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Abstract: In the bearings-only tracking context, 
the source state is only partially observed through 
nonlinear measurements which are the estimated 
bearings. For a manoeuvring Markovian source, 
the source trajectory is estimated by means of 
classical dynamic: programming. However, the 
quality of the estimation is stongly dependent of 
the observer trajectory, thus mixing estimation 
and control. But. in this context, the separation 
principle (for estimation and control) does not 
hold. In fact, the problem consists in controlling 
a partially observable Markov decision process. 
Application of this framework to search theory 
has yet been considered in the literature. 
However, even if the problem presents strong 
similarities with an approach used in the 
optimisation of the search effort for a 
(Markovian) moving source, it is focused on the 
estimation of the whole source trajectory instead 
of its detection ,it the end of the scenario. To 
compensate th s intrinsic difficulty, the 
observation is richer. Consequently also, the 
optimisation problem presents important 
difficulties, i.e. memory and computation 
requirements. Thus the authors aim to develop a 
feasible framework, based on the Smallwood and 
Sondik approach, capable of handling real 
problems. To attain this objective, a specific 
algorithm is developed and the dimension of the 
bearings-only tracking is drastically reduced. The 
applicability of the approach is demonstrated on 
realistic sonar scenarios. 

1 Introduction 

The basic problem of target motion analysis (TMA) is 
to estimate the trajectory of an object (e.g. position and 
velocity for a rectilinear motion) from noise corrupted 
sensor data. Classical bearings-only TMA methods are 
restricted to constant motion parameters (usually posi- 
tion and velocity). However, most of the interesting 
sources have manoeuvring abilities so that the perform- 
ances of classical TMA may be dramatically degraded. 
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The study of tracking methods for manoeuvring 
sources is a classical theme and a huge amount of liter- 
ature is devoted to this subject [l-71. The fields of 
applications are as varied as radar systems, infrared 
systems and sonar. Various methods have been devel- 
oped to deal with this problem. In his article [8], Singer 
modelled the acceleration by a stochastic process with a 
known exponential autocorrelation function. The 
switching methods [9-121 or more recently the interac- 
tive multiple model method and its extension, the 
selected filter IMM [13], are other examples of the 
vitality of the domain. 

According to this panorama, it is obvious that the 
tracking of manoeuvring sources has motivated 
important and fruitful efforts. However, it is worth 
noting that these efforts are mainly on radar system 
applications. The context of sonar systems is rather dif- 
ferent, since it is frequently a passive system which 
observations (basically the estimated bearings) depend 
nonlinearly on the source state. Furthermore, consider- 
ing a long-time source-observer encounter (which is 
usual in a sonar scenario) the source manoeuvre possi- 
bilities are quite numerous and diverse. A similar 
remark can be made for the detection of the source 
manoeuvres which requires a suitable estimation of the 
source states, itself needing a sufficient signal to noise 
ratio and, overall, a sufficient time between consecutive 
source manoeuvres. 

All these considerations advocate for the modelling 
of the whole source trajectory including source 
manoeuvre uncertainty. 

With that aim, a convenient framework for TMA is 
the hidden Markov model (HMM) one, widely used in 
other contexts as speech processing, frequency line 
tracking [14-171, detection and tracking of dim moving 
sources [l8, 191 or target tracking in active sonar 
[20, 211 systems. To apply HMM methods to the bear- 
ings-only tracking (BOT) context, a basic idea consists 
of a two-level discretisation of the state-space [22-241. 
The probabilities of the position transitions are 
deduced from the probabilities of the velocity transi- 
tions, These transitions themselves correspond to the 
manoeuvrability constraints inherent to the source. It is 
thus possible to avoid too precise source manoeuvre 
modelling to the benefit of rather coarse stochastic 
modelling. 

In the BOT context, the source state is only partially 
observed through noisy nonlinear measurements, which 
are the estimated bearings. Given a measurement 
sequence, the estimation problem consists of finding 
the sequence of states which maximises the conditional 
probability. This is achieved by means of a classical 
dynamic programming (DP) algorithm. This approach 
is an elegant solution to the manoeuvering target 
tracking problem, since it does not require any prior 
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information on the source manoeuvres. Even if the 
estimation of the source states sequence may basically 
appear as a direct application of dynamic programming 
principles, a major problem comes from the optimisa- 
tion of the observer trajectory. 

