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Abstract - Many tracking systems involve basical-
ly active and passive subsystems. If it can be rea-
sonably assumed that passive measurements have no
”cost”, this is not true for active measurements. So,
a general problem i3 to scheduling active measure-
ments, so as to combine them optimally with the
passive ones. More generally, we are interested by
optimizing controls in the estimation procedure.
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1 Introduction

A recent trend in systems for detection/tracking is the
availability of multiple sensing modalities that differ
in such crucial measures as detection, estimation,
geographical coverage, cost/risk of operation.

In these systems, the determination of optimal
sensor design and measurement scheduling are im-
portant issues in estimating system status. The
problem of measurement scheduling has a long history.
Mehra [1] considered different norms of the Fisher
information Matrix as criteria for the optimization
of measurements scheduling. Van Keuk et al. -[2]
examined the problem of efficient allocation of radar
resources for maintaining existing tracks. Avitzour
and Rogers [3] considered the problem of optimizing
the time-distribution of measurement variances for
estimating a scalar random variable y, given that:
1) the total measurement budget is fixed, 2) the
cost of an individual measurement varies inversely
with the (controllable) measurement variance, and
3) the autocorrelation matrix of the quantity to be
be measured {z(i}) : i = 1,---,N}, as well as the
cross-correlation between {z(i) : i=1,---,N} and y
are known.

This work has been extended to discrete-time, vec-
tor stochastic-processes by Shakeri et al. [4]. Howev-
er, we stress that previous systems are mainly devoted
to linear systems. Opposite, our contribution will be
to analyze performance for optimal scheduling of the
multiple estimation modes for a non-linear system. In
particular, we shall focuse on non-linear effects in tar-
get motion analysis and global optimization. After a
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general presentation of the problem and its principal
difficulties (section 2), general tools are presented in
section 3 (essentially multilinear algebra). It is then
possible to consider general formulations of measure-
ment scheduling; first in the deterministic case (section
4), then for the stochastic case (section 5).

2 A basic formulation

We shall restrict, in a first time, to a target in rectilin-
ear and uniform motion. Then the equations of motion
takes the following form [6] :

¢
r(t) = r(0) + tv(0) — /o (t — a,(r)dr (2.1)

where :

the reference time is 0,

r and v are resp. the relative target range
and velocity vectors ,

a, describes own-ship accelerations .

For bearings-only (planar problem) target motion
anlysis (TMA for the sequel) these measurements con-
sist of line of sight angles which satisfy the following
relation :

B(t) = tan™" [r=(8)/ry(1)] -

For active measurements (e.g. radar, active sonar),
target range r(t) is also available and related to the
target state by :

r(t) = [r2(t) + ry(8)]

The available measurements are the estimated angles
B from the observer to the source and when available,
estimated ranges. The measurement noises wg x, Wy i
are usually modelled by i.i.d. zero-mean, gaussian
process. Associated variance o may depend upon the
relative source-receiver positions.

2.2)

72 (2.3)

Elementary calculations yield M, and Ny, the gra-
dient vectors of measurements S and r; w.r.t. the
state vector X (the symbol * denotes transposition
throughout this text) :

M = & (cos B, — sin Bk, k cos Bx, —k sin )" ,

Ny, = (sin By, cos B, k sin B¢, k cos Be)” .

(2.4)
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Assuming independence of bearing and range measure-
ments, calculating the Fisher Information Matrix (FIM)
is a routine exercise, yielding :

FIM = Z (U—.}—MkMz + j’_,i N N;:) . (2.5)
k 3.k rk

In 2.5, &, is equal to 1 when an active measurement
is available at time k, and to O else.

In this context, a "measure” of the system estima-
bility is a functional of the FiM. The determinant
is a convenient "measure” for the estimability of the
problem. The difficulty and the originality of the
problem stem from the two following facts. First,
the source motion is unknown which means that the
sequence of bearings is unpredictable. Second, we
deal with a global optimization problem which means
that we seek for an optimal sequence of controls !
maximizing a global cost function like the matrix
trace (i.e. tr(FIM) ).

Of course, the problem is drastically eased by
considering an additive (matrix) like the trace.
However, this functional is not relevant ? for infor-
mation measuring even if its calculation is quite direct.

However, note that the function det does not satis-
fy the MDP (Matrix Dynamic Programming Property)
defined below.

