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Abs t r ac t  - Many tracking systems involve basical- 
ly active and passive subsystems. If i t  can be rea- 
sonably assumed that passive measurements have no 
"cost", this is not true f o r  active measurements. So, 
a general problem i s  to  scheduling active measure- 
ments, so as to combine them optimally with the 
passive ones. More generally, we are interested by 
optimizing controls i n  the estimation procedure. 
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1 Introduction 
.A recent trend in systems for detection/tracking is the 
availability of multiple sensing modalities that differ 
in such crucial measures as detection, estimation, 
geographical coverage, cost/risk of operation. 

In these systems, the determination of optimal 
sensor design and measurement scheduling are im- 
portant issues in estimating system status. The 
problem of measurement scheduling has a long history. 
Mehra [I] considered different norms of the Fisher 
information Matrix as criteria for the optimization 
of measurements scheduling. Van Keuk et al. . [2] 
examined the problem of efficient allocation of radar 
resources for maintaining existing tracks. Avitzour 
and Rogers [3] considered the problem of optimizing 
the time-distribution of measurement variances for 
estimating a scalar random variable y, given that: 
1) the total measurement budget is fixed, 2)  the 
cost of an individual measurement mries inversely 
with the (controllable) measurement variance, and 
3) the autocorrelation matrix of the quantity to  be 
be measured {z( i )  : i = l , . . . , N } ,  as well as the 
cross-correlation between {z(i)  : i = 1,. . . , N} and y 
are known. 

This work has been extended to discrete-time, vec- 
tor stochastic-processes by Shakeri et al. [4]. Howev- 
er, we stress that previous systems are mainly devoted 
to linear systems. Opposite, our contribution will be 
to analyze performance for optimal scheduling of the 
multiple estimation modes for a non-linear system. In 
particular, we shall focuse on non-linear effects in tar- 
get motion analysis and global optimization. -4fter a 

general presentation of the problem and its principal 
difficulties (section 2), general tools are presented in 
section 3 (essentially multilinear algebra). I t  is then 
possible to consider general formulations of measure- 
ment scheduling; first in the deterministic case (section 
4), then for the stochastic case (section 5). 

2 A basic formulation 
We shall restrict, in a first time, to a target in rectilin- 
ear and uniform motion. Then the equations of motion 
takes the following form [6] : 

r(t) = r(0) + tv(0) - (t - ~ ) a , , ( r ) d ~  (2.1) l 
where : 

the reference time is 0 ,  
r and v are resp. the relative target range 
and velocity vectors , 

a, describes own-ship accelerations . 
For bearings-only (planar problem) target motion 

anlysis (TMA for the sequel) these measurements con- 
sist of line of sight angles which satisfy the following 
relation : 

P ( t )  = tan-' [r2( t ) /r , , ( t ) l  . (2.2) 

For active measurements (e.g. radar, active sonar), 
target range r ( t )  is also available and related to the 
target state by : 

The available measurements are the estimated angles 
pk from the observer to the source and when available, 
estimated ranges. The measurement noises ?q?,k, w,,k 
are usually modelled by i.i.d. zero-mean, gaussian 
process. Associated variance U' may depend upon the 
relative source-receiver positions. 

Elementary calculations yield Mk and Nk, the gra- 
dient vectors of measurements ,& and rk u7.r.t. the 
state vector X (the symbol * denotes transposition 
throughout this text) : 

Mn: = $ (COSPk, - sinoh, k cosPk, -k sinPk)* , 
Nn: = (sinPk,cosPk,k sinPk,k coson.)' . 

(2.4) 
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Assuming independence of bearing and range measure- 
ments, calculating the Fisher Information Matrix (FIhl) 
is a routine esercise, yielding : 

In 2.5,  6r,k is equal to 1 when an active measurement 
is available a t  time k, and to  0 else. 

In this context, a "measure" of the system estima- 
bility is a functional of the F I ~ L I .  The determinant 
is a convenient "measure" for the estimability of the 
problem. The difficulty and the originality of the 
problem stem from the two following facts. First, 
the source motion is unknown which means that the 
sequence of bearings is unpredictable. Second, we 
deal with a global optimization problem which means 
that we seek for an optimal sequence of controls ' 
maximizing a global cost function like the matrix 
trace (i.e. tr(FIM) ). 

Of course, the problem is drastically eased by 
considering an additive (matrix) like the trace. 
However, this functional is not relevant for infor- 
mation measuring even if its calculation is quite direct. 

