases when going from a node to its parent.
Conversely, the set of the four children of any node that is not
a leaf is denoted . A descendantstemming
from is a node such that belongs to the unique chain that
joins to the root. The set of descendants of, including it-
self, is denoted . The nodes belonging to the same “genera-
tion” from the root form the “resolution level” of the tree.
The coarsest level reduces to the root node: . The last

Fig. 1. Quadtree graph structure and notations on the tree.

level (the “finest” resolution) is for some positive integer
. These different notations are summarized in Fig. 1 (where,

for graphical convenience, the second quadtree has been repre-
sented by a dyadic tree).

B. Statistical Modeling

We now come back to random vectorsand which are
assumed to be discrete. The components of random vector
are indexed by the nodes of, and take their values in a dis-
crete set . In particular, one can define the restriction of
to level . The restriction to any other site
subset will be denoted by . Similar no-
tations stand for occurrences of: a configurationis a vector

from configuration set , which may be
partitioned as . In classificationproblems, for in-
stance, each random variable takes its values in a finite set of
class labels , where is the total number
of classes, and each corresponds to a possible
classification at resolution level.

In the same way, the observation vectoris assumed to be
indexed by . Data are often grey level images, each compo-
nent of taking for instance its values within . In
practice (especially, when the inverse problem concerns a single
image), such observations are often available at the finest level

only. This is however not always the case, for instance in
the classification ofmultiresolution data[31]. In the following
we consider that measurements (possibly multidimensional, as
in multispectral classification) are available at each node ,
with state space . All derivations can be easily extended to
other cases, when data concern only some subset of nodes.

We now make further statistical assumptions about the couple
of random vectors .1 The two first assumptions concern
the prior model (that is ), while the third one specifies the
statistical interactions between and .

• Markov property over scale: the partition is a
first order top-down Markov chain

(1)

• The transition probabilities of this Markov chain factorize
such that the components of are mutually independent

1Throughout the paper, except in ambiguous cases, we shall denoteP the joint
distribution of(X; Y ) [thusP(x; y) = P(X = x; Y = y)] as well asany
conditional or marginal distributionarising from it: for any site subsetsa; b; c,
andd, P(x ; y jx ; y ) stands forP(X = x ; Y = y jX = x ; Y =
y ).
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Fig. 2. Independence graph of the joint model(X; Y ), where, for graphical
convenience, the quadtree is represented as a dyadic tree (white nodes). Black
nodes are associated with the variableY .

given . Furthermore, for each node in , the con-
ditioning in reduces to a dependence with respect
to its parent only

(2)

• For the observation model , we assume a standard
site-wisefactorization of the form

(3)

which means that the components ofare all mutually
independent given , and that for each of them, the con-
ditioning w.r.t. is equivalent to only conditioning w.r.t.
the component of at the same node. If the observation

actually does not exist, one has to replace by
one, for any .

Gathering (1)–(3), one gets the following factorization of the
joint distribution

(4)

which is entirely defined by the root prior , the
parent-child transition probabilities , and the
data conditional likelihoods . This factorization
implies that is a Markov random field with respect to
the quadtree (for the prior distribution) with, in addition, data
sites in one-to-one correspondence with the former nodes (see
Fig. 2). Note that the nodes respectively associated toand to

are both referred to as “.” This graph is the independence
graph of , as defined in [48].

This graphical interpretation and reading of factorization
(4) has one key advantage [48]: it neatly captures all con-
ditional independencies among the components of the joint
random vector in terms of graphical separa-
tion [provided that for any joint configuration

]: if a node subset separates two other dis-
joint node subsets and in this independence graph (i.e.,
all chains from to intersect ), the random
variables associated to and are independent given the
variables associated to. This corresponds to factorization

and to conditioning reduc-
tion . This property is particularly

powerful for independence graphs corresponding to trees. In-
deed, each node of the tree that is not a leaf separates the
whole graph into at least two parts: given , any set of vari-
ables within one of the parts is independent from any other
set of variables within one of the other parts. This will be
the most important property that makes all coming deriva-
tions possible.

IV. I NFERENCEALGORITHMS ON THEQUADTREE

We now consider the problem of inferring the “best” con-
figuration of from the observed data . The standard
Bayesian formulation of this inference problem consists in min-
imizing the expectation of somecost function , given the data

(5)

where penalizes the discrepancy between the estimated con-
figuration and the “ideal” random one.

In this section, we introduce three inference algorithms for the
discrete quadtree-based model corresponding to three different
cost functions. These algorithms provide respectively the exact
MAP estimate, the exact MPM estimate, and an approximation
of the SMAP estimate introduced by Bouman and Shapiro [4].