Definition 1 The function f (H, — R, differen-
tiable, C*) has the MDP if the following implication
holds, whatever C € H,% :

f(B)> f(4) = f(B+C)> f(4+C) .

An interpretation of this definition in terms of dynamic
programming is the following type of inequality * :

k

maxg; f (Z Gx; G;c.-) < maxy, [f{Gx, G%,
i=n

+F (Xo,Uiy1) .-

which must be valid for the strategy L-l,:, optimal up
to time k, and for k =n —1,---,0. Roughly, the MDP
appears as a matricial form of a ”comparison” princi-
ple. A fundamental question consists in determining
the functionals having it. An answer is provided with
the following result.

Proposition 1 Let f satisfying the MDP property
then :

f(A) = g (tr(AR))

where g is any monotonic increasing function and R is
a fized matriz.

'In this context, the instants of active measurements.

20n the contrary, tr(FIM~1) is meaningful. However, calcu-
lations are, at best, as complicated as with the determinant

3%, : vector space of Hermitian matrices.

4F denotes a FIM matrix, Uy: optimal sequence of controls
fromn to &k

We refer to [5] for the proof of Prop. 1. It is simply
based on the fact that if Vf(A) and V§(B) are not
colinear, then their respective orthogonal subspaces are
distinct which implies that there exists a matrix C for
which the MDP is not satisfied. Therefore, Vf(A) and
Vf(B) must be colinear, whatever A and B. This is
a very strong property. In turn, this yields the general
form of f. Consider for instance f(A) = logdet 4;
then, for a non-singular matrix A, we have :

Dfa(C) =tr (47C) = (V*f(4), C) ,

and we see immediately that f does not have the MDP
property. The same remark is valid for functionals as
simple as f(A) =tr (A71).

3 General results

A local approzimation of this determinant may be cal-
culated by considering an expansion of the vectors
M;4;. For instance, let us consider the following third
order expansion of Mgy.;.

. 2 B3
Moss 2 M, + M + M + %Mﬁ"" NCRY

Note that the above expansion must be considered
as an expansion of M;y;, relatively to the arbitrary
small sampling time 7, ( the time separating two con-
secutive measurements). For the sake of brevity, 7. is
omitted (7. = 1).

Using exterior algebra and the above expansion, the
following basic result is obtained :

Proposition 2 Consider a third order ezpansion of
the vectors Mgy, then the determinant of the 4 x 4

matriz M(t,t +3) EY (Mg, -+, Mgys) ¢
det (M(t,t +3)) 2 det(M,, M, M, M),

Proof : First, let us briefly recall the definition of
the exterior powers of a vector space ®. Let V' be an
n-dimensional vector space over IR, then A?V consists
of all formal sums 3°; o; (U; A V), where the "wedge.
product” U A V is bilinear and alternate. This defi-
nition is straightforwardly extended to higher exterior
powers [9]. For any basis {Vy,---,V,} of V, the set
of p-vectors {V;; A+ AV, ,0< 4 < <ip <n}
forms a basis of the n!/(n — p)!p!-dimensional vector
space APV. In particular, A‘IR is one-dimensional,
and throughout the paper we make intensive use of
the isomorphism A*IR* = A2IR* A A2IR*. The exterior
algebra formalism thus appears as an economical way
to conduct determinant calculations.

Denoting MAN the elements of the exterior product
AR}, we have :

det(M(t,t +3)) = (Me A Mieg1) A (Mpg2 A Mt+(3) -)
3.2

5For a complete presentation, we refer e.g. to [9](10]
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-

‘det(,'\/{(t, t+3))

It remains to calculate the two vectors My AM;y, and
Mgs2 A Miys of the exterior power [9] A*IR'. Invok-
ing the basic properties of exterior algebra, we obtain
straightforwardly [9][10] :

Other terms is only formed of exterior products
of either the vector M or M() with another vec-
tor (M ,i=0,1,2). Since GAG®) = L MAM®),
the contribution of the other terms in the calculation
of det(F1M) is null. Prop. 2 is thus proved. We stress

M, A M1 = M AMY + 2 M AM + $ M A M;that this property is essentially due to the fact that

Mypo A Mg = 3 MY AMP +3ME AMP
+ s MY AM®.
3.3)
Note that the terms involving M, in Mg A
M,43 are not considered since their contribution in
det(M(t,t + 3)) is null. Then from 3.3, we deduce
det(M(t,t+3)) :

