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Search theory is the discipline that studies the problem of

how best to search for an object when the amount of searching

efforts is limited and only probabilities of the possible position

of the object are given. Then, the problem is to find the optimal

distribution of this total effort that maximizes the probability of

detection. Although the general formalism of search theory will be

used subsequently, we consider now a radically different problem.

The problem is to detect target tracks. In the “classical” search

theory, the target is said detected if a detection occurs during

any time of the time frame. Here, on the contrary, the target

track will be said to be detected if elementary detections occur

at various times. That means that there is a test for acceptance (or

detection) of a target track and that the problem is to optimize

the allocation of the search effort for track detection. So, specific

optimization problems are solved by means of the primal-dual

formalism, in an original setup. Other aspects concern Markovian

targets and two-sided search for which simple and efficient

algorithms are derived.
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I. INTRODUCTION

Search theory is the discipline that treats the
problem of how best to search for an object when
the amount of searching efforts is limited and only
probabilities of the possible position of the object
are given. Search theory came into being during
World War II with the work of B. O. Koopman and
his colleagues [1] in the Antisubmarine Warfare
Operations Research Group (ASWORG). Since
that time, search theory has grown to be a major
discipline within the field of operations research.
Important literature has been devoted to this subject;
the interested reader may consult various extensive
surveys [2], introductive texts [3—5] and specialized
books [6—10].
A search theory problem is characterized by

three pieces of data: 1) the probabilities of the
searched object (the “target”) being in various
possible locations; 2) the local detection probability
that a particular amount of local search effort could
detect the target; 3) the total amount of searching
effort available. The problem is to find the optimal
distribution of this total effort that maximizes the
probability of detection.
Major steps in the development of search theory

have been summarized by Stone [4], describing
stationary target problems, moving target problems,
optimal searcher path algorithms, and dynamic search
games.
The rapid growth of the search theory literature

is chronicled in [2]. For instance, the last item
(search games) is the primary focus of recent
researches, including numerous subdomains such
as mobile evaders, avoiding target, ambush games,
inspection games, and tactical games. For moving
target problems, decisive progress have been made
in developing search strategies that maximize the
probability of detecting the (moving) target within a
fixed amount of time. In particular, Brown [11] and
Washburn [12] have proposed an iterative algorithm in
which the motion space and the time frame have been
discretized, and the search effort available in each
period is infinitely divisible between the grid cells of
the target motion space. In this approach, the search
effort available in each period is bounded above by a
constant that does not depend on the allocations made
during any other periods.
However, although the general formalism of search

theory will be used subsequently, we study a radically
different problem. The problem is to detect target
tracks. In “classical” search theory, the target is said
to be detected if a detection occurs any time during
the measurement epoch. Here, the target track will
be said detected if (multiple) elementary detections
occur at various times, and this is the fundamental
difference. Thus there is a test for acceptance (or
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detection) of a target track [13, 14]. Track detection is
also associated with a spatio-temporal modeling of the
target track. Moreover, we do not consider (in general)
search effort bounds at each period. The bound is
relative to the global search effort (i.e., for the entire
measurement epoch), since our objective is to detect
target tracks.
This has multiple consequences. A quite common

hypothesis in classical search theory is that the
objective function, which is generally the nondetection
probability, is a convex functional relatively to the
search efforts. This is a quite reasonable assumption
in this context, which ensures convergence of
iterative algorithms. However, it is not at all valid
in our context which leads us to consider alternative
optimization approaches. In particular, the dual
formalism will play a crucial role. Actually, the dual
function being concave whatever the primal problem,
a key point is precisely to derive efficient methods
for calculating this function. From the maximum of
the dual function, solutions of the primal problem are
easily recovered.
The paper is organized as follows. In Section II,

the optimization framework is presented, followed
by the general formulation of the search problem
(Section III). In Section IV, we deal with the 2-period
search problem, for the AND detection rule. Then,
the optimization problems are posed and solved (see
Appendix A), and are extended to the n-period search
(also for the AND rule) in Section V. Another detection
rule is considered in Section VI, the MAJORITY
detection rule. The related optimization problems
are rather intricate, but we show that they can be
solved by means of the dual formalism. Section VII
is of a different nature since we consider here the
general problem of search for Markovian tracks. The
previous problems are extended to two-sided search
in Section VIII. Finally, the theoretical results of the
previous sections are illustrated by simulation results
in Section IX.
The following notations are used throughout this

work.

xi,µ is the search effort associated with the cell
(i,µ),

i temporal index, µ: track index,
Xi,µ = exp(¡wixi,µ),
xi,µ value of xi,µ at the optimum, idem for Xi,µ,

yi,µ and ¸,
KKT conditions means Karush—Kuhn—Tucker
optimality conditions.

II. OPTIMIZATION FRAMEWORK

Assuming that the search associated with the
cell indexed by i is denoted xi, the elementary
search problem consists in determining the xi which
minimizes the nondetection probability [1] (denoted

Pnd): 8>>>>>>>><>>>>>>>>:

Find the fxigi2C minimizing:
Pnd =

X
i2C
®i exp(¡wixi)

subject to:X
i2C
xi =©, xi ¸ 0 8 i:

(1)

This optimization problem1 is easily solved by
means of duality (see Appendix A), even if the
the elementary probability of nondetection (i.e.,
exp(¡wixi)) is replaced by another one. Numerous
variations and extensions, of increasing complexity, of
this generic problem exist in the literature, including
extensions to multiperiod search for a Markovian
moving target [11, 12]. However, a different problem
is considered here.
More precisely, the major part of this paper is

centered around the following (primal) optimization
problem:

P

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

min¡P with: P =
X
µ2£

F(x1,µ,x2,µ, : : : ,xn,µ)

where:

F(x1,µ,x2,µ, : : : ,xn,µ)
¢
=f(p(x1,µ),p(x2,µ), : : : ,p(xn,µ))

under the resource constraints:X
µ2£

x1,µ + x2,µ ¢ ¢ ¢+ xn,µ =©;

x1,µ ¸ 0, x2,µ ¸ 0, : : : ,xn,µ ¸ 0 8 µ 2£:
(2)

In (2), xk,µ represents a search effort, affected to the
cell indexed by the parameter µ, at the search period
k. The index k takes its values in the subset f1, : : : ,ng.
The parameter µ takes its values in a multidimensional
space or set (denoted £), characterizing the target
trajectory (e.g., initial position and velocity) and
the n-dimensional vector Xµ

¢
=(x1,µ,x2,µ, : : : ,xn,µ)

¤

represents the effort vector associated with the target
trajectory (or track) indexed by µ. Furthermore, p(xk,µ)
is the elementary probability of detection in the cell
(k,µ), for a search effort xk,µ; while f is a given
differentiable function. The following simple remarks
are then fundamental.

1) The functional F(x1,µ, : : : ,xn,µ) is a
differentiable2 functional of the variables xk,µ.
2) The constraints are qualified [16] since they are

linear.
3) The “hard constraint” is the equality constraint

(i.e.,
P
µ x1,µ + x2,µ ¢ ¢ ¢+ xn,µ =©), the inequality

1It seems that this type of problem has been considered for the first
time by J. W. Gibbs.
2Note that, in our context, F(x1,µ , : : : ,xn,µ) is not generally assumed
separable.
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constraints (x1,µ ¸ 0, : : : ,x1,µ ¸ 0) being implicitly taken
into account (see Appendix A).