However. note that the function det does not satis- 
fy the ~ I D P  (hlatris Dynamic Programming Property) 
defined below. 

Definition 1 The function f ('& + R, differen- 
tiable, C ' )  has the hlDP if the following implication 
holds, whatever C E R,,3 : 
f (D) > f(-A) * f(D + C) > f (A + C )  * 

An interpretation of this definition in terms of dynamic 
programming is the following type of inequality : 

ma-(-,; f Gx, G i ,  I maxu, [f {Gx, Gi,., 
(i;n ) 

+F (Xo1G+1) 11 f 

which must be valid for the strategy fit, optimal up 
to time k ,  and for k = n - 1,. . . , 0. Roughly, the M D P  
appears as a matricial form of a "comparison" princi- 
ple. A fundamental question consists in determining 
the functionals having it. An answer is provided with 
the following result. 

Proposi t ion 1 Let f satisfying the h i D P  property 
then : 

f (4 = 9 (tr(AR)) 

where g is any monotonic increasing function and R is 
a fixed matrix. 

'In this context, the instants of active measurements. 
* o n  the contrary, tr(FIh1-l) is meaningful. However, calcu- 

lations are, at best, as complicated as with the determinant 
331,, : vector space of Hermitian matrices. 
"F denotes a FIhl rnatrix, Uk: optimal sequence of controls 

from 78 to k 

We refer to [5] for the proof of Prop. 1. It is simply 
based on the fact that if Vf(A) and Vf(D) are not 
colinear, then their respective orthogonal subspaces are 
distinct which implies that there exists a matrix C for 
which the hlDP is not satisfied. Therefore, Vf(A) and 
Vf(B) must be colinear, whatever A and D. This is 
a very strong property. In turn, this yields the general 
form of f .  Consider for instance f(A) = logdetA; 
then, for a non-singular matrix A, we have : 

Dfti(C) = tr (A-lC) = (V*f(A), C )  , 

and we see immediately that f does not have the MDP 
property. The same remark is valid for functionals as 
simple as f(A) = tr (A-'). 

3 General results 
A local approximation of this determinant may be cal- 
culated by considering an expansion of the vectors 
Mt+i. For instance, let us consider the following third 
order expansion of Mt+i. 

Note that the above expansion must be considered 
as an espansion of Mt+i, relatively to the arbitrary 
small sampling time 7, ( the time separating two con- 
secutive measurements). For the sake of brevity, 7, is 
omitted ( 7c E 1). 
Using exterior algebra and the above expansion, the 
following basic result is obtained : 

Proposi t ion 2 Consider a third order expansion of 
the vectors Mt+i, then the determinant of the 4 x 4 

d e t ( M ( t , t  +3)) 2 d e t ( M t , M I ' ) , M ~ ) , M ~ " ) .  
matrix :u( t ,  t + 3) 2 ( M ~ ,  . . . , M ~ + ~ )  : 

Proof: First, let us briefly recall the definition of 
the exterior powers of a vector space '. Let I)' be an 
n-dimensional vector space over IR, then A2 1: consists 
of all formal sums x i  ai (Vi A Vj), where the "wedge 
product" U A V is bilinear and alternate. This defi- 
nition is straightforwardly extended to higher exterior 
powers [9]. For any basis {VI, .  . . , V,]} of V ,  the set 
of pvectors {vil A ... A Vi,, 0 5 il < * * .  < i p  I TI} 

forms a basis of the n!/(n - p)!p!-dimensional vector 
space A V .  In particular, A4R? is one-dimensional, 
and throughout the paper n e  make intensive use of 
the isomorphism A4& 3 A%! A A21R!. The exterior 
algebra formalism thus appears as an economical way 
to conduct determinant calculations. 