3M AMMY AMP AMP) |
+g M AMP AMD AMP |

1 .
+= My AMP AMP AMEP

2

so that, finally :
det(M(t, ¢ +3)) 2 det(M,, M, M M3
OO0

Furthermore, considering a third order expansion of
the relative range ry, we shall prove that the calcula-
tion of det(FiMe¢44) is unchanged . The hypothesis
of (approximately) constant relative range can thus be
removed, more precisely :

Proposition 3 Consider a third order exzpansion of
the vectors My.; and of the relative range reyi, then :

g o 2
det(FIM-ﬁ,H) 2or)® [det, (Mt,ME”,M?’,Mﬁ“)] .

Proof : The FiM takes the following general form 6 :

FIM = (Gy, -+, Gey3) (G, oo s Geys)” where :
Gy

T Meti -
We can then invoke Prop. 1, thus obtaining :
12
det(riM) = [det, (Gt, .. ',GE”)] )

The calculation of the derivative vector Ggi) @i =
1,2,3)) is straightforward, yielding 7 :

G = %M(” ~-iM,
G® = 1M - 22M® 4 (5 — £2)Mm,
GO = 1M®) — 33M®) 4 3(%; ~ 9‘r_")M(1) ,

+@E -2 — )M, g=i/r.
(3.4)
Now, the following equalities are direct consequences

of exterior algebra properties:

GAGH = L MAM®D,
GO AGE) = & M@ AM® + other terms .
(3.5)

SIn fact,Giyi a_rl,_.,.;'M“H’ but the constant coefficient o
is omitted for the sake of brevity
‘For the sake of simplicity the time index ¢ is ommitted in

the following formula

the term % appears as a multiplicative factor.

000

The calculation of the approximation of
det( FIM;s4x) , where: k > 4 is also surprisingly
simple. Using exterior algebra and more precisely the
Binet-Cauchy formula &, we obtain :

det(FIMe i) = (01e) ™%,
Z [det(Mepiys -, Megi )V,

0<i1 <ip<iz<ig <k

X

with ¢
det(Meqiy, s Mitiy) = Py inais,ig) (det A2))
det A(t) 2 det (M, Myg1, M2, Mess)

(3.6)
so that :
det(FIMeeq) = (om)™° Z Pl ininia) | 0
0<i; <ia<ig<ia <k
X (det(4(®)°,
= cr(det(A(t)* . 3.7

In 3.7, P, is,is,is) 1S & polynomial in 4y,%s,23,%4 of
degree homogeneously equal to 12.

The problem we deal with is to obtain an explicit
formula of det(FIM; ¢4«) . For that purpose the follow-
ing result is instrumental.

Proposition 4 det A(t) is independent of the value of
B, furthermore we can consider that the reference time
8 zero .

Proof : Define® the matrix R; as follows :
10

m:(m ) (t1)®m

th Rt
where R; is the rotation matrix associated with the
angle —f;. Then, the following equality is straightfor-
wardly verified :

M, =Ree;, e =(1,0,0,0)"
hence :

M = RMey, -, MP = R{e, . (3.8)

Furthermore the following equalities are straightfor-
wardly deduced :

Re Ci® R,
8yve assume that o and r are constant for the duration of the

analysis i.e. {t,---,t+k}
9{®: Kronecker product }
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RY = g (c, @R +D@ I,
R = g (coo ) -8Ry,
+ (ﬂﬁ” + 1) (D ® Rﬁ”) .
R B (Ct ® Rgl)) - 28R+,
where :

00
10

Cc%(ig),Dé< ) 39)

The above expression may be somewhat simplified
by means of the following remark :

0 -1
1 0 /-

Using the multilinearity property of the determinan-
t, we deduce from 3.8, 3.9 that det A(¢) is a sum of
elementary expressions of the following type :

RY = R, J where J2 ( (3.10)

det [R;el, (Ct ® R[J) e, (D ® Rt-]) e, (Ct ® RtJ) 91] .

(3.11)
The following classical property of the tensor product

is then instrumental [10] :
(Hl F])W(Hg F_g)= (Hl @H_v) (Fl Q‘DF_g) y (312)

where H and F are endomorphisms of the state space.
Applying this general property yields 1 :

Rt = CiQRy, (3.13)
= (IdC)® (R Id),
= (IdQORt) (Ce@ld),
and similarly :
CioyJ = (IdC)® (R J) (3.14)

= (IdoRy) (Ce®J) ...