A fundamental assumption made in all the search
theory literature is that the detection functionals
F(x1,µ,x2,µ, : : : ,xn,µ) are concave. In turn, the objective
functional P is also concave. This assumption is
essential for proving the necessity of the classical
optimality conditions for the search plan. The role
of the concavity hypothesis for a general multiperiod
search plan is recognized in its full generality for
instance in [15]. Unfortunately, this assumption is not
at all valid in our context,3 compelling us to develop a
fundamentally different formalism.
In this work, the following dual function Ã(¸) is

examined:8>>><>>>:
Ã(¸) = infx1,µ ,:::,xn,µL(¸)
where:

L(¸) =¡P+¸
ÃX

µ

x1,µ + x2,µ ¢ ¢ ¢+ xn,µ ¡©
!
:

(3)

We stress that, in our framework, the function Ã(¸)
may be explicitly determined on the subset defined by
the inequality constraints. The dual problem (D) then
takes the following form:

D : max
¸
Ã(¸): (4)

The benefits of this approach are 1) the maximization
of Ã(¸) is an (unconstrained) monodimensional4

problem, 2) the function Ã(¸) is differentiable,
3) from the solution ¸ of the dual problem, the
solution X of the primal problem P is deduced
(say X,¸)). The pair (¸,X) is a saddle point of the
primal-dual problem.
Throughout this work, we make constant use of

the following (classical) result [16].

PROPOSITION 1 Let ¸ be a solution to the dual
problem. Then:
a) If the primal problem has a saddle point, there

exists X solution to P such that (X,¸) is a saddle point.
b) If the primal problem P has a saddle point and if

L(X,¸) has a unique minimum in X (say X), then (X,¸)
is a saddle point and X solves P.
c) If Ã is differentiable at ¸, and if X is the unique

minimum (in X) of L(X,¸), then P has a saddle point
(X,¸).

The last property is especially important since we
prove that Ã(¸) is everywhere differentiable on its
definition domain and that the minimum of L(X,¸) is
attained for a unique vector X. Practically, this means
that no duality gap does exist when the condition c of
Proposition 1 is satisfied.

3Consider for example the following detection function: f(x1,x2) =
(1¡ e¡wx1 )(1¡ e¡wx2 ).
4In the case of a unique “hard” resource constraint.

III. MODELING AND FORMULATION OF THE
PROBLEM

In most of this article, except for Section 7,
we make the assumption that the target motion is
rectilinear and uniform. So, in this case, the target
trajectory is completely defined by its initial position
vector (i) and velocity vector (v) : µ ´ (i,v). Also, we
restrict ourselves to discrete problems, both in time
and in space. Assumptions of our search problem are
as follows.

1) A target moves in a search space consisting of
a finite number of search cells Ct = fcµ,tgµ in discrete
time T= f1,2, : : : ,ng. We further assume that the
sequence of (searched) cells fcµ,tgt is completely
defined by the parameter (µ) [17, 18] (conditionally
deterministic motion). Thus, the mapping cµ,1!
cµ,2 ¢ ¢ ¢ ! cµ,n is a bijection. In the simpler case of
rectilinear target motion, this mapping is simply a
translation of vector v.
2) The search effort applied to cell cµ,t is denoted

xt,µ (xt,µ ¸ 0).
3) The conditional probability of detecting the

target given that the target is in the cell cµ,t and that
the search effort applied to this cell is xt,µ is p(xt,µ).
This probability is a classical exponential law, i.e.,
p(xt,µ) = 1¡ exp(¡wt,µxt,µ). The term wt,µ stands for
the particular conditions of detection (visibility) for
the cell cµ,t.

The exponential assumption is very general and is
obtained by the following elementary reasoning [1].
Consider now that the search effort is represented
by time (t) and let us denote q(t) (q(t) = 1¡p(t))
the probability of nondetection. Denoting w as the
“instantaneous” probability of detection, the increment
in probability of detection associated with the time
increment dt will be wdt, so that:

q(t+ dt) = q(t)(1¡wdt)
or:
d

dt
q(t) =¡wq(t) and: p(t) = 1¡ e¡wt:

(5)

A more general presentation of the exponential
density (for the probability of detection) can be found
in [5]. For instance, elementary calculations yield
(with the notations of [5]):

P(det) = 1¡ e¡wL=A (6)

where A denotes the area of the region containing the
target, L the length of the search segment and w the
visibility parameter (here the sweep width). The term
wL=A then represents the elementary area coverage.

IV. THE 2-PERIOD SEARCH FOR THE AND TRACK
DETECTION RULE

First, we deal with the two period search problem
(i.e., n= 2). Actually, this optimization problem is
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quite representative of the general case (n periods).
We say that the target track has been detected if the
target has been detected at each (temporal) period of
the search. Therefore, we must solve the following
search problem:

P

8>>>>><>>>>>:

min¡P where: P =
X
µ

g1(µ)p(x1,µ)p(x2,µ)

under the constraints:X
µ

(x1,µ + x2,µ) =©, x1,µ ¸ 0, x2,µ ¸ 0, 8 µ:
(7)

In the above equation x1,µ (x2,µ) denotes the search
effort applied to the cell cµ,1 (cµ,2). Then, we form the
Lagrangian of the primal problem (7), i.e.,

L(¸) =¡
X
µ

g1(µ)(1¡ e¡wx1,µ )(1¡ e¡wx2,µ ) (8)

+¸

ÃX
µ

x1,µ +
X
µ

x2,µ ¡©
!
¡
X
µ

¹1,µx1,µ

¡
X
µ

¹2,µx2,µ; ¹1,µ ¸ 0, ¹2,µ ¸ 0: (9)

In order to apply the Karush—Kuhn—Tucker (KKT)
conditions [16] of optimality, we must consider two
cases.

A. KKT Optimality Conditions and Their
Consequences

Case 1 (x1,µ > 0).
In this case, the KKT condition f¹1,µx1,µ = 0g

implies f¹1,µ = 0g. Then, the KKT stationarity
condition (for the Lagrangian) simply results in

@

@x1,µ
L(¸) =¡wg1(µ)e¡wx1,µ (1¡ e¡wx2,µ )+¸= 0:

(10)

From (10), we note that the assumption x1,µ > 0
implies x2,µ > 0, otherwise the multiplier ¸ should
be zero. Indeed, if ¸= 0 then it is easily seen (see
(8)) that the value of the dual function Ã(¸) =
inf(x1,µ ,x2,µ)L(¸) is ¡1. Since, we have to maximize
Ã(¸), we see that ¸ is necessarily strictly positive (see
(10) for the sign). Thus, (10) implies the validity of
the following equation:

@

@x2,µ
L(¸) =¡wg1(µ)e¡wx2,µ (1¡ e¡wx1,µ )+¸= 0:

(11)

By collecting (10) and (11), and denoting X1,µ =
e¡wx1,µ , X2µ = e

¡wx2,µ , we obtain

X1,µ(1¡X2,µ) = X2,µ(1¡X1,µ)
so that:

X1,µ = X2,µ, i.e., x1,µ = x2,µ:

(12)

The above equality is fundamental for solving the
problem.
Case 2 (x1,µ = 0). Assume now that x2,µ > 0, then

the KKT condition (relative to x2,µ) should imply (see
(11), with x1,µ = 0):

@

@x2,µ
L(¸) = ¸= 0: (13)

In this case, the value of Ã(¸) is ¡1. Hence, we
must restrict to the strictly positive values of ¸, which
means that the assumption x1,µ = 0 implies x2,µ = 0.