Denoting MAN the elements of the exterior product 
A21R!, we have : 

det(M(t , t  + 3)) = (Mt A Mt+l)  A (Mt+a A Mt+s) . 
(3.2) 

5For a complete presentation, we refer e.g. to [9][10] 
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It remains to calculate the two vectors Mt A Mt+l and Other terms is only formed of exterior products 
Mtf3 A MtW3 of the exterior power [9] A". Invok- of either the vector M or M(') with another vec- 
ing the basic properties of exterior algebra, we obtain tor (M(i) , i = O , l ,  2). Since GAG(') = $ MAM('), 
straightforwardly [9][1O] : the contribution of the other terms in the calculation 

( ~ f  det(F1M) is null. Prop. 2 is thus proved. We stress 
Mt A Mt that this property is essentially due to the fact that 

the term $ appears as a multiplicative factor. 
Mt A Mt+i = Mt A MI1) + 
Mtf2 A Mtf3 = 3 MI') A Mk) + 3 Mk2) A Mk3) , 

Mt A MY) + 

+ 5 MI') A ML"). 000 
(3.3) 

Note that the terms inlrolving Mt in MtW, A The calculation of the approximation of 
det( FIMt,t+k) , where: k 2 4 is also surprisingly 
simple. Using exterior algebra and more precisely the 
Binet-Cauchy formula ', we obtain : 

det(mft,t+l;) = (urt)-' , 

Mt+s are not considered since their contribution in 
det(,,\/i(t, t + 3)) is null. Then from 3.3, we deduce 
det(M(t, t + 3)) : 

det(:M(t, t + 3)) = 3 Mt A Mi') A My) A My) , X [det(Mt+il,. . . , Mt+i4)l21 

O l i l  < i z  i i 3  <41k 5 
+5 Mt A Mi2) A Mi1) A My) , 

000 
Furthermore, considering a third order expansion of 

the relatire range r t ,  we shall prove that the calcula- 
tion of det(rrhit,t+n) is unchanged . The hypothesis 
of (approsimately) constant relative range can thus be 
removed, more precisely : 

Proposition 3 Consader a thzrd order expansion of 
the vectors Mt+, and of the relative range rt+,, then : 

det(rIh(,+,) 2 (ort)-' [det (Mt,Mj'),My),My))]2 . 

Proof : The m i  takes the following general form : 

m i  = ( G t , . . . , G t + ' ) ( G t r . . . , G ~ + 3 ) ~  where : 
Gt+z = F;I;;Mt+z . 

We can then invoke Prop. 1, thus obtaining : 

r 1 

The problem we deal with is to obtain an explicit 
formula of det(FIhft,t+k) . For that purpose the follow- 
ing result is instrumental. 

Proposition 4 det A(t) as independent of the value of 
Pt ,  furthermore we can consider that the reference time 
i s  zero . 

r det(F1hi) = [det (Gt,...,Gp))]2. Proof : Define9 the matrix Rt as follows : 

The calculation of the derivative vector Gii) (i = R t = (  $ i t )= ( ;  ; ) m t  
1,2,3)) is straightforward, yielding ' : 

where R, is the rotation matrix associated with the 
angle -Pt. Then, the following equality is straightfor- 
wardly verified : 

pI 1 
G(1) +M(') - 

G(3) = LM(3) - 39M@) + 3(4 - e ) M ( 1 )  
G(2) = iM(2) - 29M(1) + ($ - +)M,  

(5 3 I. (2) ' I. Mt = Rtel , el = (l,O,O,O)* 
+ ( 3 9  - 2 5  - y ) M ,  g = + / r  . 

(3.4) hence : 
Now, the following equalities are direct consequences 
of exterior algebra properties: Mi') = R{')el,.  . ,MY) = Ry)el . (3.8) 

Furthermore the following equalities are straightfor- G A G(') = f MA M(') , 
G(2) A G(3) 2 f M(') A M@) + other terms. wardly deduced : 

(3.5) 
Rt = C t m R t ,  61n fact,Gt+i = L M t + i ,  but the constant coefficient U 

'For the sake of simplicity the time index t is ommitted in 

p t + i  

is omitted for the sake of brevity 

the following formula 

8we assume that U and r are constant for the duration of the 

9 { 8  : I<ronecker product } 
analysis i.e. { t , .  . . , t + k} 
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where : 

C t A (  !),.A( i ) :  (3.9) 

The above expression may be somewhat simplified 
by means of the following remark : 

R!') = Rt J where J = ;') ' 
(3.10) 

Using the multilinearity property of the determinan- 
t, we deduce from 3.8, 3.9 that detA(t) is a sum of 
elementary expressions of the following type : 

det [Rtel, (Ct O9 RtJ )  e l ,  (D @ RtJ)  e l ,  (Ct @ RtJ) e11 . 
(3.11) 

The following classical property of the tensor product 
is then instrumental [lo] : 
(Hi Pi) O9 (Hz  Fi)  = ( H I  O9 H z )  (F1 O9 F.1) , (3.12) 

where H and F are endomorphisms of the state space. 
Applying this general property yields lo : 

Rt = Ct H R t ,  (3.13) 
= 
= 

( I d  Ct) @ (Rt I d )  , 
( I d @  Rt) (Ct O9 I d )  , 

and similarly : 

Ct O9 RtJ = ( I d  Ct) @ (Rt J )  (3.14) 
= ( I d  @ Rt) (Ct @ J )  ... 