Thus, each of the terms 3.11 admits the following
factorization (det(d ® B) = (det 4)* (det B)?, A and
B 2 x 2 matrices) :

(3.11) = (det R,)*det[(C: & Idy) ey, (3.15)

(CewJ)er, (D@ Idy) ey, (Ci®J)er].

Since det I, is equal to 1 we deduce from 3.11 and
3.15 that det A(t) itself is independent of G;.

The last step is proved by invoking the same prop-
erty of tensor products. More precisely the following
factorizations are obtained :

CieJ=(C,olId) (Ide J),
D@ld=(C:D)®Id=(C;®Id) (D®Id).
(3.16)
From what, the following equality holds :

(16) = det(Ci®Id) x,

(3.17) We are

4 Applications

4.1 Active and passive measurement,
the deterministic case

4.1.1 Non-Maneuvering Target

In the absence of observer maneuver, the TMA problem
is not observable. But, if we consider multiple measure-
ment modes (e.g. passive and active measurements),
the TMA problem becomes observable [12]. Consider,
for instance, the case of two modes (passive and ac-
tive): the scalar observation y(¢) is replaced by a vecto-
rial one y(t) = (y1 (), y2(¢))” but the statistical nature
of the problem is unchanged. We shall assume that
passive measurements are available at each time, while
active ones are scarce. The problem is to optimally
scheduling these active measurements. Again, let us
denote M; and M, the M matrices associated with
passive and active measurements, we have :

c(k) det(MyM] + MaM3),

etk e [ (s, ) (4 )] 0

M3
The matrix M; and M, are not detailed but have the
standard form. Opposite to the previous case, a direct
calculation of det(FIM; ¢4+4) is not an easy task. How-
ever, the Binet-Cauchy formula allows us to perform
them. More precisely, denoting col(M;) the columns
(vectors) of M;, we have :

det(FIM; p4k) =

det(riv) = > [(My AM:) A(N; ANy |* (4.2)
k
+3 (M) ANy ANy ANG) P
.

+3 [(MyAM: AM3) ANY) |,
f

where : M; € col(M;), N; € col(Ms) .

The calculation of det(M;, My, N, Ny) is easily
achieved by means of exterior algebra. We assume that
N; corresponds to an active measurement occuring at
the instant 0 (associated target bearing (y); while N,
is also associated with an active measurement occuring
at time 7 (associated bearing 8y +4. Similarly, M; and
M, corresponds to passive measurements occuring at
time £ and ¢’ (associated bearings B; and ;). We thus
have :

o-N; = (sinfBy,c0s05,0,0)" ,
0. Ny = (sin(Bp + 6),co0s(Bo + ) ,
7sin(Bo + 8), 7 cos(Bo + 6))" ,
agr My (cos B¢, — sin By, t cos By, =t sin B;)"
o7 My = (cosfy,—sinfy,t cosBy,—t'sinBy)” .

now calculating the components (denoted

det[e;, Jd® J)e1, (D ® Idz) ey, Id ® J) &1]. @1, "+, @) of Ny ANy as well as those of My AM (de-

Since the above reasoning holds for any expression
of the type of 3.11, Prop. 3 is thus proved.
000

1074 : identity matrix

noted 1, -+, %) in the canonical basis of A?R*. More
precisely, if e;,---,e, denotes the canonical basis of
R*, then a basis of A?R* is :

{e1 Aez,e1 Aes,er Aeg,es Aeg,es Aeg,esANegt
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and associated components of M; A My and N; A Ny
are :

a1 = —sind; v = — cos B¢ sin By + sin B cos By

as = 75in By sin(By +6) ,

72 = (t' — t) cos By cos By

3 = 75in By cos(Bo + 6) ,

~3 = tcos By sin By — ¢’ sin By cos By ,

ey = 708 By cos(Bp +68), 74 = (' — t) sin B, sin By,

as = 7cos Fpsin(Bo + 8) ,

~s = tcos B sin By — t'sin fB; cos By

ag =0, v = tt' (cos By sin By — sin By cos By) .
(4.3)

We are now in position to examine the calculation of

(Ml) A (N1 ANz A N3), (Ml) A (N1 AN3 A N3) and

(M1 AMs A Mg) A N]).