A. MAP Estimation

The Viterbi algorithm is a standard technique for computing
the MAP estimate of hidden Markov models (HMM’s) whose
prior part is a chain [18]. This algorithm is widely used, for in-
stance, in speech recognition [14], [38]. We describe here an
extension of Viterbi algorithm, which computes the exact MAP
estimate of given on the tree. This extension has
been independently introduced by Dawid in the context of prob-
abilistic expert systems [11], and by Lafertéet al.in the context
of discrete image modeling [31]. The proposed algorithm is non-
iterative and requires two passes on the tree.

The cost function associated to the MAP criterion is

(6)

where δ is the Kronecker delta function. The corresponding
Bayesian estimator is readily obtained

(7)

and corresponds to the mode of the posterior distribution .
Using Bayes’ rule and the separation property on the tree,

conditioning w.r.t. yields

Bayes' rule

d d

since

d d

separation property on tree (8)
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This factorization permits to split the maximization of the joint
distribution w.r.t. the entire set of hidden variables into sepa-
rate maximizations w.r.t. to , and d ,

d

d d

A similar factorization can be used recursively to separate vari-
able from other variables in the maximization w.r.t.d .
This yields the following bottom-up recursion of maximizations

d

d d

d

d d

with the maximizer in being a function of parent variable

(9)
If MAP component is known for the parent of, then this
function allows one to deduce the MAP estimate for, which is

. Hence, as in the standard Viterbi algorithm, the whole
MAP estimate can be recovered component by component, in
a top-down pass where one has simply to read look-up tables
which have been built during the bottom-up sweep according to
(9). The Viterbi algorithm on the quadtree is thus conducted in
two passes that are summarized in Fig. 3.

The simplified notations and should not
conceal that both functions also depend on data vectord ,
supported by and its descendants.

In practice, the quantities may be so small that the usual
precision of computers is not sufficient (underflowis a common
problem in Viterbi algorithms). The whole procedure is thus
implemented by computing the logarithm of the probabilities
(sums of possibly large negative numbers are thus handled in-
stead of products of tiny positive factors).

B. MPM Estimation

It is well known that MAP cost function, which penalizes the
discrepancies between configurations without any consideration
about how much different these configurations are, provides an

Fig. 3. Two-pass MAP estimation on the quadtree.

estimator that may exhibit undesirable properties. The following
cost function is generally better behaved:

(10)

The resulting Bayesian estimator is the mode of posterior
marginals (MPM) estimator which associates to each site the
most probable value given all the data

(11)

This estimator requires the computation of the posterior
marginals from the original joint distribution .
This is generally a difficult issue since each of these functions
should be obtained by simultaneously integrating out all

. However, the tree structure allows once again to
design a noniterative method to solve the problem.

The standard two-sweep “forward–backward” algorithm
which has been introduced by Baumet al.for chain-based
models [2], can be directly extended to trees. Different versions
of such an extension have been introduced in the context of
so-called graphical models and belief networks (used in mul-
tivariate statistics and artificial intelligence) [26], [27], [33],
[39], [45], [48], as well as in signal processing domain [9].

Unfortunately, we found them difficult to use for the large
image inverse problems we are dealing with. As a fact, the first
propagation sweep that they are all based on, recursively com-
putes subtree data likelihoods of the formd . In case of
large quadtrees, the number of data components ind rapidly
grows as the upward sweep proceeds, yielding probabilities that
are so small, that their practical manipulation on computer be-
comes difficult (underflow problem). In some of the above men-
tioned algorithms, this problem risks also to plague the down-
ward recursion (e.g., when it is based on joint laws of type

d as in [9]). Although it is possible to design proper
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normalization to alleviate the difficulty when using such proce-
dures [41], we now introduce an alternative two-sweep proce-
dure that allows to compute posterior marginals in a “safe” way.

The starting point of our original procedure lies in the ex-
pression of the posterior marginal as a function of the
posterior marginal at parent node

d

d

d

(12)

This yields a top-down recursion provided that the posterior
marginal at the root node , as well as probabilities

d are made available. This is achieved by a
preliminary upward sweep based on

d d (13)

The first factor (corresponding to the prior child-parent proba-
bility transition) on the right hand side is easily derived from

, where
is part of the prior specification, and the prior marginals

are computed using a simple top-down recursion:
.

An upward recursion allows to compute the partial posterior
marginals d in (13)2

d d

d

d

d

(14)

where “ ” means that equality holds up to a multiplicative
quantity which does not depend on. Note that the product
over the children set is actually absent at the leaves of the tree
( ), i.e., at the recursion start. The final result is obtained
up to a normalization constant which is easily computed since
one deals with single-variable distributions over a finite state
space. At the root, the complete posterior marginal
is eventually obtained, and, on the way up to the root all
site-wise and pair-wise partial posterior marginals d

and d are computed using (13) and (14). The
whole procedure is summarized in Fig. 4.