B. Solving the Dual Problem

We conclude that x1,µ = x2,µ, meaning that we
need to solve the following (simplified) optimization
problem:

P

8>>>>><>>>>>:

min¡P where: P =
X
µ

g1(µ)(p(x1,µ))
2

under the constraints:X
µ

x1,µ =©=2, x1,µ ¸ 0 8 (µ):
(14)

Again, we examine the necessary conditions
induced by the KKT Theorem. Consider the reduced
Lagrangian functional L(¸) given by

L(¸) =¡
X
µ

g1(µ)(1¡ e¡wx1,µ )2 +¸
Ã
2
X
µ

x1,µ ¡©
!
:

(15)

This form of the Lagrangian corresponds to the
relaxation of the positivity constraints relative to the
search variables fx1,µg, which are implicitly taken into
account by restricting our search to positive values
of the variables x1,µ. We refer to Appendix A for a
complete justification of the positivity constraints
relaxation [19]. Since this optimization problem is
separated into the variables fx1,µg, it is easily solved.
Under the assumption that x1,µ is strictly positive and
differentiating L(¸) relatively to x1,µ, we then obtain
@L(¸)
@x1,µ

=¡2wg1(µ)e¡wx1,µ (1¡ e¡wx1,µ )+2¸= 0

or, equivalently:

X1,µ(1¡X1,µ) =
¸

wg1(µ)
:

(16)

Equation (16) is a second-order equation (in X1,µ),
allowing us to determine x1,µ, for a given value of ¸.
Note that we restrict to the roots (0 or 2) of (16) lying
inside the interval [0,1], and select the root (denoted
X1,µ(¸)) which minimizes the reduced Lagrangian
functional L(¸).5

5Note that we must test and compare the value of L(¸) not only for
the roots of (16), but also for its lower bound (i.e., X1,µ = 1, x1,µ
= 0).
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We have now to deal with the maximization of the
dual functional defined by

Ã(¸) =¡
X
(µ)+

g1(µ)(1¡X1,µ(¸))2

+¸

0@2X
(µ)+

x1,µ(¸)¡©
1A

x1,µ(¸) =¡
1
w
ln(X1,µ(¸)) if: x1,µ(¸)> 0

(17)

where the symbol (µ)+ denotes the values of
the index for which (16) has a root inside [0,1].
The maximization of Ã(¸) is rather easy since it
corresponds to an unidimensional search for a concave
and differentiable function. The general framework
[20] is detailed in Appendix A, while the unicity of
the search vector X is proved in the Appendix B. In
turn, Ã(¸) is differentiable.

Notation 1. The (spatio-temporal) index (µ, t) for
which the research efforts are strictly positive are
denoted (µ, t)+ (t: index of the search period); (µ)+ for
the first search period.

C. Additional Constraints on Search Efforts

Practically speaking, it may be worth including
constraints relative to the search effort, available at
a given period. The (primal) problem then takes the
following form:

P

8>>>>>>>>>><>>>>>>>>>>:

min¡P where: P =
X
µ

g1(µ)p(x1,µ)p(x2,µ)

under the constraints:X
µ

x1,µ · c1
X
µ

x1,µ +
X
µ

x2,µ =©, x1,µ ¸ 0, x2,µ ¸ 0 8 (µ)

(18)

for which the reduced Lagrangian (see (15)) is

L(¸,¹) =¡
X
µ

g1(µ)(1¡ e¡wx1,µ )(1¡ e¡wx2,µ )

+¸

ÃX
µ

(x1,µ + x2,µ)¡©
!
+¹

ÃX
µ

x1,µ ¡ c1

!
:

Assuming that x1,µ is strictly positive, KKT conditions
imply the nullity of ¹(

P
µ x1,µ ¡ c1) (¹¸ 0). If the

inequality constraint is inactive, then ¹ is null, so that
the KKT conditions imply that

@

@x1,µ
L(¸,¹) =¡g1(µ)X1,µ(1¡X2,µ) +¸= 0: (19)

Since we restrict to (strictly) positive values of ¸, x2,µ
cannot be zero. We then have the same condition

imposed on X2,µ (i.e., @=@x2,µL(¸,¹) =¡g1(µ)X2,µ
¢ (1¡X1,µ)+¸= 0), and consequently X1,µ = X2,µ.
Now, if the inequality constraint is active, ¹ is

strictly positive, and x1,µ and x2,µ must satisfy the
following system of equations:8>><>>:

@

@x1,µ
L(¸,¹) =¡g1(µ)X1,µ(1¡X2,µ)+¸+¹= 0

@

@x2,µ
L(¸,¹) =¡g1(µ)X2,µ(1¡X1,µ)+¸= 0

(20)

and we must determine the search efforts x1,µ and
x2,µ, solutions of (20). It is then necessary to consider
a two-dimensional dual functional Ã(¸,¹). The
complexity of the problem is considerably greater but
the general framework is quite similar.

V. THE n-PERIOD SEARCH FOR THE AND TRACK
DETECTION RULE

Quite similar to the 2-period search, we assume
that the probability of detection of the track is the
product of elementary detection probabilities of
detection at each period and is given by:68<:P =

X
µ

g1(µ)p(x1,µ)p(x2,µ) ¢ ¢ ¢p(xn,µ)

p(xk,µ) = (1¡ °ke¡wk,µxk,µ ) k = 1, : : : ,n

(21)

and the optimization problem is again

P

8>>>>><>>>>>:

min¡P
under the constraints:X
µ

[x1,µ + ¢ ¢ ¢+ xn,µ] =©,

x1,µ ¸ 0, : : : ,xn,µ ¸ 0, 8 (µ):

(22)

Assume x1,µ 6= 0, then by reasoning identical to the
2-period case, we deduce that x2,µ 6= 0, : : : ,xn,µ 6= 0.
The optimality equations deduced from the KKT
conditions then yield the following (nonlinear) system
of n equations:8>>>>>>>>><>>>>>>>>>:

°1X1,µ(1¡ °2X2,µ) ¢ ¢ ¢ (1¡ °nXn,µ) =
¸

w1,µg1(µ)
= ®1 (1)

°2X2,µ(1¡ °1X1,µ) ¢ ¢ ¢ (1¡ °nXn,µ) =
¸

w2,µg1(µ)
= ®2 (2)

...

°nXn,µ(1¡ °1X1,µ) ¢ ¢ ¢ (1¡ °n¡1Xn¡1,µ) =
¸

wn,µg1(µ)
= ®n (n):

(23)

Consider now the above system, dividing row (1) by
row (p) and denoting Y1,µ

¢
=°1X1,µ, : : : ,Yp,µ

¢
=°pXp,µ, we

6The scalar wk,µ stands for the possibly changing visibility
conditions from one period to another one.
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obtain

(1¡Y1,µ)
®1Y1,µ

=
(1¡Yp,µ)
®pYp,µ

(24)

or: Yp,µ =
Y1,µ

Y1,µ(1¡¯p) +¯p
, where: ¯p =

w1,µ
wp,µ

:

Consequently, xp,µ is deduced from x1,µ, itself given
by

x1,µ =
1
w1,µ

·
ln
µ
°1
Y1,µ

¶¸+
:

The problem is thus reduced to the determination
of x1,µ. From (24) we see that X1,µ is a root of the
following nth-order polynomial equation:

Y1,µ(1¡Y1,µ)(n¡1)¡
¸

w1,µg1(µ)

nY
p=2

[Y1,µ(¯
¡1
p ¡ 1)+1] = 0:

(25)

The value of X1,µ(¸) is the root of (25) which
minimizes the Lagrangian, deduced from (21); where
x2,µ, : : : ,xn,µ are determined (from x1,µ) by (24). Since
P is separated with respect to fx1,µgµ, the computation
load is relatively modest. From x1,µ, the dual function
Ã(¸) is deduced, i.e.,

Ã(¸) =¡
X
(µ)+

Y
k+

(1¡ °kXk,µ)+¸
0@X
(µ,k)+

xk,µ ¡©
1A :
(26)

The problem is simply to determine the value of ¸
which maximizes the concave function Ã(¸).
So far, the problem has been considered

in its full generality. To illustrate the previous
calculations, assume now that the visibility coefficients
fw1,µ, : : : ,wn,µg are identical:

p(xk,µ) = (1¡ e¡wxk,µ ) k = 1, : : : ,n:

Then the optimality equations (23) and (24) reduce to

Y1,µ = ¢ ¢ ¢= Yn,µ (27)

so that X1,µ = ¢ ¢ ¢= Xn,µ and the probability of track
detection as well as the dual function Ã(¸) become8>>>>>>>>>><>>>>>>>>>>:

P =
X
µ

g1(µ)[(1¡ e¡wxk,µ )]n

Ã(¸) =¡
X
(µ)+

g1(µ)[(1¡X1,µ(¸))]n

+¸

0@nX
(µ)+

x1,µ(¸)¡©
1A :

(28)

Again, we have to deal now with a simple
monodimensional optimization problem, involving the
concave functional Ã(¸).