Consider, for instance, that we have two active mea-
surements (at time periods 0 and 7), and T passive
measurements, then :

(7‘(7,-(75)2 (N] ANy AM; A Mg) ,

(4.4)
= a176 — Gav4 + Q3yvs — QYo +O5Ys .

Up to now this calculation is exact. Using a linear
approximation (ie. § =758, B = fo+tf and By =
Bo+t' 8 ), we deduce the following approximation of
det(FIM; 28,2r) ¢

Proposition 5 Let det(FiM,, 7,8,) the determinant of
the FIM associated with two active measurements (sep-
arated by 7) and T passive measurements :

2
det (FIM, T) >~ Tm’—m-., s

xS (;:_t')‘~’[1+[32(—tt'+1-(t+t’))]2
0<t<t' <T
(4.5)

In order to deal with the general case, it is thus suf-
ficient to consider the following measurement schedul-

ing :
e 1 active measurement, T passive measurements,
e 2 active measurements, 7" passive measurements,
o 3 active measurements, T passive measurements.

In the case of three active measurements, calculations
are almost similar to the previous case. except that
A?R* is replaced by A3R* (canonical basis : e; Aey A
e;, e ANey;Aey, egAegAeg,es AegAeg ). The
following result is then obtained :

Proposition 6 Consider that we have three active
measurements (at time periods 0, 7» and 73), and T
passive measurements, then :

T 12
det(FiMry,r) ~ =5 [‘rz 3(m2 ~ Ts)ﬂ] .

T
T70g0y 0<T2<13<T
(4.6)

Finally consider the case of a unique active measure-

ment, then whatever the active measurement instant
we obtain.

Proposition 7 Consider that we have & unique ac-
tive measurement and T passive measurements, then :

~ 1
det(FIM)T ~ E—am s

X Z [(ts —ty)(t2 — t1)(ts — tz)ﬁ’]z

0<t1 <t2<t3<T
4.7)

Assume now that a given number of active measure-
ments is available. These active measurements lies in
a set E, of fixed cardinality (Card(E) = N) and are
indexed by their periods. Then, thanks to the Binet-
Cauchy formula and the previous results we are now in
position to derive the general form of the determinant
of the FIM, yielding.

Proposition 8 Assume that active measurements are
in a set E (Card(E) = N) and that T passive measure-
ments are available and let FIMp the associated FIM,
then :

det (FiMp) = N.det(FIM)y + Y det (FIM,,T) (4.8)
Tel

+ Z det (FIMry r,.7)
1L, 2ELE

where det(FIM), det (FIM, 7) and det (FIM,, -, T) are
given by 4.7, 4.5 and 4.6.

Finally, let us consider the case where we have an e-
qual number (say T') of simultaneous active and passive
measurements. A direct calculation of det(FIM) is im-
possible, due to the very large number of elementary
terms. However, using Prop. 4, the following result can
be derived.

Proposition 9 Assume that we have T simultane-
ous active and passive measurements, then :

16 1 43 43
det(enur,r) o ' (redr + iy + iz ) -

(4.9)
As B = (T A V), the two terms in 8 cannot be
neglected. In the absence of observer maneuver and
active measurements, we know that det(FIMg) is strict-
ly zero. However, this calculation is not realistic and
Finally, practical considerations plead for including s-
mall variations of the source or observer trajectories in .
the motion model. Actually, this is the general case.
Then, an interesting modelling consists in considering
independent increments of 3, i.e. :

Bt+i = ﬂ.t +w;,w; w.gn 'N-(Ox 1'2) 3
Using exterior algebra, we easily obtain :

det(4;) = 4sin(6+ w)sin(3,

+wsg — ws) ~ sin(26 + w3 — wy) sin(2f3 + ws) .

We are now in position to calculate the mean value of
det(F1M) (denoted [E [det(FiMes44)]). More precisely,
the expectations of the det(A;) are calculated by means
of the characteristic functions of cos (w;), yielding :

E [det(F1Me,e43)] = l(:f& exp (—-:2272) (sin(fi))8 .
(4.10)
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This result may be extended to the general case,
the only change being the exponential term which

2\ 8
becomes exp(—mp72). We thus see that 5:— is
a convenient upper bound of det(rim). The effect
of small variations is also evident ( (exp (-3 %))
multiplicative term).