Since the problem consists mainly of controlling a 
partially observed Markov chain, a natural framework 
is the Markov decision process one, and more specifi- 
cally the partially observable Markov decision process 
(POMDP). 

The case of complete information has been previ- 
ously considered [22]. In this case, the source states 
sequence is assumed to be known to the decision proc- 
ess (not to the estimation). The aim of this analysis is 
mainly to provide a catalogue of optimised observer 
trajectories and to investigate the theoretical problems 
occurring with the application of the DP principle. In 
the MDP context, the problem is to determine the con- 
trol policy, such that the sequence of decisions (or con- 
trol) minimises a cost functional. This problem is 
classically solved by dynamic programming equations. 
However, our problem differs from the classical one in 
the nature of the cost functional, which is defined on a 
matrix space. These matrices are Fisher information 
matrices (FIM), associated with the estimation of the 
source state sequence. 

The choice of the matrix functional H i s  very critical. 
It is necessary that the matrix functional satisfies a 
monotonicity property, which considerably reduces the 
choice. Furthermore, in practical situations, the source 
state is not directly observable. The only available 
information consists of the estimated bearings, and the 
MDP problem then becomes far more complicated. A 
natural approach is that of POMDP for which exact 
algorithms have been developed. 

Our problem presents some similarities to the search 
of a moving target. However, in contrast to the ‘classi- 
cal’ search theory, we are now coping with the estima- 
tion of the whole source trajectory instead of its 
detection at the end of the scenario. To compensate for 
this intrinsic difficulty, in the TMA context the obser- 
vation is richer because, wherever the target is, its 
detection is assumed to be certain and an estimation of 
its bearing is obtained. So, the function to maximise is 
not the probability of detection during a given time, 
but the information relative to source trajectory, which 
we can infer from the measurements and the (opti- 
mised) sequence of decisions. Even if there is no mys- 
tery in the algorithm estimating the sequence of source 
states, the performance of such an algorithm is mainly 
conditioned by the observer trajectory itself directly 
depending on the sequence of decisions. 

2 Bearings-only TMA general framework 

In the bearings-only target motion analysis problem, 
the states. for the observer and the source, are defined 
by the position and the velocity: 

n 
x, = [rZs rYs ,  u Z s ,  uys]* 

x, = [T,, rYo,  uzo)  uUyoIT 

(for the source) 

(for the observer) n 

where ‘T means transposition. Using the relative source 
state (x = x, - xo,= [r, VI), the BOT problem is mod- 
elled by the following equations: 

with: 

and 

(3) 

Usually, the estimated data are the azimuths (defined 
relatively to the north): 

where the variance 0,” is given by the Woodward for- 
mula, in the case of a linear array regularly sampled in 
space and for a unique source in the array broadside: 

3(1 +PP)(2N - 1) 
d = p2p2(p2 - l)n2dZN(N + 1) 

with: 
p = signal to noise ratio 
p = number of sensors 
N = number of snapshots 
d = intersensor distance 

If the rectilinear and uniform motion assumption is 
made, the BOT problem reduces to the estimation of 
the initial state vector xo. Assume now that the source 
can change its velocity. Interesting sources are those 
which manoeuvre for tactical reasons. The decisive 
advantage of Markov modelling is that one does not 
have to define different types of manoeuvre, with the 
risk that the source does not follow any of them. It is 
just assumed that the source velocity is not radically 
changed between consecutive instants. More precisely, 
a two-level Markov chain is considered in order to 
model the source trajectory. 

Using the elementary lemma: 
Pr(A, BIC) = Pr(AIB, C) Pr(B1C) 

Pr(xt+llxt) = Pr(rt+l Ivt+~,r t ,vt)  Pr(vt+l Irt, V t )  

Furthermore, it is quite reasonable to assume that the 
transition over the velocities is independent of the posi- 
tion at time t ,  so that: 

it becomes: 

Pr(xt+1lxt) = Pr(rt+1 IVt+l, rt, Vt)  Pr(vt+1 lvt) 
( 5 )  

The state space (position and velocity) is then discre- 
tised as well as the observation space (bearing measure- 
ments). The observations are defined by the Bayes 
formula: 

= Cst.  Pr xt = xzlet = e j )  

(6) 
( 

The latter equality holds in the absence of any prior 
information on the state and the observation. 

Eqns. 5 and 6 define a hidden Markov model. As we 
are using the relative state vector, the observer velocity 
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can be seen as a control of the HMM. Different con- 
trols yield different cuality of estimation of the Markov 
chain states. The problem is now to find the set of con- 
trols that yields the best source trajectory estimation. 