Let us denote ©(¸) the optimal value of the (total)
search effort for a given ¸; then the following result
holds.

PROPOSITION 2 ©(¸) is a decreasing function of ¸.

PROOF Denoting the track parameter as
µ, the Lagrangian L(¸) of the constrained
problem is L(¸,µ) =¡P+¸(Pn

i=1 xi,µ ¡©) (P =P
µ g1(µ)p(x1,µ) ¢ ¢ ¢p(xn,µ)); which implies

@L(¸)
@xi,µ

=¡ @P

@xi,µ
+¸

and consequently

¸2 > ¸1)
@L(¸2)
@xi,µ

¸ @L(¸2)
@xi,µ

(29)

hence xi,µ(¸1)¸ xi,µ(¸2) (8i,µ); and in turn, ©(¸2)·
©(¸1).

VI. MAJORITY RULE FOR TRACK DETECTION

Up to now, our analysis has been restricted to an
AND rule for track detection. However, for numerous
applications, a MAJORITY rule is also quite realistic.
This means that a track is said detected if a sufficient
number of elementary detections occur along the
track. We now face specific problems. First, it is
difficult to give a general formulation (for the general
n-period search) of the detection rule. Second, the
optimization problems become far more complicated.

A. The 3-Period Case and MAJORITY Track Detection
Rule

The detection function is modified in order to take
into account a majority rule (MAJORITY) for decision.
More precisely, the track is said to be detected if the
(moving) target is detected at least at 2 periods. With
this rule, the probability of detection becomes

P =
X
µ

g1(µ)[¯0,2,3P0,2,3 +¯1,2,0P1,2,0

+¯1,0,3P1,0,3 +¯1,2,3P1,2,3] (30)

and the optimization problem is

P

8>>>>><>>>>>:

min¡P
under the constraints:X
µ

(x1,µ + x2,µ + x3,µ) =©,

x1,µ ¸ 0, : : : ,x3,µ ¸ 0, 8 (µ):

(31)

In (30), the notation P0,2,3 corresponds to the following
hypothesis: no detection at period 1, detection at
periods 2 and 3, idem for P1,2,0 and P1,0,3. The notation
P1,2,3 corresponds to a detection at each period.
Finally, the weights ¯0,2,3, : : : ,¯1,2,3 are related to the
information gain associated with an elementary event.
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This gain may be expressed in terms of quality of
the estimated track, probability of correct association,
etc. This is described in more details in Appendix C.
Thus, the elementary detection terms P0,2,3, : : : ,P1,2,3
have the following form:8>>><>>>:

P0,2,3 = e
¡wx1,µ (1¡ e¡wx2,µ )(1¡ e¡wx3,µ )

P1,2,0 = e
¡wx3,µ (1¡ e¡wx1,µ )(1¡ e¡wx2,µ )

P1,0,3 = e
¡wx2,µ (1¡ e¡wx1,µ )(1¡ e¡wx3,µ )

P1,2,3 = (1¡ e¡wx1,µ )(1¡ e¡wx2,µ )(1¡ e¡wx3,µ ):

(32)

Defining the reduced Lagrangian as:

L(¸) =¡P+¸
ÃX

µ

(x1,µ + x2,µ + x3,µ)¡©
!

we adopt the following notations for the sake of
simplicity:78><>:

¯0,2,3 ´ ±1, ¯1,2,0 ´ ±3,
¯1,0,3 ´ ±2, ¯1,2,3 ´ ±¤, g1 ´ wg1(µ)
X1,µ = e

¡wx1,µ ´ y1, : : : ,X3,µ = e¡wx3,µ ´ y3:
(33)

Assuming that y1,y2,y3 differ altogether from 1,
the KKT conditions then become8>>>>>>>>>>>>><>>>>>>>>>>>>>:

¡±1y1(1¡ y2)(1¡ y3) + ±2y1y2(1¡ y3) + ±3y1y3(1¡ y2)

+±¤y1(1¡ y2)(1¡ y3) =
¸

g1
(1)

±1y1y2(1¡ y3)¡ ±2(1¡ y1)y2(1¡ y3)+ ±3y2y3(1¡ y1)

+±¤(1¡ y1)y2(1¡ y3) =
¸

g1
(2)

±1y1(1¡ y2)y3 + ±2y1y2(1¡ y3)¡ ±3(1¡ y1)(1¡ y2)y3
+±¤(1¡ y1)(1¡ y2)y3 =

¸

g1
: (3)

(34)

Subtracting row 3 from row 2 in (34), we obtain

y3 =
·
y1(±

¤ ¡ ±1¡ ±2)+ ±2¡ ±¤
y1(±¤ ¡ ±1¡ ±3)+ ±3¡ ±¤

¸
y2: (35)

Then, inserting y3 = f(y1)y2 (see (35)) in (32), the
following 2nd-order equation is deduced:

(a¡ by1)y22 + (c¡ dy21)y2 + (ey21 +fy1) = 0
where8>>>>>><>>>>>>:

a= ¯2(¯3¡®2), d = (®1¡¯2)(®1¡¯3)
b = (®1¡¯2)(®2¡¯3), e= ¯1(®1¡¯3)
c=¡¯2¯3, f = ¯1¯3
and:

¯1 = ±
¤ ¡ ±1; ¯2 = ±

¤ ¡ ±2; ¯3 = ±
¤ ¡ ±3:

(36)

In this case (xk,µ 6= 0; k = 1,2,3), the distribution of
the search efforts is completely determined by the
optimality equations (34). For instance, from (35)

7The index of missed detection is the index of ±.

and (36) we obtain y3 = f(y1)y2 and y2 = f
0(y1). The

optimal value of y1 is that value solving the nonlinear
equation in y1 deduced from (34) by replacing y2 and
y3 by their expressions in terms of y1 (see (35) and
(36)); y

1
is its root that minimizes the Lagrangian.

Also from (34), we see that if the search effort is
zero at two periods (i.e., yk = yk0 = 1 for k 6= k0), then
it is zero for all the periods (i.e., y1 = y2 = y3 = 1). So,
we must consider the cases where the search effort
is zero for a unique period. In this case, only two
optimality equations (see (34)) are valid. Consider for
instance (other cases are completely similar), the case
x2,µ = 0, then (34) reduces to

±2y1(1¡ y3) =
¸

g1
: (37)

EXAMPLE
Let us now consider the following simplification:

±1 = ±2 = ±3 = ±
¤. Various cases must be considered.

First, assume that x1,µ is non-zero, then (34) implies
that x2,µ and x3,µ cannot be both equal to zero. Assume
now x3,µ 6= 0, then from (34), we deduce easily

(1¡ y2)(y3¡ y1)+ (y1¡ y3) =¡y2(y1¡ y3) = 0
so that (y2 6= 0) :
y1 = y3:

(38)

Then, we deal with two subcases.
Case 1 (y1 = y3 6= 1, y2 = 1). From (34), the

equation determining X1,µ,X3,µ is

X1,µ(1¡X1,µ) =
¸

wg1,µ
: (39)

The probability of detection is then P =
P

1,µ g1,µ
¢ (1¡X1,µ)2 (X1,µ being given by (39)).
Case 2 (y1 = y3 6= 1; y2 6= 1). Then from (34),

we deduce that y1 = y2 = y3. The probability of
detection becomes

P =
X
µ

g1,µ(1¡X1,µ)2(1+2X1,µ)

so that X1,µ is

(1¡X1,µ)X21,µ =
¸

2wg1,µ
: (40)

More generally, we see that further the “general”
case (i.e., y1 = y2 = y3), we must consider various
subcases associated with the nullity of the search
effort during one period (i.e., y1 or y2 or y3 is zero).
The general form of the particular possibilities is½

yi = 1, i= 1,2 or 3

yj = yk for j 6= i and k 6= i: (41)

The calculations are identical to the Case 1 ones,
yielding the same solution (see (40)).
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The next step is to calculate Ã(¸). To do so, the
values of fy1,y2,y3g are given either by (39) or (40)
and Ã(¸) is given by (X = (x1,µ,x2,µ,x3,µ)):

Ã(¸) =¡P(X) +¸
ÃX

µ

x1,µ + x2,µ + x3,µ ¡©
!
:

The values of the components of the vector X
are given either by (39) or (40) and correspond
either to the solutions that minimize the reduced
Lagrangian L or are zero altogether. Since Ã is
concave, maximization of Ã with respect to ¸ is
easy.