From the previous results, we thus have a con-
venient measure of the information gain induced by
active measurements, which is dramatic. This is easily
understood if we recall the respective expressions of
the vectors M; (passive measurements) and N; (active
measurements) . Indeed it is easily seen that for a
given period these two vectors are orthogonal. Now,
det(riM) is also the volume of the Grammian matrix
asociated with the gradient vectors or, equivalently,
with the volume of the parallelotope overbounding this
vector set. This volume is dramatically increased by
adding orthogonal vectors, which are spanned by the
gradient vectors associated with active measurements.

Optimal measurement scheduling, in this context,
need also some comments. In fact, the interest of
the above results (see Props. 5 — 9) is to provide
us explicit expressions of the performance criterion,
in terms of available parameters. Furthermore, it is
easily seen that the term det(FIM,7) is generally
predominant in the calculation of det(FIM) by means
of Prop. 8. Actually, this is due to the following fact:
the gradient spaces, induced by ( M1, Mbs) on the one
hand and ( N;,N>) on the other are (approximately)
orthogonal subspaces of the same dimension.

Assuming r, og, o constant the optimal measure-
ment scheduling reverts in considering the following
elementary optimization problem :

Find T mazimizing :

Y (-t {1+,§2(—tt’+r(t+t’))]

0<t<t'<T

2

Since 4 is generally available (from measurements),
it is possible to replace it by its estimate. However,
we see that except for very long-time scenarios the
term 8% (—tt' 4+ 7(t+¢')) is small w.r.t. 1. So, our
optimization problem can be further simplified, reduc-
ing to the optimiszation of 2 z (t-t')%. The

0<t<t'<T

general conclusion is that det (FIM, 7) (and therefore
det (F1M)) is maximum when 7 is maximum. The opti-
mal measurement scheduling consists then in concen-
trating all the active measurements at the two extremi-
ties (starting and end) of the total measurement batch.
Of course, this conclusion is valid only for a determin-
istic target model. Practically, simplifying hypotheses
have been made ( o3, oy, r constant). Previous cal-
culations may be straighforwardly extended to handle
the case of time-varying og, o, 7.

4.1.2 Maneuvering Target

Consider now a maneuvering source, whose tra-
jectory is made of two legs. Then the tar-
get state vector X becomes 6-dimensional ( X =
(%0, %05 V2,1, Vy,1,V2,2,Vy,2)"). Assuming that the tar-
get maneuver instant be known and denoting it ¢,
the gradient vectors take the following form :

re0p Vx Bt = (cos B, — sin B¢, t cos By, —t sin B;,0,0)",
fort <tn,
re oy Vx Bt = (cos B, —sin By,

ytm €08 B, ~tm sin By, (t = 1) cos By, —(t — t,) sin fFg)*,
fort >t .

(4.11)
Similar formulas hold for active measurements. Con-
sidering the maximization of the parallelotope over-
bounding the uncertainty ellipsoid, we can prove that
the predominant term of det(FIM) is associated with
the exterior products (M; AM2AM;3) A (N;AN3AN3)
( M; — passive measurements, N; — active mea-
surements). Let (¢1,f2) the instants corresponding
to (Mj,N1), (ts,t4) the instants corresponding to
(Mg,Ng), idem for (t5,t6); then :

det(FIM) & c Y [(t1 — t2)(ts — ta)(ts = te)]

tl,"‘:td
[225c08(280 — 2(t2 — 2ty + t28in28p) ,
—2t383 (t2 = ty + (£ + t2)(cos 28y +sin25) ,
+8 (01 = £2)°(t2 — 2tm) = ta(ts + £2)" (o826 — sin26o) ) ,
—(ts +ts — 5 ~ )" (~ta + 2tm + ta(cos 280 — sin260)) )2 .
(4.12)
At a first glance, this formula appears rather
formidable and even useless. However, it worth stress-
ing that the predominant term inside the brackets
[ ]is simply (25 c08(280 — 2(t2 — 2tm + t28in200)).
So again, we conclude that optimal measurement
scheduling consists in concentrating active measure-
ments on the leg extremities.