C. Sequential MAP

Although the MPM criterion seems to be more appropriate
than the MAP criterion in terms of underlying cost functions,

Fig. 4. Two-pass computation of posterior marginals and MPM estimation on
the tree.

MPM and MAP cost functions do not take into account the lo-
cation of estimation errors in the hierarchical quadtree structure.
Bouman and Shapiro introduced the following cost function [4]:

(15)

where term is exactly the MAP cost func-
tion applied only to levels 0 to . The estimator associated to
this weighted combination of partial MAP cost functions has
been named “sequential MAP.” The higher a node on the tree,
the more numerous penalty terms it is involved in. Penalties thus
increase when the resolution decreases, which seems to be a sen-
sible requirement.

Contrary to the standard MAP estimator, the novel esti-
mator defined by cost function (15) is however not easy to
explicit. Bouman and Shapiro propose a noniterative inference

2Since this upward recursion propagates partial posterior marginals
P(x jyd ), which are univariate distributions, the underflow problem evoked
at the beginning ofSection IV-B is thus not encountered here. Note that our
two-sweep algorithm can be seen as the exact discrete analog of two-sweep
smoothing RTS algorithm for Gaussian state-space models (introduced by
Rauchet al. for chain-based dynamical models [43], and then extended by
Chouet al. on tree-based dynamical models [7]), where Kalman-type filtering
propagates normal distributionsP(x jyd ) within the upward pass.
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algorithm for computing approximate SMAP estimates, in the
case of scalar data defined at the finest resolution only. This
algorithm is easily extended in our case where data vectors may
be available at all resolutions. The inference is then performed
with the following top-down recursion:

d

d

where the root posterior marginal can be obtained as explained
in Section IV-B. The multivariate conditional likelihoods

d can also be computed in a preliminary bottom-up
sweep, since

d d (16)

This is the extension to trees of “forward” sweep designed
by Baumet al. on chains [2]. As discussed in Section IV-B,
these computations are unfortunately plagued by underflow
problems since the probabilities become extraordinary small
as the number of data components increases. We suggest to
use instead the upward recursion that we have introduced
for the MPM estimation (see Section IV-B). This recursion
actually provides the distributions d from which

d is easily recovered by normalization.

D. Experimental Results: Supervised Classification

In order to validate the different estimation algorithms on
the quadtree and to get some insight into their properties, we
have conducted a number of experiments in image classifica-
tion. Supervised classification aims at assigning the observed
pixels to predefined classes, based on intensity or texture cri-
teria. A class is associated to a region of the image plane which
is not necessarily connected, but in which intensities share a
similar statistical behavior (in terms of some prescribed model).
We have chosen a simple model, where each class is charac-
terized by a Gaussian model, defined by a mean vector and
a variance-covariance matrix. For a same class, these parame-
ters can be different from one resolution to another. Each class

is then defined by where
is the mean vector at level(data is -dimensional

at that level), and designates the associated variance-covari-
ance matrix. The point-wise conditional likelihoods are repre-
sented by

where the data are assumed to lie in , although they are in
practice within the discrete set . We assume here
that the number of classes is known, and that the parameters
associated to each class are obtained by some preliminary su-
pervised learning step.

For the prior distribution on the quadtree, we have adopted the
Potts-like distribution used by Bouman and Shapiro [4]. This

TABLE I
SUPERVISED CLASSIFICATION RESULTS ON

IMAGES FIGS. 5(a)AND 6(a)

simple model favors identity between parent and children, all
other transitions being equally (un)likely

if

otherwise

(17)
with , and uniform prior is chosen at root. For easier
parameter tuning, we actually kept independent from level
in our experiments. The value of the unique prior parameterθ
was then set to 0.9. Note that for this in-scale homogeneous prior
with a single parameter, marginals are obviously uniform at all
nodes of the tree. Hence, the preliminary sweep from the poste-
rior marginal computation algorithm becomes unnecessary, and
computations in both upward and downward sweeps are simpli-
fied by equating all with .