B. The n-Period Search and MAJORITY Track
Detection Rule

We assume that elementary detections are
independent and consider that a track is detected if
k elementary detections occur. The track detection Ptd
then takes the following form [21, 22]:

Ptd =
nX
i=k

8<:
0@ i¡kX
p=0

(¡1)pC(i,p)
1A0@X

Ci,n

24Y
j

Pdj

351A9=;
where: (42)

C(i,p) =
i!

p! (i¡p)! :

In (42), the term
P
Ci,n
[
Q
j Pdj] is the sum of all

the possible products of i elementary detections
that can be formed from the whole elementary
detections.
We now restrict ourselves to the following track

detection rule. The track is said to be detected
if at least (n¡ 1) elementary detections occur in
an n-period search. Thus, the probabilities of the
following events are considered8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

P1 ´ P0,2,:::,n = y1
nY
i=2

(1¡ yi)

P2 ´ P1,0,2,:::,n = y2
nY

i=1,6=2
(1¡ yi)

...

Pn ´ P1,2,:::,n¡1,0 = yn
n¡1Y
i=1

(1¡ yi)

P¤ ´ P1,2,:::,n =
nY
i=1

(1¡ yi):

(43)

For the sake of simplicity, we assume that the
the detection coefficients (¯0,2,:::,n,¯1,0,2,:::,n, : : : ,¯1,2,:::,n),

see (33)) are equal.8 Let us first assume that the
search efforts are non-zero for all the periods (i.e.,
x1 6= 0, : : : ,xn 6= 0), then the KKT conditions result in
(®= ¸=wg1,µ):8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

y1y2

nY
i 6=1,2

(1¡ yi)+ y1y3
nY

i 6=1,3
(1¡ yi)

+ ¢ ¢ ¢+ y1yn
nY

i 6=1,n
(1¡ yi) = ®, (1)

y2y1

nY
i 6=2,1

(1¡ yi)+ y2y3
nY

i 6=2,3
(1¡ yi)

+ ¢ ¢ ¢+ y2yn
nY

i 6=2,n
(1¡ yi) = ®, (2)

and more generally:

yjy1

nY
i 6=j,1

(1¡ yi)+ y2yj
nY

i 6=2,j
(1¡ yi)

+ ¢ ¢ ¢+ yjyj¡1
Y

i 6=j¡1,j
(1¡ yi)

+yjyj+1
Y

i 6=j,j+1
(1¡ yi)

+ ¢ ¢ ¢+ yjyn
nY

i 6=j,n
(1¡ yi) = ®, (j)

(44)

Subtracting (for example) row 3 from row 2, we
obtain

(y2¡ y3)
nY

i 6=2,3

·
y1

(1¡ y1)
+

y4
(1¡ y4)

+ ¢ ¢ ¢+ yn
(1¡ yn)

¸
= 0:

(45)

Since the term between brackets is well defined and
non-zero, we deduce from (45) that y2 = y3, and more
generally subtracting row (i+1) from row i in (44),
we have y1 = y2 = ¢ ¢ ¢= yn. Also from (44), we deduce
that the search efforts (for a given track parameter
fµg) are either zero for all the periods or zero for at
most one period. The rest of the derivation is identical
to the 3-period case.

VII. SEARCH FOR MARKOVIAN TRACKS

We next consider how to search for a Markovian
target. The classical optimization framework we used
previously is here useless due to the complexity of
elementary events. Instead, we use Brown’s approach
[11], where a sequence of search plans is generated
incrementally. For the sake of simplicity, our approach
is restricted to the AND detection rule.

8As seen previously (see Section VIA), this assumption does not
reduce the generality of our approach.
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The target is moving among a finite number of
cells. Let the set of cells be C at each time period.
The target occupies one cell during each of the time
periods so its path is decribed by ! = (!1,!2, : : : ,!n) 2
Cn. The searcher starts with a function g : Cn! [0,1],
where g(!) is the probability that the target takes the
path !. During the ith period, the searcher has Li units
of search efforts which he may divide between the
cells of the ith period in arbitrary proportions. Note
that, this time, the search effort Li is fixed

9 at each
time period. Thus, the search effort distribution at time
i may be described by a vector Xi 2 Rm, m

¢
=Card(C),

with components x(c, i), giving the search effort placed
in cell c at time i. The search plan denoted X is the
vector obtained by collecting the vectors Xi. Again,
we assume that the probability that this plan will
find the target at time i is 1¡ exp[¡w(c, i)x(c, i)]. We
assume that the searches at distinct time periods are
statistically independent, so that the probability that
the target be detected (for the AND detection detection
rule) is

P =
X
!2−

g(!)
nY
i=1

[1¡ exp(¡w(!i, i)x(!i, i))]:

(46)

Thus, we must solve the following problem:

P

8>>><>>>:
min¡P where P is given by (46)

subject to:

x(ci, i)¸ 0 and:
X
ci2Ci

x(ci, i)· Li:
(47)

Necessary conditions may be derived from the results
of Stone [23]. However, a direct solution to the
optimality conditions seems quite unfeasible. It is
therefore worth considering the following factorization
of P(X) (X: search plan):

P(X) =
X
(c,i)

Ã X
!2−; !i=(c,i)

g(!)
Y
j 6=i
[1¡ exp(¡w(!j ,j)x(!j ,j))]

!
| {z }

P(c,i,X)

£ [1¡ exp(¡w(c, i)x(c, i))]

=
X
c,i

P(c, i,X)[1¡ exp(¡w(c, i)x(c, i))]: (48)

The problem is thus immersed in a stationary
framework, in which P(c, i,X) represents the
probability that the search has been successful
at all periods different from i, for all the target
paths passing by the cell (c, i) at the period i. This
corresponds to the reallocation problem [11]. So, the
main problem then consists in effectively calculating
P(c, i,X). To that end, we consider the following

9This assumption is necessary in order to use the basic recursion of
the Brown’s algorithm.

factorization of P(c, i,X) [11]:

P(c, i,X) = reach(c, i,X)surv(c, i,X)

reach(c, i,X) =
X

!2−; !i=(c,i)
r(!1)t(!1,!2) ¢ ¢ ¢ t(!i¡1,c)

£
i¡1Y
j=1

[1¡ exp(¡w(!j ,j)x(!j ,j))]
(49)

surv(c, i,X) =
X

!2−; !i=(c,i)
t(c,!i+1) ¢ ¢ ¢ t(!n¡1,!n)s(!n)

£
nY

j=i+1

[1¡ exp(¡w(!j ,j)x(!j ,j))]:

In (49) t(!1,!2) denotes the probability of transition
from !1 to !2. Previously, − was small enough to
practically enumerate its elements (conditionallly
deterministic motion). However, this is not feasible
since we must consider all the (Markovian) paths ! =
(!1,!2, : : : ,!n). The terms reach(c, i,X) and surv(c, i,X)
are themselves determined by the following recursion
[11]:

R

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

reach(c,1,X) = r(c)

reach(c,j+1,X) =
X
d2C

reach(c,j,X)

[1¡ exp(¡w(d,j)X(d,j))]t(d,c)
surv(c,n,X) = s(c)

surv(c,j¡ 1,X) =
X
d2C

t(c,d)

[1¡ exp(¡w(d,j)X(d,j))]surv(c,j,X):

(50)

Note that reach(c,j,X) has a natural interpretation as
the probability that the target reaches cell c at time
period i, being detected by search X throughout period
1 to j¡1 and surv(c,j,X) as the probability that a
target in cell c at the period j will be detected by
search X throughout periods j+1 to n.
Let us denote x¤(¢, i) the solution to the (stationary)

reallocation problem given by (48). Then the
algorithm is given as follows.