Thus, each of the terms 3.11 admits the following 
factorization (det(A 09 L?) = (det A)' (det L?)', A and 
L? 2 x 2 matrices) : 

(3.11) = (det Rt)a det [ (Ct 09 Ida)  e l ,  (3.15) 
, ( C t 0 9 J ) e l , ( D @ I d a ) e l , ( C t @ J ) e l ] .  

Since det Rt is equal to 1 we deduce from 3.11 and 
3.15 that det A(t)  itself is independent of Pt .  

The last step is proved by invoking the same prop- 
erty of tensor products. More precisely the following 
factorizations are obtained : 

Ct @ J = (Ct @ I d )  ( I d  @ J )  , 
D @ I d = ( C t D ) @ I d = ( C t ~ I I d j  ( D @ I d ) .  

(3.16) 
1 
From what, the following equality holds : 

4 Applications 

4.1 Active and passive measurement, 
the deterministic case 

4.1.1 Non-Maneuvering Target  

In the absence of observer maneuver, the TM.4 problem 
is not observable. But, if we consider multiple measure- 
ment modes (e.g. passive and active measurements), 
the TMA problem becomes observable [12]. Consider, 
for instance, the case of two modes (passive and ac- 
tive): the scalar observation y(t) is replaced by a vecto- 
rial one y ( t )  = (yl(t) ,yz(t))* but the statistical nature 
of the problem is unchanged. We shall assume that 
passive measurements are available at each time, while 
active ones are scarce. The problem is to optimally 
scheduling these active measurements. Again, let us 
denote :U1 and M a  the M matrices associated with 
passive and active measurements, we have : 

det(FIhIt,t+k) = ~ ( k )  det(M1M; + M,/U;) , 

The matrix /U1 and M a  are not detailed but have the 
standard form. Opposite to the previous case, a direct 
calculation of det(FIkft,t+k) is not an easy task. How- 
ever, the Binet-Cauchy formula allows us to perform 
them. More precisely, denoting col(.bl i) the columns 
(vectors) of Mi, we have : 

= x[ ( M I  A Ma) A (NI  AN,) la 44.2) 

+E [ ( M i )  A ( N I  A Na A N3) I' , 

+ C [ ( M i A M : ! A M 3 ) A N i ) I a ,  

det(F1hi) 
k 

k 

k 

where : Mi E col(M1) , Ni  E col(A4a) . 
The calculation of det( M I ,  Ma, N I ,  Na) is easily 

achieved by means of exterior algebra. We assume that 
N1 corresponds to an active measurement occuring at 
the instant 0 (associated target bearing Po);  while Na 
is also associated with an active measurement occuring 
at time 7 (associated bearing Po++.  Similarly, M1 and 
Ma corresponds to passive measurements occuring at 
time t and t' (associated bearings pt and &). We thus 
have : 

nrN1 = (sin&cosPo,O,O)* , 
urNz = (sin(/3o++),cos(oo++), 

7 + a), 7 cos(p0 + 6))' , 
n o r M 1  = (cosPt,-sinPt,tcospt,-tsinPt)*, 
ugi -  Ma = (cosPtl,-sinPt',t'cospt~,-t'sinBtf)* . 

(16) = det(CtQ9Id) x , (3.17) We are now calculating the components (denoted 
d e t [ e l , ( I d @ J ) e l , ( D @ I d a ) e l , ( I d @ J ) e l ]    ai,..*,^(^) OfNiANz a s ~ e l l a s t h o s e o f M i A M 2  (de- 

noted yl, + . . , n/(~) in the canonical basis of h2R4. More 

]R4, then a basis of h2R4 is : 

Since the above reasoning for any expression precisely, if el,. . . , e4 denotes the cunonical basis of 
of the type of 3.11, Prop. 3 is thus proved. 
000 

'Old : identity matrix { e l h e z , e l  Aes,el Ae4 ,eaAe4 ,eaAes , e3Ae4}  , 
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< 

In order to deal with the general case, it  is thus suf- 
ficient to  consider the following measurement schedul- 
ing : 

1 active measurement, T passive measurements, 

2 active measurements, T passive measurements, 

3 active measurements, T passive measurements. 