In the following, we denote H-MAP (hierarchical MAP) the
exact MAP estimate associated to the model on the quadtree
and obtained as explained in Section IV-A. Similarly, H-MPM
stands for the exact MPM estimate, computed as shown in Sec-
tion IV-B, and H-SMAP stands for the generalization of the
SMAP presented in Section IV-C. In the case of single-resolu-
tion data, we can compare these three estimates with the approx-
imated MAP estimate of a standard lattice-based classification
model. This lattice-based model is defined with the same data
likelihood as the hierarchical representation, and is based on a
Potts prior on a first-order neighborhood [19]. This nonhierar-
chical MAP estimate can be obtained iteratively either by simu-
lated annealing (we denote the resulting estimate by NH-MAP),
or by a deterministic ICM algorithm [3] whose final classifi-
cation will be referred to as NH-ICM. These two nonhierar-
chical iterative algorithms are stopped when the number of ac-
tual updates, after a complete sweep of the image, falls below
a given threshold (one per 1000 of the total number of pixels).
The cooling schedule in the simulated annealing procedure is
defined as where is the initial tempera-
ture, set to 100 and stands for the current number of image
sweeps.

The performances of the different methods are first evaluated
on synthetic images with known parameters (i.e., the number
of classes and the parameters of each class) and ground-truth.
In this case, only one full resolution scalar data image is used.
We report the rates of correct classification and the required
cpu times on a SunSparc 10 workstation (see Table I). A first
256 × 256 synthetic image [Fig. 5(a)] is composed of disks with
various radii in front of a homogeneous background. There are
five classes with different means (50, 76, 105, 149, and 178) and
the same variance 937. This corresponds to a SNR of0.27 dB
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Fig. 5. (a) Image 256 × 256 (SNR−0.27 dB; for the sake of readability, printed gray levels do not correspond to the actual means); (b) ground truth classification;
and classifications obtained by (c) NH-MAP, (d) NH-ICM, (e) H-MAP, (f) H-SMAP, and (g) H-MPM.

Fig. 6. (a) Image 256 × 256 (SNR−2.16 dB; for the sake of readability, gray levels do not correspond to the actual means); (b) ground truth classification; and
classifications obtained by (c) NH-MAP, (d) NH-ICM, (e) H-MAP, (f) H-SMAP, and (g) H-MPM.

if the image is considered as composed of constant gray level
regions corrupted by additive noise. A second 256 × 256 image
[Fig. 6(a)] also consists of five classes ( ) with means
20, 50, 100, 150, 210, and variances 67, 74, 20, 50, and 77,
respectively (the SNR is 2.16 dB).

As expected, the deterministic nonhierarchical ICM method
is very sensitive to noise, and shows fast convergence toward
poor estimates. For both images, this method provides the

worse rate of correct classification. Its stochastic counterpart,
NH-MAP, behaves quite well for low noise levels, but tends to
“over-smooth” the estimate as the level of noise increases (as
often noticed). In any case, it is, by far, the slowest inference
procedure. Better results could probably be obtained with
NH-MAP by using slower temperature schedules, but this
would result in an even longer estimation time. The three nonit-
erative estimators on the quadtree provide a good compromise
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Fig. 7. Hierarchical classification of multiresolution airborne images with the
Viterbi algorithm on the quadtree structure (H-MAP). The two data images are
on the right, and the classification obtained on the last four levels of the quadtree
are on the left. CPU time: 1 min 40 s.

between the quality of the results and the computational load. In
particular, on the second image, they provide the best classifica-
tions compared to the two nonhierarchical inferences, and are 30
or 80 times faster than simulated annealing.3 Not surprisingly,
block artifacts can be noticed in the classifications provided by
quadtree-based inferences. Although visually disturbing, these
artifacts have no real impact on the correct classification rate.
The boundaries of regions are also poorly recovered by nonhier-
archical methods, but the less structured nature of errors makes
them less noticeable at the first glance.

To illustrate the ability of hierarchical models to deal with
multiresolution data, we have also implemented another clas-
sification experiment on real airborne images. The scene, ob-
tained in the visible range, represents the Mississippi and the
Missouri rivers during the historical flood of June 1993. A clas-
sification into four classes ( ) has been considered: one
class for each river, one class for the urban areas, and a fourth
class for forests and swamps. Apart from its semantic meaning,
this classification is supported by homogeneity properties ob-
served within each class. Two resolutions levels were created,
corresponding to images of sizes 512 × 512 and 128 × 128 (right
side of Fig. 7). The three hierarchical algorithms inferred the
classifications from the two data sets at levelsand of the
quadtree and provided comparable results. We only display in
Fig. 7 the classes obtained with the Viterbi algorithm (corre-
sponding to an exact MAP estimate on the quadtree). As can be

3The noniterative nature of algorithms on quadtree amounts to a constant
per-point complexity whereas for iterative inference with grid-based models the
per-point complexity grows with grid size. More precisely, the total complexity
of one of the two-sweep algorithms on am-leave quadtree isO(M(4m �

1=3)), whereas the complexity of typical iterative inference onm-site gridS
is O(mM) per iteration, the average number of required iterations being an
increasing function of the sizes of state space� and of finest resolution image
supportS .