1) Make an initial guess for the search plan (e.g.,
zero) and choose a small positive number ",
2) performs steps 3 and 4 (the main loop) for

i= f1, : : : ,ng,
3) replace x¤k(¢, i) with x¤k+1(¢, i), the solution to the

reallocation problem for time i (use (49) and (50)),
4) increment i,
5) if jPn(Xk+1¡Pn(Xkj · ", stop,
6) increment k and go to step 3. (51)

In the first pass through steps 3 and 4, since each
solution to the reallocation problem provides the
search plan that gives the greatest increase in the
probability of detection at that time interval, it is the
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myopic plan. This algorithm performs an iterative
maximization sequence and may be viewed as a
steepest ascent.

VIII. TWO-SIDED SEARCH

Up to now, our efforts have been exclusively
devoted to the one-sided search, which means
that decisions are only made by the searcher. For
the two-sided search, game theory is the natural
framework. Here, the following game is considered.
The strategy for player 1 (target) is a distribution
of g1(µ), while for player 2 (searcher) it is the
distribution of efforts (i.e., the vectors Xµ; µ 2£).10
Let us denote G1 the vector representing the
distribution of g1(µ); µ 2£, we are now considering
the following problem:

Determine the vectors G¤1, X
¤ such that:

P(G¤1,X)· P(G¤1,X¤)· P(G1,X¤) 8 (X,G1):
(52)

The detection function P(G1,X) is given by (2). Note
that the vector X¤ is a collection of (elementary)
vectors X¤µ, µ 2£. Equivalently, X¤ and G¤1 are the
solutions to the min-max problem minG1maxXP.
Restricting attention to the AND detection test, we
must solve the following optimization problem:

P

8>>>>>>>>>>><>>>>>>>>>>>:

minG1maxX

(
¡
X
µ

g1(µ)
nY
i=1

°i(1¡ e¡wi,µxi,µ )
)

under the constraints:X
i

X
µ

xi,µ =© fxi,µ ¸ 0, 8 (k,µ)g

X
µ2£

g1(µ) = 1:

(53)

If, furthermore, the following assumption is made (°i
a constant, wi,µ = wµ), the problem may be explicitely
solved.

PROPOSITION 3 The elements of G¤1 and X
¤ are

determined by the following equation:

8 µ 2£ : x1,µ = ¢ ¢ ¢= xn,µ, and:

x1,µ =
©

n

ÃX
µ2£

w¡1µ

!¡1
and

g1(µ) =

ÃX
µ2£

w¡1µ

!¡1
w¡1µ :

(54)

PROOF We must solve two distinct optimization
problems in order to obtain G¤1 and X

¤ such that (52)

10For the notations, we refer to Section II.

is satisfied. Let us consider first the right inequality:

I

8>>><>>>:
minµ2£

(X
µ

g1(µ)

"
nY
i=1

(1¡ e¡wµx¤i,µ )
#)

X
µ

g1(µ) = 1; g1(µ)¸ 0:
(55)

Its corresponding Lagrangian then takes the following
form:

L(¸) =
X
µ

g1(µ)

"
nY
i=1

(1¡ e¡wµx¤i,µ )
#

+¸

ÃX
µ

g1(µ)¡ 1
!
+
X
µ

¹µg1(µ): (56)

The reasoning now follows the following steps.
a) Let us consider any value of µ such that

g¤1(µ) be strictly positive, then the corresponding
Lagrange multiplier ¹µ is equal to zero so that:Qn
i=1(1¡ e¡wµx

¤
i,µ ) =¡¸.

b) Assume now that g¤1(µ) is zero, then X
¤
µ = 0;

therefore, X¤µ > 0) g¤1(µ)> 0.
c) Suppose that there exists a value of µ such

that g¤1(µ) is zero. Let us denote µ0 a value for which
g¤1(µ0)> 0. Such a value necessarily exists. Now,
from KKT conditions (applied to (56)), we have
(¹µ ¸ 0):

nY
i=1

(1¡ e¡wµx¤i,µ ) =¡¸+¹µ

¸
nY
i=1

(1¡ e¡wµ0 x¤i,µ0 ) (57)

so that X¤µ > 0. Now, this contradicts our assumption
(see b). Therefore, g¤1(µ) is strictly positive on the
whole set £. We are now in position to examine the
left optimization problem, i.e.,

II

8><>:
minX¡P(G¤1,X)X
i,µ

xi,µ =©; xi,µ ¸ 0, 8 i, 8 µ 2£

(58)
with associated Lagrangian (ºi,µ ¸ 0):

L(¸) =¡
X
µ

g1(µ)

"
nY
i=1

(1¡ e¡wµxi,µ )
#

+¸

ÃX
i

X
µ

xi,µ ¡©
!
+
X
i

X
µ

ºi,µxi,µ:

(59)

First, we prove that x¤k,µ is strictly positive whatever k
and µ. From the above reasoning we know that X¤µ > 0
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(8µ 2£), hence there exists an index k0 such that x¤k0,µ
is strictly positive. Then from the KKT conditions, the
following equality is deducedQn

i=1,6=k(1¡ e¡wµx
¤
i,µ )Qn

i=1,6=k0 (1¡ e¡wµx
¤
i,µ )
=
(1¡ e¡wµx¤k0,µ )
(1¡ e¡wµx¤k,µ )

=
¸+ ºk,µ
¸

: (60)

From (60), we thus have

1¡ e¡wµx¤k,µ =
µ

¸

¸+ ºk,µ

¶
(1¡ e¡wµx¤k0,µ ): (61)

Now the multiplier ¸ is positive (KKT) ¸=
wµg1(µ)

Qn
i=1,6=k0 (1¡ e¡wµx

¤
i,µ )), and so is ºk,µ, so that

0· (¸=¸+ ºk,µ)· 1 and, in turn, x¤k,µ ¸ x¤k,µ0 > 0. Then,
we have

x¤1,µ = x
¤
2,µ = ¢ ¢ ¢= x¤n,µ = x¤µ, and

g¤1(µ) = cst, 8 µ 2£
(62)

which ends the proof.

If the above assumptions are valid, the two-sided
search problem has an explicit and simple solution
[24]. Furthermore, notice that the optimal searcher
and target strategies are proportional. Quite intuitively,
this strategy is such that the product wµg1(µ)
remains constant. In the general case (i.e., p(xk,µ) =
°k(1¡ e¡wk,µxk,µ )), a direct resolution to the primal
problem (53) is unfeasible; however the problem may
be easily solved by the dual approach. Equations (23)
and (24) are still valid. Another feasible approach is to
consider an enumeration of target tracks (see [26]).