In the case of three active measurements, calculations 
are almost similar to the previous case. except that 

is replaced by h3R4 (canonical basis : el A e2 A 
e3 , el A e? A e4 , e1 A e3 A e 4  ,e? A e3 A e 4  ). The 
following result is then obtained : 

Propos i t i on  6 Consider that we have t h r e e  active 
measurements (at time periods 0, F~ and r3), and T 
passive measurements, then : 

' a1 = - sin 6 : 71 = - cos sin + sin & cos Ote , 
0 2  = T sin 30 sin(& + 6) , 
î? = (t' - t )  cos9t cosgtt , 

a3 = T sin $0 cos(& + 6) , 
-/3 = t cos sin pt - ti sin cos , 
cy4 = T cos PO co@O + 6)  , 74 = (t i  - t )  sin /3t sin ptt, 

a5 = r cos PO sin@, + 6) , 
7 5  = t cospt singt' - ti sinpt cos9tl , 

, a6 = 0 , -io: = t t' (cos fit, sin $'t - sin &I cos 8) . 

Finally consider the case of a unique active measure- 
ment, then whatever the active measurement instant 
we obtain. 

Proposi t ion 7 Consider that we have a unique ac- 
tive measurement and T passive measurements, then : 

det(rrhr)T ,.G > 

x [(t3 - t l)( t? - tl)(t3 - t?),d]? . 
O < t i < t Z < t 3 < T  

(4.7) 
Assume now that a given number of active measure- 
ments is available. These active measurements lies in 
a set E ,  of fixed cardinality (Card(E) = A') and are 
indexed by their periods. Then, thanks to the Binet- 
Cauchy formula and the previous results we are now in 
position to derive the general form of the determinant 
of the PIM, yielding. 

Proposi t ion 8 Assume that active measurements are 
in a set E (Card(E) = N )  and that T passive measure- 
ments are available and let FIME the associated FIM, 
then : 

det (FIME) = M. det(FIhf), + det (FIM,J) (4.8) 
T E E  

+ det(FIM,,,,,,T) , 
Tl,TZES 

where det(FIht),, det ( F l h l , , ~ )  and det (FIht,l,T2,T) are 
given b y  4.7, 4.5 and 4.6. 

Finally, let us consider the case where n e  have an e- 
qual number (say T )  of simultaneous active and passive 
measurements. A direct calculation of det(F1hr) is im- 
possible, due to the very large number of elementary 
terms. However, using Prop. 4, the following result can 
be derived. 

Proposi t ion 9 Assume that we have T simultane-  
ous active and passive measurements, then : 

d e t ( p I W , ~ )  T1' (* + + 6 I l r  ) . 

As j = A ( r  A v), the two terms in 
(4.9) 

cannot be 1141 
neglected. In the absence of observer maneuver and 
active measurements, we know that det(Fihi8) is strict- 
ly zero. However, this calculation is not realistic and 
Finally, practical considerations plead for including s- 
mall variations of the source or observer trajectories in 
the motion model. Actually, this is the general case. 
Then, an interesting modelljng consists in considering 
independent increments of p, i.e. : 

j t+i  = j t  + wi , wi a.g.n A-(o, 7') , 
Using exterior algebra, we easily obtain : 

det(At) = 4 sin@ + w1) sin@ , 
+w3 - w2) - sin(2) + w3 - w1) sin(2) + w2) . 

We are now in position to  calculate the mean value of 
det(F1ht) (denoted ]E [ d e t ( ~ ~ ~ t , t + k ) ] ) .  More precisely, 
the expectations of the det(At) are calculated by means 
of the characteristic functions of cos (wi), yielding : 

E [ d e t ( ~ 1 ~ t , t + 3 ) ]  = - 16 Q exp ( - T i 2 )  3 (sin()))8 . 
r8 

(4.10) 
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This result may be extended to the general case, 
the only change being the exponential term which 

becomes exp(-nkr').  We thus see that is 
a convenient upper bound of det(FIhi). The effect 
of small variations is also evident ( (exp (-: T ' ) )  

multiplicative term). 