Fig. 8. (a) H-MAP based on the finest resolution image only and (b) H-MAP
based on multiresolution data. The two rivers are now discriminated.

seen, the blocky artifacts are hardly visible on these real-world
images. The impact of data fusion is demonstrated by comparing
these results with the four-class classifications obtained with
only one image [Fig. 8(a)]. The fact that the two rivers are quite
distinct on a low-resolution image allowed to keep them dis-
tinctly classifiedat all the levelsof the tree, including the finest
ones, although they are hardly distinguishable on finest resolu-
tion image. Using only the latter image does not allow to dis-
criminate the two rivers. This simple experiment indicates; i)
that the most discriminant information (if any) can be accessed
at whatever resolution it is and ii) that this information can then
be used within tree-based framework to improve statistical in-
ference all over the structure (not only at or around concerned
resolution). As for computation load, the H-MAP took 1 min
40 s on the same workstation as before.

V. ESTIMATING PARAMETERS ON THEQUADTREE

In the previous section, we have assumed that both the prior
parameters (root prior distribution, parent-child transition prob-
abilities) and the data likelihood parameters (variances and ex-
pectations for each Gaussian class) were known for the model
on the quadtree. We have thus dealt withsupervisedinference
problems. However, since the exact value of theses parameters
is often critical, and since their manual tuning is usually diffi-
cult, automatic methods for estimating the model parameters are
highly desirable.

It is known that estimating parameters of probabilistic models
in large inverse problems is generally involved, because only

is observed, while remains hidden (this is often called
the “incomplete data” problem). To cope with this problem, the
standard maximum likelihood framework has been extended to
the incomplete data case, through the expectation–maximiza-
tion (EM) algorithm [44]. The EM algorithm is an iterative pro-
cedure that increases the likelihood of observed data at each
step, based on the posterior distribution relative to the previous
parameter estimate. These techniques are quite convenient in the
case of mixtures of distributions for which they have been origi-
nally designed. However, they turn out to be extremely cumber-
some for standard lattice-based MRF models [6]. As we shall
explain, the hierarchical model on the quadtree allows to dra-
matically alleviate this problem, without reducing the quality of
the estimates. Note that Bouman and Shapiro have proposed an
EM algorithm on the quadtree model, for the estimation of the
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single parameter of their specific prior classification model [4].
In the following, we introduce a comprehensive procedure for
estimating all prior and data likelihood parameters of any dis-
crete model on the quadtree.

A. Background on EM-Type Algorithms

Let be the parameter vector involved in the joint distri-
bution denoted . The likelihood of data is defined

as , and the maximum likelihood estimate
(MLE) of is then

(18)

The data likelihood is in general not computable [due to a sum-
mation over all possible configurations: ],
or at least not available in closed form as a function of. For
that reason, EM uses the expectation of the joint likelihood func-
tion taken w.r.t. the posterior distribution, with
the current parameter fit

(19)

The new estimate is then ideally chosen by maximizing function
, yielding the genuine EM step

• Expectation (E) step : compute function
;

• Maximization (M) step : update

(20)

It can be shown that this iterative procedure ensures that the data
likelihoods are increasing: the procedure converges to-
ward a local maxima or a saddle point of the likelihood function
[44]. Unfortunately, the estimate at convergence is generally
highly dependent on the initial parameter fit and convergence is
usually very slow. Apart from these problems, two other tech-
nical difficulties arise, which make the implementation of the
EM steps difficult: 1) the joint distribution is usually
only known up to a normalization constant that depends on
and 2) the computation of the conditional expectation by sum-
ming over all possible configurationsis generally intractable.

Attempts to cope with the above mentioned problems have
originated several variants of the original EM algorithm. In
order to avoid dependence w.r.t. the initial estimate, a stochastic
version of the EM algorithm called SEM has been proposed
(see [5] for a review). Besides, the computation of the expec-
tation may be done approximately using Monte Carlo Markov
Chain (MCMC) techniques based on samples drawn from the
posterior distribution [47]. The resulting Monte
Carlo EM (MCEM) actually includes SEM as a special case.
These methods can become extremely time consuming since

they resort to iterative Monte Carlo procedures within each EM
step.