Considering a multileg target trajectory, with legs of
same length (say 7), the FIM takes the following form :
FIMy,, j = FIMyj + -+ + FIM(n—1)j,nj »

n mj
=Y Y [dmcinsr(R) Ay (0] @,
m=1(m-1)j+1

(4.13)
where :
d;,q(k)=(1'aj)"'1j1(k'—pj)yoi"'90) ’
Q= cos? B cos By, sin B, (4.14)
k= — COos ﬂk sin ﬂk COS2 ﬂk '

Thus, the previous analysis can be extended to the
general case.

The uncertainty about the maneuver instant 7 can
be modelled by a randomization (of 7).  This leads
to replace the classical expression of p(B|X) by the
following :

P(BIX,7) = 3_p [BIX,7(7)] p(ri(7)) -

WeB1-27

Authorized licensed use limited to: UR Rennes. Downloaded on July 16, 2009 at 07:07 from IEEE Xplore. Restrictions apply.



For this modelling, the distribution of {n} is cen-
tered around 7. The problem (MAP) then consists in
determining the parameters {X,7} which maximizes
p(B[X,7) and estimability analysis can be achieved
by means of previous results. Another approach is to
consider maneuver detection. For instance, for a two-
leg target trajectory, an approximate localization of
the source maneuvers can be obtained by sequential
detection based, for instance, on the following type of
test which may be viewed as an approximation ! of a
likelihood ratio around the parameter 8y € Q¢ :

An(Bo) = (1/n) e3 Us ' ea,
where :

ey éﬁz—Bz(j_(l), X

Us = 5y + Hy(X1) FT H3 (K1),
n = dim(ez) .

(4.15)

In 4.15, X1 represents the source state vector
estimated using the first batch of measurements (B;)
of the first source leg which assumes that no source
change-point occurs during this first set. The vector
B(X;) is the vector of extended (from X, )_bearings
on the second set of measurements while By is the
second set of measurements. The matrix Uy is the
covariance matrix of e, and Ha(X;) is a gradient
matrix. Let us denote Hy and H; the hypotheses
associated respectively with no source maneuver
and a maneuver. Under Hy, nA is (asymptotically)
distributed as a central chi-squared random variable
X2, while under H, it is distributed as a non-central
chi-squared x%(6) whith the non-centrality parameter
6 (6= (B2 — B2(X1))"U2"' (B2 — Ba(X1)) ).

The power of the test may then be easily derived and
classical calculations yield (7 :value of the threshold) :

Py, = exp(—n/2) g Tt 22l
Py =1~ exp(-2) T2, G+

i=0 il *

(4.16)
Of course, this analysis may be extended to the case
of active and passive measurements. Considering the
optimization of det(U,), we can use the previous cal-
culations to derive an approximation of det(U,) and
thus perform measurement scheduling.

=0 71

5 .Stochastic observability and
estimability:
We shall now consider a markovian sequence of state

vectors:

Xk+1 ZFXL +Uk +Wk
with : Wy iid. sequence (cov(W)=Q). (5.1)

According to the definition of Boguslavskij [13], we
shall say that the system is stochastically observable

U More precisely, denoting 6 the MLE over © and * the MLE
over @ we consider the following expansion of the likelihood :
16°) = U) + iz (8* — 6) — (6" — 6)* 1(6) (6~ ~ §), I(f) Fisher
matrix .

if, in estimating its states from its outputs, the pos-
terior error variances of all the state components are
strictly smaller than the priors.

Let X, be the linear least-mean-square estimate of
X, given the measurements {yx,---,¥} and define
the matrices Iy and P, ( Iy = cov(Xy), P =
cov(Xy — X)) then we shall consider the following
definition of observability:

Definition : The system is said to be observable 2

iff :

e;Pe; <ejllie; 1<i<n . (5.2)
It can easily shown that the general form of P, is:
P, =M - Ly L} . (5.3)

The rectangular (n x k) Li will be defined later.
Since the matrix X; (the covariance matrix of the
noise measurements) is positive definite, the matrix
II; — P is positive semi-definite. So, the inequality
e; Pre; < e;ll;e; always holds, whatever i. The values
of i ensuring a strict inequality are the observable
state components. In fact, the above definition is
rather arbitrary and do not take into account the
possible coupling between the estimates of the state
components. A convenient definition may then be the
estimability condition of Baram and Kailath [14].

Definition :The system is said to be estimable iff :
II; — P is positive definite.

