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Abstract
This paper presents a cooperative strategy between vol-

umetric registration and segmentation. The segmentation
method is based on the level set formalism. Starting from
an initial position, a closed 3D surface propagates towards
the desired boundaries through the evolution of a 4-D im-
plicit function. We show that the number of iterations re-
quired for convergence is significantly reduced by using a
registration process to initialize the surface. Furthermore
it makes the segmentation fully automatic. The registration
is achieved through a robust multiresolution and multigrid
minimization scheme appropriate to our problem. In addi-
tion, a bidirectional propagation force depending on local
intensity values has been designed for the evolution of the
surface. Finally, an adaptive iteration step is automatically
computed at each iteration in order to improve the robust-
ness and the efficiency of the algorithm. Results on volu-
metric brain MR images are presented and discussed.

1 Introduction

The analysis of volumetric brain images has become one
of the most important issues for biomedical applications.
Segmenting brain structures is crucial to quantify and fol-
low the evolution of many lesions like multiple sclerosis,
Parkinson disease (locus niger), Alzheimer disease (hip-
pocampus), cortical atrophy, etc. Research has mainly fo-
cused on registration and segmentation [5, 6, 15]. These
two problems are closely related, and they can cooperate to
take advantage of each other. For instance, automatic seg-
mentation may benefit from registration with an anatomic
atlas acting as a template [4], whereas registration can be
constrained by a segmentation of cortical structures.

The main difficulties of the segmentation arise from the
huge amount of data and from the complexity of anatomical
structures. Due to their important variability, these struc-
tures can usually not be segmented using registration only,
even if this latter is very accurate. The iterative techniques
based on thelevel set formalismhave proved particularly
appropriate for segmenting complex shapes [10, 9, 3]: the
detected surface can change topology and cope with signif-
icant protusions, and the result is less dependent on initial-
ization than with any other iterative method. However, due
to the amount of data involved, the computation time usu-
ally required for segmentation is a limit for practical use.
Starting from an arbitrary small surface, it may take quite

of time to get close to the expected boundaries. Several
techniques have been proposed to speed up segmentation
[1, 12, 13], but improvement is still required.

In this work, we have been interested in the applica-
tion of level set techniques for segmenting anatomical struc-
tures, and in particular brain structures from MRI. The main
contribution of this work is the use of an automatic reg-
istration method to initialize the surface. The registration
technique is based on a robust hierarchical scheme which
can focus on areas of interest [5]. This kind of cooperation
has great benefit for the feasibility of the method: the seg-
mentation is faster and completely automatic. Besides, we
have extended to the 3D case the design of a bidirectional
propagation force which can expand or contract the surface
according to local intensity values. Finally, an adaptive step
is used for the iterative computation of the surface. The
choice of this value is usually manually tuned as a trade-off
between speed of convergence and stability of the process,
which is hardly compatible with practical applications. We
propose to automatically evaluate it at each iteration.

The segmentation method based on level sets is pre-
sented in section 2. The use of 3D dense registration for
an optimal initialization is explained in section 3. Finally
some segmentation experiments with and without cooper-
ation are presented and discussed in section 4. Section 5
presents some concluding remarks and perspectives.

2 3D segmentation based on level sets

2.1 Level set formalism

The segmentation problem is expressed as the computa-
tion of a 3D surfaceη(t) (or front) propagating in time along
its normal directionn. In the level set formulation [10], the
propagating frontη(t) is embedded as the zero level of a
time-varying higher dimensional functionΨ(X, t):

η(t) = {X ∈ IR3 / Ψ(X, t) = 0}
The function Ψ describes a 4-D surface defined by

Ψ(X, t) = d, whered is the signed distance fromX to
the frontη. The evolution rule forΨ can be expressed as:

∂Ψ

∂t
+ F ||∇Ψ|| = 0,

whereF is a scalar velocity function which depends on lo-
cal properties of the front like the local curvature, and on
external parameters related to the input data or expressing
an additional propagation force.



The 4D surfaceΨ deforms iteratively according to the
speed functionF , and the position of the 3D frontη(t)
is derived fromΨ at each iteration step by the relation
Ψ(X(t), t) = 0. Practically, the functionΨn+1 at stepn+1
is computed fromΨn at stepn using the relation:

Ψn+1(X) = Ψn(X) − ∆t.F |∇Ψn(X)|, ∀X ∈ IR3 (1)

The next subsections adress the design ofF and the
choice of∆t.

2.2 Speed functionF

The design of the speed function is a key point of the
segmentation. Osher and Setian [10] suggest the following:

F = h(I)(ν + ακ), (2)

whereh(I) is related to the image intensity and acts as a
stopping criterion at the location of the desired boundaries,
κ represents the local curvature of the front and acts as a
regularization term, andν represents an additional propa-
gation force which makes the surface contract or expand (α
is a weighting parameter).