For standard noncausal MRF models, the prior distri-
bution is usually known up to a multiplicative
constant which depends on and is not computable.
A standard solution to circumvent this problem in the
computation of function is to replace the joint like-
lihood by the
so-called pseudo-likelihood with

, where designates the neigh-
borhood of in the chosen independence graph [6], [49].
A “global” likelihood is thus replaced by a sum of “local”
likelihoods. Based on this principle, Chalmond developed a
Monte Carlo “Gibbsian-EM” algorithm for image classification
[6]. The “Gibbsian-EM” algorithm iteratively estimates the pa-
rameters of data likelihoods along with those of the spatial prior
model. The Monte Carlo sampling used to approximate the ex-
pectations actually yields approximation of both pair-wise and
site-wise posterior marginals. The latter approximations can be
used to get approximate MPM estimates of, simultaneously
with the estimation of parameters. Due to the slow convergence
of the iterative Monte Carlo procedure, the whole procedure
is expensive. Besides, the substitution of the likelihood by the
pseudo-likelihood does not guarantee the convergence of the
procedure, even to a local minima.

The different problems that arise when EM algorithms are
applied to standard lattice-based MRF models, are not encoun-
tered in the special case of tree-based models where there is no
unknown normalization constant (partition function), and local
posterior marginals can be computed exactly. For the partic-
ular case of models on chains, Baumet al.have thus been able
to develop a parameter estimation algorithm which makes use
of noniterative EM steps [2]. This classical algorithm is now
widely used in speech recognition for instance [14], [38], as
well as in chain-based image analysis [21]. Based on the exten-
sion to trees of Baum’s forward-backward algorithm for com-
puting posterior marginals (see Section IV-B), EM technique
has been naturally used for discrete tree-based models in arti-
ficial intelligence, multivariate statistics, and signal processing
[9], [23], [45]. The EM approach we propose differs from those
methods in that it relies at each-step on the original posterior
marginal computation technique introduced in Section V-A. In
addition, taking advantage of the sampling facilities offered by
tree-based models, we introduce an efficient MCEM algorithm
on trees which improves learning performances at a reasonable
extra computation cost.

B. EM Algorithm on the Quadtree

Let us consider again the joint model introduced in
Section III. Each discrete random variable takes its value in

, while the corresponding measurementis
discrete or continuous, with state-space. Making the depen-
dency w.r.t. to the model parameters explicit, the joint distribu-
tion may be expressed as
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There is no unknown normalization constant in this case, and
the expectation in the -step reduces to

(21)

In the case of discrete data state space, the most general pa-
rameterization of the model is defined by the different probabil-
ities appearing in the latter factorization:

• prior root probabilities: ;
• prior parent-child transition probabilities which are

assumed to be independent of the resolution level:4

, ;
• site-wise conditional data likelihood probabilities, which

are here supposed to depend on the resolution level:
, .

In this case, the parameter vector to be estimated is
, with

the constraints:

(22)
The expectation in the -step (21) becomes:

(23)

where , and

.
With this discrete setting, it is possible to implement the

exactEM algorithm, i.e., both the expectation and the maxi-
mization may be conducted without any approximation. This
requires the exact computation of site-wise and pair-wise

4This stationary assumption for the causal prior could be discarded by making
transition probabilities depend on concerned leveln, akin to data likelihoods.
This however seemed to us as not desirable in practice, due first to the rather
reduced amount of information on which each of these parameters would then
be based (at least forn close toN , i.e., for smaller levels), and second to the in-
crease of complexity that would result from this over-parameterization. Hence,
we preferred to keep the parameterization reasonably parsimonious by not using
this degree of freedom.

posterior marginals appearing in (23). We have already seen
in Section IV-B how the site-wise posterior marginals
may be computed within two passes on the tree.5 The pair-wise
marginals are obtained from the same downward computation
(12)

d

d

For a current parameter fit , it is thus easy to get
, and and then to perform the maximization

of subject to the constraints (22), using Lagrange
multiplier techniques. One gets the following-step update:

(24)

(25)

In unsupervised experiments (Section IV-D), we will use
prior parameterization involved in (25). Note, however, that for
the simplified prior model used in Section IV-D where prior
parent-child probability transitions (17) are defined by a single
parameter at level , previous -step is readily adapted. The
constrained maximization of w.r.t. provides the following
updating in this case:

(26)

instead of (25). If in addition is kept independent from level
, then the update of unique parameteris

(27)

In the case of continuous Gaussian data model we use in our
experiments, the estimation of function is replaced by the
estimation of the mean and covariance matrix , for each
value of . The update of prior parameters remains unchanged,

5As mentioned in footnote 2, the original tree-based marginal computation
method introduced in Section IV-B can be seen as the discrete counterpart of
the tree-based RTS algorithm. As a consequence, the EM technique we now
develop can be seen as a discrete analog of EM procedures for chain-based and
tree-based dynamical models [14], [28].
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and the update of the Gaussian parameters is obtained by mul-
tivariate regression

(28)

The two-pass posterior marginal computations and parameter
updates are iterated until convergence is reached. Initialization
and convergence criteria will be discussed in Section V-C. Once
the parameters are estimated, the inference ofgiven can be
conducted according to one of the methods described in Sec-
tion IV, but the MPM estimator is preferred since the posterior
marginals are available as a by-product of the EM algorithm.