From the previous results, we thus have a con- 
venient measure of the information gain induced by 
active measurements, which is dramatic. This is easily 
understood if we recall the respective expressions of 
the vectors Mi (passive measurements) and Ni (active 
measurements) . Indeed it is easily seen that for a 
given period these two vectors are orthogonal. Now, 
det(FIh1) is also the volume of the Grammian matrix 
asociated with the gradient vectors or, equivalently, 
with the volume of the parallelotope overbounding this 
vector set. This volume is dramatically increased by 
adding orthogonal vectors, which are spanned by the 
gradient vectors associated with active measurements. 

Optimal measurement scheduling, in this context, 
need also some comments. In fact, the interest of 
the above results (see Props. 5 - 9) is to provide 
us explicit expressions of the performance criterion, 
in terms of available parameters. Furthermore, it is 
easily seen that the term det (FI~I, ,T) is generally 
predominant in the calculation of det(FIhi) by means 
of Prop. 8. Actually, this is due to the following fact: 
the gradient spaces, induced by ( M1,Ma) on the one 
hand and ( N1,Nz) on the other are (approximdtely) 
orthogonal subspaces of the same dimension. 

Assuming r, u g ,  ur constant the optimal measure- 
ment scheduling reverts in considering the following 
elementary optimization problem : 

Find T maximizing : 

T? ( t  - t')? [l + p  (-tt' + T ( t  + t ! )  ) I 2  
O_<t<t'ST 

Since is generally available (from measurements), 
i t  is possible to replace it by its estimate. However, 
we see that except for very longtime scenarios the 
term B2 (-t t' + T (t + t') ) is small w.r.t. 1. So, our 
optimization problem can be further simplified, reduc- 
ing to the optimiszation of r2 ( t  - t')'. The 

general conclusion is that det (FIM,J-) (and therefore 
det (FIM))  is maximum when T is maximum. The opti- 
mal measurement scheduling consists then in concen- 
trating all the active measurements a t  the two extremi- 
ties (starting and end) of the total measurement batch. 
Of course, this conclusion is valid only for a determin- 
istic target model. Practically, simplifying hypotheses 
have been made ( u.0, ur, r constant). Previous cal- 
culations may be straighforwardly extended t o  handle 
the case of time-varying up, ur, r .  

O<t<t'<T 

4.1.2 Maneuvering Target 

Consider now a maneuvering source, whose tra- 
jectory is made of two legs. Then the tar- 
get state vector X becomes 6-dimensional ( X = 
(20,~0,21~,1,~~,1,~~,?,21~,?)*). -4ssuming that the tar- 
get maneuver instant be known and denoting it t,, 
the gradient vectors take the following form : 

I (4.11) 
Similar formulas hold for active measurements. Con- 
sidering the maximization of the parallelotope over- 
bounding the uncertainty ellipsoid, we can prove that 
the predominant term of de t (mi)  is associated with 
the exterior products ( M ~ A M ~ A M ~ )  A ( N ~ A N Z A N ~ )  
( Mi + passive measurements, Ni + active mea- 
surements). Let ( t l ,  t?) the instants corresponding 
to (MI, NI) ,  ( t 3 ,  t 4 )  the instants corresponding to 
(M2,N2),  idem for ( t 5 , t G ) ;  then : 

rt ub V x  Pt = (cos &, - sin Pt , t cos Pt, -t sin ,&, 0, 0)* , 
for t 5 tm , 
rtUbVxPt = (cosPt,-sinPt, 

, t ,  cosfit, -t,n sinfit, ( t  - t'n) cosfit, -(t - t,,J sin,&)*, 
for t > tm . 

det (FIM) c [(tl - t ? ) ( t 3  - t 4 ) ( t ~  - tti)]' 

[2t2cos(2/30-2(t? -2t,+t?sin2/3"), 
-2 t 2 j  (t? - t l  + ( t l +  t?)(cos 2/30 + sin 2/30] , 
+@ ((tl - t?)'(tZ - 2t,,,) - t z ( t 1  + t?)?  cos^,^" - s i n ~ a o ) )  , 
- ( t3  + t 4  - t 5  - t6)' (-t? + 2t, + tz(cos2~0 - sin25")) . 

t l  ,"',t6 

(4.12) 
At a first glance, this formula appears rather 
formidable and even useless. However, it worth stress- 
ing that the predominant term inside the brackets 
[ ] is simply (2 t Z  cos(2/3" - 2(t? - Zt,,, + tz sin 25")). 
So again, we conclude that optimal measurement 
scheduling consists in concentrating active measure- 
ments on the leg extremities. 