Previous approaches to 3D segmentation using this
model have imposed a one-way propagation forceν, which
either contracts or expands the whole surface all along the
process [16]. However, when the initial position of the sur-
face can be predicted, it is necessary to let the surface evolve
in both directions (since predicted and real positions usually
overlap). Such adaptive evolution functions have been de-
signed in the 2D case [2, 11, 14]. In eq. (2), the direction
of the external propagation force is determined by the sign
of ν. Similarly to the 2D approach in [11], this sign is here
locally determined by an analysis of local intensity values.

For that purpose, the intensity of the object is modeled
by a normal distributionN (Iobj , σobj). A threshold value
Ith, above which a point is more likely to be outside (or
inside) the object, has been defined as:

Ith =

�
max{ (Iobj + Ibgr)/2, Iobj + σobj} if Iobj < Ibgr

min{ (Iobj + Ibgr)/2, Iobj − σobj} otherwise

whereIbgr is the average intensity of the background lim-
ited to a ring around the object. The parametersIbgr ,
Iobj andσobj are estimated at each iteration using the cur-
rent segmentation and the associated ring. The propagation
force atX is then defined as:

ν(X) = SGN(Iobj − Ibgr).SGN(I(X) − Ĩth)

whereĨth is the estimated value ofIth. If Iobj > Ibgr , a
positive value ofI(X) − Ĩth will induce a positive value
for ν, and thus an expanding force (X is more likely to be
insidethe volume, andΨ tends to decrease).

The data consistency term suggested in [9] is:

h(I) = 1/(1 + ∇I),

where∇I denotes the gradient of the image. To avoid the
contour to stop at spurious gradients, the functionh(I) is set

to 1 if the closest point on the front belongs to the front for
the first time, and if the propagation forceν has not changed
its direction since the last iteration [11], since the point is
then likely to represent an intermediate location of the sur-
face. It is important for our application since the front can
be initially located on any side of the object, where strong
gradients can occur.

2.3 Adaptive iteration step∆t

The stability of the process requires a numerical scheme
for the computation of∆Ψ, called upwind sheme. The
stability is then guaranteed only if the iteration step∆t
is limited. This constraint, known as theCFL restriction
(Courant-Friedrichs-Levy), can be expressed in 3D as:

1 ≥ ∆t.(
|Hu|
∆x

+
|Hv|
∆y

+
|Hw|
∆z

),

whereH is the Hamiltonian defined by:

H(u, v, w) =
p

u2 + v2 + w2.F = F ||∆Ψ||,
with u = Ψx, v = Ψy andw = Ψz [8]. Since we work with
a regular sampling grid, we assume∆x = ∆y = ∆z = 1.
The maximal value of∆t which guarantees the stability of
the numerical scheme is related to the maximal value taken
by |Hu| + |Hv| + |Hw| over the domain. SinceF is inde-
pendent fromΨ (see eq. 2), this sum - and therefore∆t -
can easily be computed at each iteration.

3 Cooperation with a registration process

The association of the adaptive step with the narrow
band technique [1] considerably speeds up the segmenta-
tion. However the processing time can be even more re-
duced (and the segmentation made automatic) if a close and
adaptive initialization is provided. In this context informa-
tion provided by a registration process is of prime interest.
Supposing there areN volumesVi to be segmented, a ref-
erence volumeV0 is chosen and segmented with a manual
initialization (a small cube inside the object for instance).
Every other volumeVi (or target) is first registered with the
reference oneV0, which provides a dense deformation field
(from V0 to Vi). This field is then applied to the structure
detected in the reference volumeV0 in order to predict the
location of the structure in the target volumeVi. This pre-
diction is used for initializing the segmentation process.

3.1 Formulation of the registration problem

The registration problem is expressed as a motion esti-
mation problem. The optical flow hypothesis, introduced
by Horn et Schunck [7], leads then to the minimization of
the following cost function:

U(dw; f) =
X
s∈S

[rf(s, t) · ws + ft(s, t)]
2 + α

X
<s,r>∈C

||ws − wr ||2,

wheres is a voxel of the volume,t indexes the volume
in the database,f is the luminance function,w is the ex-
pected3D displacement field,S is the voxel lattice,C is



the set of neighboring pairs andα controls the balance be-
tween the two energy terms. The first term is the first or-
der Taylor-expansion of the luminance conservation equa-
tion and represents the interaction between the field and
the data, whereas the second term expresses the smoothness
constraint.

The weaknesses of this formulation are known. First, the
optical flow constraint (OFC) might not be valid everywhere
because of noise, intensity non-uniformity and occlusions;
besides discontinuities of the displacement field might not
be preserved. Second, the OFC is not valid in case of large
displacements because of linearization.