C. MCEM Algorithm on the Quadtree

A stochastic version of the EM algorithm may be useful in
case of bad convergence of the exact deterministic EM algo-
rithm. The principle of MCEM (which admits SEM as a special
case) is to draw samples from the posterior dis-
tribution for the current parameter fit, and then to
make estimations based on these samples. More precisely, under
proper ergodicity assumptions, the posterior marginals may be
estimated by

Denoting now by and these ergodic approxi-
mations, the expectation to be minimized may be approximated
by

With these notations, the constrained minimization leads to the
same update (24) and (25) as for the exact EM algorithm.

The sampling issue remains to be addressed. Using the causal
structure of the model, a noniterative causal sampling is pos-
sible. The sampling algorithm relies on the causal factorization
of theposteriordistribution

d (29)

On the tree structure, and d can be com-
puted within one upward recursion, as already explained. Once
the different factors of the causal factorization (29) have been
obtained, a noniterative sampling algorithm is readily defined by
drawing from , and then in a recursive top-down fashion,
from distributions d , where is known from
previous samplings.

Although noniterative, the preliminary computations needed
to factorize the posterior distribution (29) induces a significant
additional cost in the MCEM method. Heuristics may be used to
alleviate this extra cost by implementing an approximate sam-
pling from the posterior distribution. The simplest one, which
is often used in Markov chain models, consists in replacing

d by
which is a product of known distributions. This gross simplifi-
cation (which amounts to taking into account data only atand
at its ancestors, when drawing samples at node) only makes
sense when there are actually data all along the paths joining the
root to the leaves. This is uncommon in image analysis problems
in which only a few resolution levels generally support data.
If, e.g., data are only available at , then only samples at the
finest level would be data dependent, all the others being driven
by the causal prior. A more sensible heuristic, we actually used
in our experiments, consists in building a multiresolution data
set from the original data set, at locations on the tree where data
are missing. Missing data are recovered by low-pass filtering
and down-sampling the original data, and the above mentioned
approximation is then applied to the full data set. It is thus pos-
sible to produce approximate samples from tree-based model at
a moderate cost (compared to Monte Carlo methods, such as the
Gibbs sampler used to produce samples from noncausal models).
These samples may be used within the MCEM algorithm, which
is expected to be more robust than the standard EM algorithm on
the same hierarchical structure.

D. Experimental Results: Unsupervised Classification

We present experimental results in unsupervised classi-
fication, both on synthetic and natural images. As already
explained, the unsupervised classification algorithms estimate
the number of classes , the partition of data into classes, the
parameters of the different classes (for a Gaussian model here),
as well as the parameters of the underlying prior model. We
report the results obtained by EM and MCEM on the quadtree,
referred to as H-EM and H-MCEM, respectively. We compare
these hierarchical schemes to two standard nonhierarchical
unsupervised classification methods, also relying on a Gaussian
model of luminance. The first one is the Gibbsian EM approach
proposed by Chalmond [6], based on Gibbs sampling and on
a pseudo-likelihood approximation of spatial Potts prior (with
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Fig. 9. (a) Synthetic 64 × 64 image; (b) associated histogram; (c) associated ground-truth (five classes); and (d)–(g) unsupervised classifications obtained with
the four EM techniques (the blocky aspect is mainly due to the magnification of these small images).

nearest neighbors interactions); the second one is a plain MCEM
method applied to a mixture-based modeling with no interacting
prior [47] (i.e., is taken as ; the prior is then
parameterized by the mixture proportions
and the posterior distribution is a product of independent mono-
variate distributions). We shall refer to this method as “mixture
MCEM.” The comparison with this latter (noncontextual)
method will highlight the importance of Markovian prior in the
classification task.

The initialization for the class parameters is the same for
all algorithms. It is provided by a simple analysis of the finest
resolution data histogram. The number of classes,, is es-
timated as follows. is first initialized by a large number;
then, at each iteration, classes whose number of occurrences
falls under a given threshold are removed, and the number of
classes is updated accordingly. For all procedures, the stopping
rule is based on the rate of change of the Gaussian likelihood pa-
rameters. More precisely, the EM procedures are stopped when

, with
in our experiments.

The first test image involves various geometric shapes
[Fig. 9(a)]. The luminance within each class follows a scalar
Gaussian distribution with means and variances indicated in
Table II. The histogram of the image is shown in Fig. 9(b). As
can be seen, the histogram only exhibits three or four visible
modes, whereas the actual number of classes is five [see the
ground-truth in Fig. 9(c)].