Considering a multileg target trajectory, with legs of 
same length (say j ) ,  the FIM takes the following form : 

FIMl,r, j = FIM1,j + . . . + FIM(n- l ) j ,nj  , 
n m j  

= 1 1 [dm-l,n+l(k) d~-i , , ,+i(k)]  8 nk 
m=l (m-I ) j+ l  

(4.13) 
where : 

d;,&k) = (l,j,...,j,(k-~j),o,...,O) , 

1 * (4.14) 
= coS"P, cos P k  sin f i k  ( - cos P k  sin P k  cos2 P k  

Thus, the previous analysis cdn be extended to the 
general case. 

The uncertainty about the maneuver instant r can 
be modelled by a randomization (of T).- This leads 
to replace the classical expression of p(B(X) by the 
following : 
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For this modelling, the distribution of {q} is cen- 
tered around f .  The problem (MAP) then consists in 
deLermining the parameters {X, f }  which maximizes 
p(BIX, 7 )  and estimability analysis can be achieved 
by means of previous results. Another approach is to 
consider maneuver detection. For instance, for a two- 
leg target trajectory, an approximate localization of 
the source maneuvers can be obtained by sequential 
detection based, for instance, on the following type of 
test which may be viewed as an approximation l1 of a 
likelihood ratio around the parameter 00 E 0 0  : 

(4.15) 

In 4.15, XI represents the source state vec_tor 
estimated using the first batch of measurements (B1) 
of the first source leg which assumes that no source 
chaqe-point occurs during this first set. The vector 
B2(X,) is the vector of extended (from Xl)_bearings 
on the second set of measurements while Ba is the 
second set of measurements. The-matrix C'a is the 
covariance matrix of e:! and H?(Xl) is a gradient 
matrix. Let us denote 'U0 and H1 the hypotheses 
associated respectively with no source maneuver 
and a maneuver. Under 'U", ,nA is (asymptotically) 
distributed as a central chi-squared random variable 
x : ~ ,  while under 'U1 it is distributed as a non-central 
chi-squared ~ : ~ ( b )  whith the non-centrality parameter 
d ( d = (Ba - B?(X~))*UJ-'(B~ - Ba(X1)) ). 

The power of the test may then be easily derived and 
classical calculations yield ( q  :value of the threshold) : 

Pf, = exP(-11/2)cg; 9-1-  

Pd = 1 - e x p ( - q )  cj"=,$[c!=, n/&j-l 9]. 
(4.16) 

Of course, this analysis may be extended to the case 
of active and passive measurements. Considering the 
optimization of det( Ua), we can use the previous cal- 
culations .to derive an approximation of det( U,) and 
thus perform measurement scheduling. 

{ 

5 Stochastic observability and 
est imability : 

We shall now consider a markovian sequence of state 
vectors: 

Xk+1 = FXk + UI; + WI; 

with : WI; i.i.d. sequence (cov(W) = Q). (5.1) 

According to the definition of Doguslavskij [13], we 
shall say that the system is stochastically observable 

"More precisely, denoting 6 the hlLE over E) and 8' the MLE 
over 00 we cor!sider the following exparisiori of the likelihood : 
l(8') = l ( 8 )  + Ig (8' - 6) - (0. - 6). I ( 6 )  (8' - 6)$ I ( 6 )  Fisher 
matrix. 

if, in estimating its states from its outputs, the pos- 
terior error variances of all the state components are 
strictly smaller than the priors. 

Let Xk be the linear least-mean-square estimate of 
Xk given the measurements {yk , . . . ,gO}  and define 
the matrices I I k  and Pk ( IIk = cov(Xk), Pk = 
cov(Xk - X k ) )  then we shall consider the following 
definition of observability: 

Definition : The system is  said to be observable 
i f f :  

erPkei < efnkei 1 5 i 5 n . (5.2) 

(5 .3)  

It can easily shown tha t  the general form of P k  is: 

= nk - LkCr'L; . 
The rectangular (n  x k) Lk will be defined later. 
Since the matrix (the covariance matrix of the 
noise measurements) is positive definite, the matrix 
IIk - Pk is positive semi-definite. So, the inequality 
erPkei 5 e r I I k e j  always holds, whatever i. The values 
of i ensuring a strict inequality are the observable 
state components. In fact, the above definition is 
rather arbitrary and do not take into account the 
possible coupling between the estimates of the state 
components. -4 convenient definition may then be the 
estimability condition of Baram and Kailath [14]. 