Denote §(L;) the number of rows of the matrix Ly
with non-zero elements, then a direct consequence of
5.2 is that the system is stochastically observable iff
6(Ly) is equal to n. Another direct consequence of
5.2 is that the system is estimable iff the rank of Ly
is n. Direct calculations [13],[14] yield the following
expression of Ly :

Ly = {®koNo, ®ra N1, B Ni}
where:
@y =F*9 (j <k), Nj=ILH],
and II; satisfies the following Lyapunov state equation:
O, =FIF*+Q (5.4)

As pointed in [13] stochastic observability is thus
less demanding than deterministic observability which
requires a maneuver of the observer.

We shall now consider estimability for BOT. In view
of the following factorization of the matrix L [43,44):

Li = F*IoHy, T HY -+, I HY) (I; = F~IL),
(5.5)
it is easily shown (F* = kF — (k — 1)Id) that
the matrices H’i are spanned by the three matrices
o, I, I, ie.:

I =410, - 611, + 411, ,
I, = 1310, — 2011, + 1011, , --- .

12{e;}7_, usual orthogonal basis of R" (n = dimX)

(5.6)
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From 5.6 we deduce that the rank of L, is generally
equal to 3 for a zero-bearing-rate scenario. The system
is then not estimable. Excepting this case, the BoT
system is generally estimable since the rank of Ly is
equal to 4.

A convenient "measure” of the information con-
tained in the measurements may be det(LyZ;1L}).
Direct calculations yield the following results
(bearings-only) :

(o) det(LyS71LY) 16[43 — 47 cos 28) (sin §)"*

or)®det(LiSLY)
ke

il

x (sin ,3)4 .

In order to optimize the controls (sequence of emis-
sions), a reasonable criterion may consists in maximiz-
ing det(LkZ};lLZ) for whom an explicit form is given
by (9.4) (9.7). Note, however, that this formula is valid
only if 3 is approximatively constant and that the true
problem is a difficult stochastic control problem. There
are many possibilities for the cost criterion. One of
them is the trace of the state prediction matrix. Other
are based upon the determinant (e.g. Hellinger dis-
tance). The trace functional has the great advantage

to be linear, thus allowing us to use the methods of (o] R W R. Darling, Differential Forms and Connections.
optimal control (see [4]). Determinant-based criteria Cambridge University Press, Cambridge UK, 1994.
are more demanding (see [15]). In fact, the following ]
result due to Potter and Fraser 13 is particularly useful. (10} T. Yokonuma, Tensor Spaces and Exterior Algebra.
Transl. of Math. Monographs, vol. 108, Amer. Math.
Result 1 Let Py, the updated state prediction matriz, Soc., Providence, R.I., 1992.
given by the following recursive lticatti equation : [11] J.P. Le Cadre, Properties of estimability criteria for
_p_ =1 p7» target motion analysis. IEE Proc.-Radar, Sonar Nav-
Py=P-PH(L+HRH) " H"P, ig., n° 2, April 1098, pp. 92-99.
then the following determinant updating formula hold- [12] O. Tremois and J.P. Le Cadre, Target Motion Analy-
§: sis with Multiple Arrays: Performance Analysis. IEEE
Trans. on AES, vol. AES-32, n° 3, July 1996, pp. 1030—
det(Py)/detP = detR/[det(R+ H* PH)] . 1045.
[13] L.A. Boguslavskij, Filtering and Control, Optimization
6 Conclusions Software, Publication Division, N.Y. USA, 1988.
This paper provides an original approach to measure- [14] Y. Ba{am and T. Kailath, Estimability and reg}xlabxll-
. . X L ty of linear systems. IEEE Trans. on Automatic Con-
ment scheduling. Using a general formalism explicit trol, vol. 33, n° 12, December 1988, pp. 1116-1121
expressions of the information criteria have been ob- T ' ’ T
tained. In this framework, the related optimization {15] D. J. Kershaw and R. J. Evans, Optimal Wavefor-
problems are (relatively) simple. However, we stress m Selection for Tracking Systems. IEEE Trans. on
that the target trajectory (even a Markovian one) Information Theory, vol. 40, n® 5, September 1994,
modelling is particularly simple. Practical modelling pp. 1536-1550.
ih"“ld,,“f‘if"’lve realf.tf"e e thus giving a strong 16 ;& pogter and D.C. Fraser, A Formula for Updat-
game” Havor to this problem. ing the Determinant of the Covariance Matrix. A1aA
journal, vol. 5, no. 7, May 1967, pp. 1352-1354.
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