The EM algorithms on the quadtree were all able to recover
the right number of classes. However, to simplify the compar-
ison between methods, we report the results obtained by the
four methods, when run with a number of classes forced to five.
The Gaussian parameters estimated for each class are given in
Table III. The corresponding MPM classifications are displayed
in Fig. 9(d)–(g). Table III shows the computation load of each
method, along with the rate of good classification. These results

TABLE II
MEANS AND VARIANCES OF CLASSESESTIMATED BY THE FOUR EM

TECHNIQUES ONIMAGE FIG. 9(a)

TABLE III
PERFORMANCES OF THEUNSUPERVISEDCLASSIFICATION ALGORITHMS ON

IMAGE FIG. 9(a). #I TERATIONSIS THE NUMBER OFEM ITERATIONS TOREACH

CONVERGENCE; R IS THE NUMBER OF SAMPLES DRAWN WITHIN EACH

SINGLE EM ITERATION

first demonstrate the significant computation saving allowed by
algorithms on the quadtree, compared to Gibbsian EM on the
lattice. Exact EM on the quadtree is, as expected, the fastest al-
gorithm, since it does not require any sampling. On the other
hand, as a deterministic procedure, it requires a good initial-
ization (this was the case here). The two hierarchical methods
provide the best results in terms of accuracy of the parameter
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Fig. 10. (a) Original image 256 × 256 (courtesy of GdR/PRC Isis); (b)
maximum likelihood classification used for the initial data parameters
estimates; (c) classification with mixture MCEM (#iterations = 10,
R = 52); (d) classification with Gibbsian EM (#iterations = 50,
R = 41); (e) classification with EM on the quadtree (#iterations = 3);
and (f) classification with MCEM on the quadtree (#iterations = 10,
R = 228).

estimates and in terms of quality of the associated MPM classi-
fication. One can notice, for instance, that Gibbsian EM is not
able to discriminate two disks that actually belong to two dif-
ferent classes (see Fig. 9(e) and Table II). As a matter of fact,
the estimated variances obtained on classes 1 and 3 with this
approach are quite large, while the estimated mean of class 1 is
strongly biased. The classifications obtained with the noncon-
textual mixture EM method are very poor, as expected.

We finally illustrate the hierarchical EM algorithms on a
real-world microscope image representing transverse sections
of muscle fibers [Fig. 10(a)]. As before, the same initial state
has been specified for all algorithms: the number of classes was
fixed to four ( ) and the model parameters were initialized
by histogram-based estimation methods. It turns out in this case,
that the initialization is poor [see Fig. 10(b)], and both Gibbsian
EM and H-EM remain stuck in undesired local minima. These
deterministic methods are for instance unable to discriminate the
white background from some light cells [Fig. 10(d)–(e)]. This is
not the case for the stochastic EM on the quadtree H-MCEM, as

can be seen in Fig. 10(f). This illustrates again the sensitiveness
of deterministic EM algorithms to initialization, and shows
that the inference may take advantage of the low-cost random
sampling provided by H-MCEM. Once again, the noncontextual
mixture EM method provides a “noisy” classification, close to
the initialization [Fig. 10(c)].

VI. CONCLUSION

We have introduced a family of algorithms for supervised and
unsupervised statistical inference on the quadtree. These algo-
rithms, based on nonlinear discrete causal Markov representa-
tions, have many potential applications in early vision and in-
verse imaging problems. Hierarchical MAP, MPM, and SMAP
estimators have been developed on the quadtree, as well as EM
and MCEM procedures for the unsupervised estimation of the
parameters of these models. The performances of these hierar-
chical inference algorithms have been assessed and compared to
standard (noncausal) spatial approaches in an image classifica-
tion problem. Preliminary experiments have demonstrated that
gains may be expected from these new approaches, not only in
termsofcomputation load,butalso in termsofestimationquality.
The block artifacts, which are induced by the spatial nonstation-
arity of the quadtree structure, do not seem to be detrimental on
real images.

We believe that hierarchical tree-based models could become
an appealing alternative to standard Markovian or energy-based
models supported by spatial grids. They dramatically reduce
the computational load, especially in unsupervised problems, in
which noncausal spatial models are often intractable. Besides,
these hierarchical models are well suited for the Bayesian pro-
cessing of multiresolution data. In multiresolution image classi-
fication problems, for instance, they enable a consistent fusion
of all available data.

Further investigations on these models should deal with more
complex hierarchical structures, while preserving the compu-
tational advantages of the quadtree. Nonlinear continuous rep-
resentations (which may arise from the mixing of discrete and
Gaussian models on the tree) would also be worth considering
in a future work.
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