Definition :The system is  said to  be estimable aff : 
IIk - Pk is positive definite. 

Denote O(Lk) the number of rows of the matrix Lk 
with non-zero elements, then a direct consequence of 
5.2 is that the system is stochastically observable iff 
0(Lk) is equal to n. Another direct consequence of 
5.2 is that the system is estimable iff the rank of Lk 
is n. Direct calculations [13],[14] yield the following 
expression of L k  : 

Lk = {+k,O!V,, + k , l i V l , .  . . , Q k , k X k }  , 
where: 

+k,j = ~ ~ - j  ( j  5 IC) , lwj = n . ~ ?  
and IIj satisfies the following Lyapunov state equation: 

J 3 '  

IIj+l = FIIjF' + Q . (5.4) 

-4s pointed in [13] stochastic observability is thus 
less demanding than deterministic observability which 
requires a maneuver of the observer. 

We shall now consider estimability for BOT. In view 
of the following factorization of the matrix L k  [43,44]: 

Lk = Fk(n,H,t,II;H;,...,n;H;) (II; = F-iIIi), 
(5.5) 

it is easily shown ( F k  = kF - (k - 1 ) l d )  that  
are spanned by the three matrices the matrices 

II, , 111 , 112 i.e.: 
I ,  

'2{ej]~=l usual orthogonal basis of R" ( 7 ~  = dimx) 
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From 5.6 we deduce that the rank of L k  is generally 
equal to 3 for a zero-bearing-rate scenario. The system 
is then not estimable. Excepting this case, the BOT 
system is generally estimable since the rank of L k  is 
equal to 4. 
-4 convenient "measure" of the information con- 

tained in the measurements may be det(L&,'L;). 
Direct calculations yield the following results 
(bearings-only) : 

(ai-)' det(L4Ci1L;) = 16[43 - 4 7 ~ o s 2 j ] ~ ( s i n $ ) ~  , 

[3] D. Avitzour and S. Rogers, Optimal measurement 
scheduling for prediction and estimation. IEEE Bans. 
on 'YSSP, vol. ASSP-38, n" 10: Oct. 1990. 

[41 Shakeri, K.R. Pattipati and D.I, I<leinman, op- 
timal measurement scheduling for estimation. IEEE 
naris. on AES, vol. AEs-31, 2, -4pril 1995, pp. 716- 
729. 

[5] J.-P. Le Cadre and 0. Tremois, The Matrix Dynam- 
ic Programming Property and Its Implications. SIAM 
J. MATRIX ANAL. APPL.,  Vol. 18, no. 4; Oct. 1997, p- 
p. 818-826. 

det(LkCklL;) = Q I [ c o s ~ ~ , * . . ,  cos(4(k - 4)$)] , 
161 S.C. Nardone and V.J. Aidala. Observabilitv Criteria 

x (sin$)4 . 
In order to optimize the controls (sequence of emis- 

sions), a reasonnble criterion may consists in maximiz- 
ing det(tkC,'L;) for whom an explicit form is given 
by (9.4). (9.7). Note, however, that this formula is valid 
only if 0 is approximatively constant and that the true 
problem is a difficult stochastic control problem. There 
are many possibilities for the cost criterion. One of 
them is the trace of the state prediction matrix. Other 
are based upon the determinant (e.g. Hellinger dis- 
tance). The trace functional has the great advantage 
to be linear, thus allowing us to use the methods of 
optimal control (see [4]). Determinant-based criteria 
are more demanding (see [15]). In fact, the following 
result due to Potter and Fraser l3 is particularly useful. 

Result 1 Let P+, the updated state prediction matrix, 
given b y  the following recursive Ricatti equation : 

P+ = P - PH ( R + H R ~ 1 - l  H* P , 

then the following determinant updating formula hold- 
s : 

det(P+)/detP = d e t R / [ d e t ( R +  H' P H ) ]  

6 Conclusions 
This paper provides an original approach to measure- 
ment scheduling. Using a general formalism explicit 
expressions of the information criteria have been ob- 
tained. In this framework, the related optimization 
problems are (relatively) simple. However, we stress 
that the target trajectory (even a Markovian one) 
modelling is particularly simple. Practical modelling 
should involve reactive sources, thus giving a strong 
"game" flavor to this problem. 
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