3 Presentation alf the POMDP framework 

Consider a Markov process X ,  that takes its values in a 
finite space (state space) S. The stochastic process {X, ,  
t E [O; TI} is known as the central process. It is 
assumed to be modelled by a stationary Markov chain, 
which transition matrix is P (P = lsIJsN,  Card(S) = 
N). The central process is entirely defined by P and the 
initial distribution, noted n(1) ( 4 1 )  f (q( l ) ,  ..., ndl))) 
where q(1) 6 Pr{X, = i}. 

The central process is not directly observable, which 
means that X ,  cannot be known exactly at time t .  X ,  is 
associated with a stochastic variable et, which takes its 
values in a finite set of 'messages' or 'observations' 0 = 
{ 1, 2, ..., m}. The relation between X ,  and 8, is known. 

The set of all possible probability distributions on X 
is the simplex n(x> defined by n(X) = {n. E RnjVi E 

[l ,  N] nL 2 0 and ELL'$ 7cI = 1). Each vector n is a prob- 
ability distribution m X (probabilistic interpretation), 
but it can also be geometrically represented as a point 
of the associated unit simplex ll(x). 

observation, d E 2): decision, action or control, 2) finite 
set) be the information vector which is the initial distri- 
bution appended with the history of actions and mes- 
sages received up to time t .  At time t ,  H, contains all 
the information that the decision maker can use to 
access the state of the system and to choose its deci- 
sion. The global system evolution is modelled as fol- 
lows: 
(i) Knowing the history of the decisions (controls) and 
of the observations (H,) a decision d, is taken. 
(ii) The system transits from state X, to state Xz+l 
according to the transition probability p,Jd. 

p t j  = Pr {X t+l  = 31X1 = 2, dt = d )  
(iii) An observation 8, E 0 is received according to the 
probability: 

Let H, = {nl, d,, el, d,, e,, ..., d,_l, (e E 0: 

a 

A 
rjde = Pr-[Ot = BJXt+l = j ,d t  = d }  

(iv) The information vector is updated with two new 
data: 

(v) w$ is the immediate reward cost conditionally on 
the following event: under the decision (or action) d the 
process { X , )  transits from state i to state j and gener- 
ates the observatiorl 8. 
It can be noted that, if r$. = 1 for j = 8 and 0 else, we 
get back to the complete information case. Uncertaini- 
ties on the observation of the central process { X , }  
imply uncertainties on the decision. 

In this problem the available information at time t 
on the internal state of the system is given by the prob- 
ability distribution sr,, which is computed only with the 
information vector H,. n-, is an exhaustive resume of 
H,, so both of them can be named information vector: 

.A 

7rt =I (7rl(q,...,Tn(q)+ 
with: 

a 
~ ~ ( 1 ; )  = Pr{Xt = ilH,} 

The information vector n plays a fundamental role in 
POMDP problems, because it is completely observable, 
due to its definition. { ? s ~ } ~  is a Markovian process for a 
finite series of decisions. The updating formula stands 
as follows [25]: 

In eqn. 7 the matrix Pdt designates the transition matrix 
(N ,  N> of which elements are @ l ~ t ) L J E [ l , i Y 1 ,  the matrix 
Rd(f3,) represents the diagonal matrix which ('j, j )  ele- 
ment is r,'& . Finally, e is the N dimension vector with 
all unit components. 

The initial POMDP is equivalent (it gives the same 
cost function) to a sequential decision problem with 
state space n(x> and dynamic equation v, ,~  = T(n,, d,, 
8,). 

One can now consider the problem of the computa- 
tion of the optimal decisions that can be solved by a 
dynamic program. In that aim, one can define V,(n.) as 
the maximum expected value of the cost function that 
the system can accrue if the current information vector 
is n- and if t iterations remain. The temporal index t is 
defined from the horizon and not from the origin of 
the scenarios. In finite horizon dynamic programming 
problems, temporal indexes always begin at the hori- 
zon. This is due to the algorithm itself starting its opti- 
misation from the end. 