To cope with the first limitation, the quadratic cost has
been replaced by robust functions. To face the second one,
a multiresolution and multigrid strategy has been designed.
More details about the use of robust estimators in the cost
function can be found in [5]. The next subsection focuses
on the hierarchical aspect of the registration process.

3.2 Multiresolution and multigrid minimization

In order to cope with large displacements, a classical in-
cremental multiresolution procedure has been developed.
A pyramid of volumes{fk} is constructed by successive
Gaussian smoothing and subsampling. At the coarsest level,
the linearization of the conservation equation can be used.
At next resolution levels, only an incrementdwk is esti-
mated and used to refine estimateŵk derived from the pre-
vious level.

Multigrid minimizationMultiresolution structure

fk

fk

Uk,2

Uk,1

Uk,0

dwk,2

dwk,1

dwk,0

Figure 1. Example of multiresolution/multigrid minimiza-
tion. For each resolution levelk (on the left), a multigrid
strategy (on the right) is performed. For clarity reasons,
this is a2D illustration of our 3D algorithm.

Furthermore, at each resolution level, a multigrid mini-
mization based on successive partitions of the initial volume
is achieved (see Fig. 1). A grid level is associated to a parti-
tion of cubes. At a given grid level`, a 12-dimension para-
metric increment field is estimated over each cube of the
grid. The resulting field is a rough estimate of the desired
solution, and it is used to initialize the next grid level. This
hierarchical minimization strategy improves the quality and
the convergence rate. The partition at the coarsest grid level
is defined using a binary segmentation mask of the struc-
ture of interest. Within this work, the mask is provided by
the reference segmentation. The octree partition which is

thus defined is anatomically relevant. When the grid level
changes, each cube is adaptively divided. The accuracy of
the registration can therefore be controlled by the accuracy
of the final grid level. The final result is a piecewise para-
metric deformation field.

The hierarchical characteristics of this registration algo-
rithm are appropriate to our segmentation purpose, which
only requires a rough and local deformation field. Using the
multigrid scheme allows the field to be computed only over
areas of interest, i.e., in the neighborhood of the structure to
be segmented. In addition, the accuracy of the registration
can be limited by stopping the process at a coarse grid level.

4 Experimental results

Experiments have been run on a database of MR images
(volume size256 × 256 × 176). The segmentation of brain
ventricles for two different subjects is shown in figure 2.
Figure 3 shows the ventricles detected in the reference vol-
ume projected onto the target volume, before and after reg-
istration. Figure 4 shows the segmentation of the whole
brain in the target volume. One 3-D view of the detected
ventricles and one 3-D view of the detected brain in the tar-
get volume are shown in figure 5.

The segmentation based on level sets provides good ac-
curacy. Protusions of brain and ventricles have been prop-
erly recovered, even when the surface has been initialized
far away from it (reference volume). Thank to the bidirec-
tional propagation force, the shape is also recovered when
initial and expected boundaries overlap (target volume).

No tuning of parameter is required. The iteration step is
automatically computed, as well as the threshold on inten-
sity values. The weighting parameterα (eq.2) has been set
to 1, giving small importance to regularization. Using the
automatic registration stage, the segmentation is completely
automatic. In addition, the number of iterations is consid-
erably reduced: only 170 iterations have been required for
segmenting ventricles in the target volume with registration,
whereas 580 iterations had been necessary without it. This
iteration number decreases from 970 to 240 for the brain
segmentation. The time required by the registration algo-
rithm is much smaller than the time saved.

5 Conclusion and further work

The cooperation of level set segmentation and registra-
tion has provided very encouraging results. The main con-
tributions are the significant reduction of the iteration num-
ber and the complete autonomy of the segmentation pro-
cess. These results were made possible by the design of an
adaptive propagation force and an adaptive iteration step,
providing a good trade-off between speed and stability.

We are currently investigating more complex intensity
distribution models, in order to extend the method to other
applications and other kinds of data. Parameter estimation



Figure 2. Ventricle segmentation for 2 different subjects.
The first row shows a subpart of the reference volume seg-
mented in 620 iterations (manual initialization with a cube
of size5 × 5 × 5 located inside the ventricles). The second
row shows the target volume segmented using the result of
the first row, in 170 iterations. The three columns respec-
tively show axial, coronal and saggital planes.

Figure 3. Ventricules detected in the reference volume
projected onto the target volume, before registration (grey)
and after registration (black).

Figure 4. Brain segmentation in the target volume: the
surface was initialized using the registration process, and
240 iterations were necessary.

Figure 5. 3D views of the segmented ventricles (left) and
brain (right) from the target volume.

methods (mixture models) could be involved to analyse in-
tensity distributions. The process might also be improved
by involving the deformation field in the speed function it-
self. Finally, reciprocally to this approach, the registration
could benefit from the segmentation process.
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