IX. SIMULATION RESULTS

First, we examine the AND track detection rule.
The following track density is considered for this
example. In the first period, the initial localization
density is given by the product of two densities.
The first one is relative to the angle (¯) and is a
truncated normal density; its mean represents the
mean direction of the track and its variance determines
the localization uncertainty. The second density is
related to the distance (r) uncertainty, so that the
initial target density takes the following form:

p(r,¯) =Ntr(¯;¯0,¾¯)Ntr(r;r0,¾r): (63)

The track density is described by the function
g1(µ). When the density of the initial target
localization is given by (63), the track velocity
distribution is a triangular density in angle (centered
around 45 deg), while the norm of the velocity
vector kvk is constant. It is then possible to compute
the target density localization at the successive
periods. Target densities for time periods 1, 5, and

10 are plotted on the first row of Fig. 3. Notice the
“diffusion” of the target localization. Asymptotic
forms of the target spatio-temporal distribution can be
found in [25]. For instance, in the case of distribution
in heading, precise speed; the asymptotic behavior of
p(r,µ, t) is given by

p(r,µ, t)/ p2(µ)
¾(2¼v0rt)1=2

exp
µ
¡ 1
2¾2

(r¡ v0t)2
¶
:

(64)

This describes a probability density “wave” which
moves radially at speed v0.
The search efforts are next computed by using

the results obtained in Sections IV and V. For
this example, it is assumed that all the visibility
coefficients are equal (i.e., wk,µ ´ w; 8fk,µg). The
dual functional Ã(¸) (see Section V) is then computed
and maximized relatively to ¸ (yielding ¸). From ¸,
the values of the search efforts xk,µ are deduced from
the optimality equations. The optimization procedure
is illustrated by Fig. 1. On the top, the values of
Ã(¸) are plotted, versus ¸, notice the concavity of
Ã(¸). The middle corresponds to the values of the
search effort ©(¸) (versus ¸). Notice that ©(¸) is a
decreasing function of ¸, and that the maximum value
of Ã(¸) (say Ã(¸)) corresponds to the value of the
total search effort (i.e., ©(¸) = 1000). This result is
important since it proves that there is no duality gap.
Finally, the probability of detection P is plotted on the
bottom. Again, it is a monotonic (decreasing) function
of ¸. Algorithm results are illustrated by Fig. 3. The
second row represents the distribution of the search
efforts (in the (x,y) plane) for the time periods 1,
5, and 10, for a total search effort ©= 7000. The
third row (respectively fourth) corresponds to a total
search effort ©= 20000 (respectively ©= 80000).
Note that the search efforts are determined in the
track parameter space. Indeed, the values of xk,µ (k:
index of the time period, µ

¢
=(µ)) are defined in the

track parameter space, but are represented in the (x,y)
search-space. Hence, the search-space is divided into
64 elementary cells, and the value of xk,µ induces a
distribution of the elementary search efforts, directly
deduced from the values of k and µ.
From these results, we note that the search

efforts are concentrated on the maxima of the target
localization density when the search effort is small
(©= 7000). When it grows, this distribution is spread
(©= 20000) and becomes closely related to the
target localization when © is large (e.g., ©= 80000).
This behavior seems quite natural. Furthermore, we
note that the total amount of search effort is equally
distributed between the various periods. This is due to
our assumption about the visibility coefficients w(k,µ).
In the general case, this conclusion is no longer
valid and the search efforts may be quite unequally
distributed on the successive periods. Of course, the

LE CADRE & SOURIS: SEARCHING TRACKS 1159

Authorized licensed use limited to: UR Rennes. Downloaded on July 17, 2009 at 06:59 from IEEE Xplore.  Restrictions apply.



Fig. 1. Top: values of dual function Ã(¸), versus ¸. Middle: values of total search effort ©(¸). Bottom: probability of detection,
versus ¸.

Fig. 2. Top: values of dual function Ã(¸), versus ¸. Middle: values of total search effort ©(¸), versus ¸. Bottom: probability of
detection, versus ¸.

values of the probability of track detection are tightly
related to the values of the total search effort ©. This
is illustrated by Table I, always for a 10-period search.
Roughly, P is an exponential function of ©.
We now consider the MAJORITY detection rule.

We restrict here to a 3-period search, with a total
search effort ©= 1000. Again, we assume that the
track density is characterized by the function g1(µ).
The density of the initial target localization is always
described by (63) while the distribution of the target
velocity vector is defined by a triangular density
in angle (centered around 45 deg) and a discrete

distribution of kvk. The following density p(vx,vy) was
considered (see Table II).
It is then possible to compute the density of

target localization at the successive periods. Results
for time periods 1, 2, and 3 are plotted on the first
row of Fig. 4. They correspond to a spatio-temporal
diffusion.The dual function Ã(¸) is computed by
means of Section VI results. Equations (39) and (40)
are used to compute the optimal values of X1,µ. The
result is presented in Fig. 2. On the top, the values
of Ã(¸) are plotted, versus ¸. Again the concavity
property (of Ã(¸)) is verified and the maximum value
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Fig. 3. Distribution of search efforts for AND detection rule and 10-period search. First column: 1st period search. Second column: 5th
period search. Third column: 10th period search. First row: density of target localization. Second row: ©= 7000. Third row: ©= 20000.

Fourth row: ©= 80000.

TABLE I
Values of Probability of Detection P (Versus ©), AND Detection

Rule, 10 Time Periods

© P © P

500 0.0139 20 000 0.4325
2000 0.054 40 000 0.6695
7000 0.1858 60 000 0.8438
10 000 0.2497 80 000 0.9548

of Ã(¸) (say Ã(¸)) corresponds to a value of the total
search effort ©(¸) = 1000 (no duality gap). Finally,
the probability of detection P is plotted on the
bottom.
The distribution of the search efforts during

successive periods is presented in Fig. 4. The total
search effort © is equal to 1000. The distribution of
the search efforts for the MAJORITY detection rule
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Fig. 4. Distribution of search effort for 3-period search. First column: 1st period search. Second column: 2nd period search. Third
column: 3rd period search. First row: density of target localization. Second row: ©= 1000, MAJORITY detection rule. Third row:

©= 1000, AND detection rule.

TABLE II
Values of Probability of Target Velocity Vector

vx 6 6 6 6 4 2 0
vy 0 2 4 6 6 6 6

p(vx,vy) 1 1 2 3 2 1 1

and 3 consecutive search periods are presented on
the second row, while the results obtained for the
AND detection rule are plotted on the third row. We
can notice the distinctive features characterizing the
two detection rules. The distribution of the search
efforts for the MAJORITY detection rule is much more
widely spreaded than for the AND rule. This result is
quite typical of this detection rule. The dependence
of the probability of detection P (for MAJORITY and
AND), versus the total search effort © is illustrated
in Table III. We note that the values of P are always
greater for the MAJORITY detection rule. This is not

TABLE III
Values of Probability of Detection P (Versus ©), for 3-Period

Search and for MAJORITY and AND Detection Rule

P P P P

© MAJORITY AND © MAJORITY AND

500 0.1507 0.07 6000 0.8403 0.5522
1000 0.2619 0.1381 10000 0.9692 0.7374
2000 0.4517 0.2475 15000 0.9968 0.9042
4000 0.6729 0.4281 30000 1 0.9961

surprising since the detection test, for the MAJORITY
rule, is less demanding.
Finally, let us consider the optimization of the

search effort for a Markovian track (see Section VII).
This time, the total amount of search effort is fixed
for each time period (denoted Li). The density of the
initial localization of the target is again described
by (63), while the distribution of the target velocity
vector is identical to the previous one; but, this
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Fig. 5. Distribution of search effort for 10-period search and Markovian target. First column: 1st period search. Second column: 5th
period search. Third column: 10th period search. First row: density of target localization. Second row: ©= 200, AND detection rule.

Third row: ©= 500, AND detection rule.

time, for each time period and with a Markovian
hypothesis (i.e., p(vi j vi¡1, : : : ,v1) = p(vi j vi¡1)). The
target localization density at successive time periods is
illustrated by the first row of Fig. 5. The search efforts
are then calculated by using the iterative algorithm
derived from Brown. The algorithm is initialized by
a myopic search and then converges quickly (see
[11]). Typically, 4 or 5 iterations of the algorithm
described by (48)—(51) are sufficient. The distribution
of the search is concentrated on the higher values
of the target localization density, for all the time
periods. This seems quite natural for an AND
detection rule.