Then, expanding over all possible next transitions 
and observations yields the following recursive equa- 
tion: 

&(r) = max 
d E V t  

n n  

1 

0 J 

This equation can be simplified by defining the 
expected immediate cost for state i if the decision d is 
taken during the next control interval: 

( 8 )  

(9) 

The dynamic programming equation (eqn. 8) then 
becomes: 

t 2 1 (10) 

It only remains to define the cost associated with the 
fact that the process terminates on state i, which is the 
definition of go: 

a 

It is possible to try to solve directly the previous 

burden grows rapidly. The following property proved 
by Smallwood and Sondik appears to be an instrumen- 
tal answer to solving our problem: 

dynamic pl ogi ulnnling equation, bvt thc numerical 
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Propevty I [25]: The function V,(n) is piecewise linear 
and convex and so can be written as follows: 

r n  1 

where the {cuk(t)Sk vectors are n-dimensional and are 
computed by a recursion. 

The dynamic programming algorithm consists in 
finding, for each time index. the set of a-vectors that 
define exactly the cost function. Once this computation 
is done, if one knows the probability distribution of the 
system state, the optimal decision is deduced by consid- 
ering the decision associated with the a-vector giving 
the higher scalar product with this probability distribu- 
tion. The demonstration of this property (that will be 
omitted for the sake of brevity) gives explicitly the 
solution: 

(12) 
This formula allows one to find the a-vector associated 
with the information vector n. Noting, T(t - 1) = 
{Cl.k(t.- ,x-l the set of all a-vectors necessary to 
describe Vt-l, this formula permits one to find all the 
a-vector of r(t) (with y(t) elements) from the elements 
of r(t - 1). If the set of decisions contains Nd elements, 
and the set of observations No elements, the recursion 
formula gives Ndc1 different a-vectors, which form a 
set that will be noted G(t). Only a subset of G(t)  is 
enough to describe V, and to build the set r(t) (r(t) L 
G(t)). Some of the a-vectors computed are not associ- 
ated with any probability distribution and are thought 
not necessary in the description of V,. 

4 

One of the possibilities for obtaining all the a-vectors 
of r(t) is to discretise the simplex n(x) and to compute 
the associated a-vector for each sample. The main 
problem of this approach is that it induces an impor- 
tant numerical burden and that it does not guarantee 
that all the a-vectors will be computed. Some small 
regions may be invisible by the grid used to discretise 
the simplex, regions that will possibly be associated 
with wrong decisions in the utilisation step. Different 
algorithms exist to compute the significant subset of a- 
vectors to build r(t). 

From eqn. 12 three approaches have been developed. 
The first is from Smallwood and Sondik, another from 
Monahan and the last from Cheng [27]. See [28] for 
more details on these algorithms. 

In the following descriptions of algorithms, one can 

decisions. The problem is then to find a method to 
compute the elements of T( t )  from this information. 

4.7 Cheng algorithm 
The idea of Cheng is to build up the set r(t), adding 
the a-vectors one by one, instead of considering all the 
possible a-vectors and paring them down to the appro- 
priate r(t). 

If the set r(t - 1) is assumed to be known, the 
a-vectors are computed on the vertices of the simplex 

Exact algorithms for POMDP problems 

cuppose that r(t - 1) ia known as well as the associated 

34 

n(x> to build the set G,(t) (i.e. the first approximation 
of r(t)). G,(t) is the set of the a-vectors associated with 
the vertices of the simplex. For each (YO E G,(t), the 
convex region Rt(ao), associated with a’ is built: 

RI (a0) 

= {;.E rI(X)I(;.,a0) 2 (;.,4W E Gl(t)}  
’dao E Gl( t )  

Gl( t )  is used to compute v r l ( n )  which is the first 
approximation of V,(n): 

For each area R1(ao) the cost error function is: 

eGl(t),ao(7r’) = - (7r,a0) v7r E m a o )  
This expression is convex in n, so its maximum value is 
attained on one of the vertices of Rl(ao). If the maxi- 
mum error is null for all a-vectors in Gl(t), it means 
that G,(t) = I‘(t). If this is not the case, the vertex 
where the maximum error occurs belongs to the opera- 
tive region of a new a-vector. This new a-vector (a) is 
included in G,(t) to build G2(f)  = {Gl( t ) ,  a}. The maxi- 
mum error is computed again, and the process is 
repeated until this error is null. 

Two approaches can be found for this problem. The 
first one consists of computing all the vertices of R,(t) 
for all n: this is the method of Cheng. The second one 
consists of computing the position only of the new ver- 
tices. This new approach, that we have explored, 
although also giving an exact solution, is faster since 
the computation is optimised. 