X. CONCLUSION

The problem under consideration was the
optimization of the search effort for detecting tracks.
The problem formulation is closely related to the
definition of the track detection criterion. Various

definitions have been considered (AND and MAJORITY),
focusing on the associated optimization problem.
In order to develop tractable methods, we restricted
the problem to discrete time and space optimization.
Under simple constraints relative to the distribution
of the search effort, the dual formalism appears as a
feasible and versatile approach, allowing us to derive
efficient and relatively simple algorithms.
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APPENDIX A

This Appendix deals with the solution to the
elementary search problem [27] (1 time period), by
means of duality. Let f be the following separable

LE CADRE & SOURIS: SEARCHING TRACKS 1163

Authorized licensed use limited to: UR Rennes. Downloaded on July 17, 2009 at 06:59 from IEEE Xplore.  Restrictions apply.



function:

X= (x1, : : : ,xn)
¤ 2 Rn! f(X) =

nX
i=1

fi(xi):

The detection functions fi are assumed differentiable.
We then consider the following optimization problem:

P
8<:
minf(X)

Constraints: xi ¸ 0 (i= 1, : : : ,n) and
nX
i=1

xi = 1:

(65)
Constraints are necessary qualified since they
are affine. First, consider the primal problem P.
Let us denote X a solution to P. Then the KKT
Theorem implies that there exists Lagrange multipliers
f¹

1
, : : : ,¹

n
g 2 (R+)n (inequality constraints) and ¸ 2 R

such that ½
f 0i (xi)¡¹i+¸= 0
¹
i
xi = 0, 8 i= 1, : : : ,n:

(66)

If the index i corresponds to a strictly positive value
of xi (xi > 0), then ¹i = 0 so that f

0
i (xi)+¸= 0. If the

index i corresponds to a zero search effort (xi = 0),
then f 0i (xi)+¸= ¹i ¸ 0. Note that if the functions
fi are convex, the KKT conditions are necessary and
sufficient.
Assume now that the (detection) functions fi are as

follows:

fi(xi) = °i(e
¡wixi ¡ 1), i= 1, : : : ,n

and consider the following Lagrangian functional:

L(X,¸) =
nX
i=1

fi(xi) +¸

Ã
nX
i=1

xi¡ 1
!

as well as the associated dual function:

Ã(¸) = inf
X2(R+)n

L(X,¸) (¸ 2 R): (67)

In the definition of the dual function Ã, only the
equality constraint is “dualized”, since the n inequality
constraints are included in the definition domain
of Ã. We note that Ã(¸) =¡1 when ¸ is negative,
we can thus restrict to positive values of ¸. In this
case, the functional L(X,¸) is smooth and convex on
(R+)n; hence there exists a unique X(¸) minimizing
L(X,¸). Let us denote C the (closed) convex subset of
inequalities constraints relative to the positivity of the
search efforts (xi ¸ 0 for i= 1, : : : ,n)). Then this point
is defined by the following condition:11

¡rXL(X,¸) 2NCX(¸),
where:

NCX(¸)
¢
=fS j hS,C¡X(¸)i · 0 8 C 2 Cg:

(68)

11The symbol h , i here denotes the scalar product.

In (68), NCX(¸) is the normal cone [20] to C in X(¸).
The above condition is a characterization of the
optimum on a (closed) convex subset. In our case,
these general conditions simply result in:12½¡°iwie¡wixi(¸) +¸= 0 8 i s.t. xi(¸)> 0

°iwi¡¸¸ 0 8 i s.t. xi(¸) = 0:

(69)

From (69), we deduce that (xi(¸)> 0) is equivalent to
(¸ < °iwi), therefore:

xi(¸)> 0) xi(¸) =
1
wi
ln
³°iwi
¸

´
and more generally:

xi(¸) =
1
wi

h
ln
³°iwi
¸

´i+
:

(70)

Consequently, the dual function Ã(¸) (see (67)) is

Ã(¸) =¡
nX
i=1

°i

µ
1¡ ¸

°iwi

¶+

+¸

Ã
nX
i=1

1
wi

h
ln
³°iwi
¸

´i+
¡ 1
!
: (71)

As a general result of duality theory [16, 20], we
know that the function Ã(¸) is concave with respect
to ¸. This result is valid whatever the primal problem.
The dual problem then simply consists in maximizing
Ã(¸) (relatively to ¸). Thanks to the concavity
property satisfied by the dual function, this maximum
is attained for a unique value of ¸ (denoted ¸). The
solution to the primal problem is then8<:xi =

1
wi
ln
µ
°iwi
¸

¶
if °iwi > ¸

xi = 0 if °iwi · ¸:
(72)

Without any loss of generality, we can assume the
following ordering °1w1 · °2w2 · ¢¢ ¢ · °nwn and
consider ¸ 2 [°kwk,°k+1wk+1]. Then from (71) we
obtain

Ã(¸) =
nX

i=k+1

µ
¸

wi
¡ °i

¶
+¸

Ã
nX

i=k+1

1
wi
ln
³°iwi
¸

´
¡ 1
!
:

(73)

Thus, the function Ã(¸) is differentiable on the open
interval ]°kwk,°k+1wk+1[, with derivative Ã

0(¸) =Pn
i=k+1(1=wi) ln(°iwi=¸)¡ 1. From this, it is easily

seen that lim¸!(°kwk)¡ Ã
0(¸) = lim¸!(°kwk)+ Ã

0(¸), so
that Ã is differentiable on the whole subset R+, with
derivative:

Ã0(¸) =
nX
i=1

1
wi

h
ln
³°iwi
¸

´i+
¡ 1: (74)

12These conditions may also be obtained by means of the KKT
Theorem (see (66)).
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The function Ã0 is continuous on R+¤, monotonic
(decreasing). Furthermore:½

lim¸!0+ Ã
0(¸) = +1

Ã0(¸) =¡1 for ¸¸ °nwn:
(75)

Whence, the equation Ã0(¸) = 0 has a unique solution
¸, which is the value of ¸ maximizing Ã on R+.

APPENDIX B

In order to prove the absence of a duality gap,
it is necessary to prove that there is a unique search
vector (say X) minimizing the Lagrangian L(X,¸).
Here, we consider that ¸ is fixed and we restrict to
the 2-period search for the AND rule. The proof may
be generalized in a straightforwardly manner. Let
L(X,¸) be defined by (15). Then due to the necessary
optimality conditions (16), we have (®= ¸=(wg1(µ))):

X1,µ(1¡X1,µ) = ®
so that for any candidate search vector (denoted
X̃) minimizing L(X,¸), the Lagrangian takes the
following form:

L(X̃,¸) =
X
µ

[g1(µ)e
¡wx̃1,µ +2x̃1,µ] + cst: (76)

Since the optimization problem is now separated
in the variables x̃1,µ, it reduces to separated
minimizations of the functions g1(µ)e

¡wx̃1,µ +2x̃1,µ.
These functions have the following form:

f(x) = ge¡wx+2¸x: (77)

Now, this function is differentiable and convex so
that its minimum (on the [0,1] interval) is unique. In
turn, the search vector (say X) minimizing L(X,¸) is
also unique and the function Ã(¸) is a differentiable
function of ¸.

APPENDIX C

The object of this Appendix is to provide
an example of calculating for the weights
f¯0,2,3,¯1,2,0,¯1,0,3,¯1,2,3g (see e.g., (30)). Assume that
the target motion is rectilinear and uniform and that
the detection system yields an observation vector Ẑ
with the following structure:

Ẑ is N (Z,¡ )

Z=
µ
X

Y

¶
X= [±1,dx0, : : : ,±n,d(x0 + nvx)]

¤,

Y= [±1,dy0, : : : ,±n,d(y0 + nvy)]
¤:

(78)

In (78), the vector (±1,d, : : : ,±n,d)
¤ denotes the vector

of detections, i.e., ±i,d is equal to 1 if an elementary
detection occurs at the instant i, to 0 else. Denoting

D this vector and ¯ the Schur product [28], we thus
have

X=D¯ (x01+ vx10)
where:

1= (1,1, : : : ,1)¤, 10 = (0,1, : : : ,n)¤:

(79)

Since the target trajectory is characterized by the
4-dimensionnal vector X0 (X0 = (x0,y0,vx,vy)

¤), the
weighting terms we consider are deduced from the
Fisher information matrix (FIM) which is given by
(¡ = ¾2I):

FIM(x0,x0) =
1
2¾2

kD¯ 1k2,

FIM(x0,vx) =
1
2¾2

(D¯ 1)¤(D¯ 10), etc.

(80)

Then, a convenient weighting may be the determinant
of the FIM.
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