4.2 New algorithm 
The state is supposed to be of dimension N,  and the 
cardinality of the set Gn(t) is M. In the N - l-dimen- 
sional unit simplex (corresponding to the N-dimen- 
sional state), one can sort the rn vectors by their 
number of null components (the order of the n vector). 
A n vector having only one non-null component is a 
vertex of the simplex. A n vector having two non-null 
components, is a linear combination of the vertices cor- 
responding to the two non-null components. One can 
generalise this sorting process, saying that a n vector 
having K non-null components belongs to the K - 1 
dimensional space generated by all the vertices corre- 
sponding to the positive components of n. A n vector 
having all its components strictly positive is inside the 
unit simplex. 

The inclusion of a new a-vector is illustrated in 
Fig. 1. If all the vertices were computed every itera- 
tion, most of them would be searched more than once. 
Including a new a-vector in Gn(t) does not suppress all 
the vertices of R,(t). It eliminates only the vertices for 
which the new a-vector is dominant compared to the 
a-vector of G,(t), and the other vertices are not modi- 
fied even in their positions, but new vertices appear 
and attention must bc concentrated on them to OpU- 
mise CPU usage. 

It appeared, on the one hand, for this example, that 
the maximum error on the cost function was attained 
on ng. On the other hand: 

( ( Y 0 , T s )  2 (aZ& 2 = 1,. . . ,5 
The vertices ?T8 and n9 have to be suppressed, and the 
points (v,, ..., vs) have to be added as new vertices of 
the new partition. Here is an algorithm allowing one to 
update a partition after the inclusion of a new a-vector: 
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'CL0 

Fig. 1 Introduction of new a-vector Q! in set Gj t )  

(i) The list of the vertices of the partition of the simplex 
with the operative regions of the a-vectors of Gn(t) is 
known and denoted VER(G,(t)). Each m- vector is asso- 
ciated with the list O F  a-vectors for which it is a vertex. 
It is also associated with v;(m-) and V,(m-) for some of 
them. 
(ii) V,(n) is computed on the vertices that do not have 
this information, ancl the maximum error is searched: 

E =  max &(T) - v t ( n )  
.rrE V ER(G(t ) )  

If E = 0, then Gn(t) := r(t), v; = V, and the partition is 
completed. If E is non-null, the operative a-vector (ao) 
at the location of the maximum error is included in the 
a-vector list: 

Gn+l ( t )  = {Gn( t ) ,  aO}  
(iii) The list of the vertices that has to be deleted is 
built: 

D E W w ) )  
= {T E VER(Gn( t ) ) I (aO,n)  - ' u ~ ( T )  > O }  

Each m- vector is associated with the information 
related to the subspiice on which this r vector is, and 
to the a-vector for which it is a vertex. 
(iv) For each vertex m- in the DEL(G,(t)) list: 

K is the dimension of the subspace; 
K(2 K) is the number of a-vectors for which n is a 
vertex, the list of this a-vector is (ail, ..., air) (il < ... 
< i,,); 
for all the combinations GI., ..., jK-J7 1 I j l  < ... < 
jK-, 5 K'. the system allowing the vertex (of order K )  
associated to (ao, a%, ..., ~ G K - I )  to be found, is com- 
posed. It is solved if, and only if, there exists a vertex 
of VER(G,(t)), which is not in DEL(Gn(t)), that is 
associated to the a-vectors (ao, a?i, ..., ~ K - I ) ;  

if K < N ,  then fo:r all the combinations (jl, ..., j,), 1 
S j l  < ... < j ,  5 K ,  the system allowing the vertex (of 
order K + 1) associated to (a!, ah, ..., ah) to be 
found, is composed. It is solved if, and only if, there 
exists a vertex of VER(G,(t)), which is not in 
DEL(G,(t)), that is associated to the a-vectors (&I, 

(v) Add the newly found vertices, and delete those of 
DEL(Gn(t)). Go back to Step (ii). 

..., &K). 
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This algorithm may be used on the example illustrated 
on Fig. 1. In Step (i), the following list (containing the 
co-ordinates of the vertex, its cost approximation, its 
real cost, the indices of the non-null components, and 
the indices of the a-vectors for which this point is 
really a vertex) is assumed to be known: 

VER(G(t )  1 

1 [Tl, 'Ut(Tl.1) 3 vt (m), ( O ) ( l ) l  

The computation of the cost function on the vertices 
indicates that the maximum error is obtained on n9, 
and the associated a-vector (a") generates a cost on m-8 
that is greater than v t ( q ) .  The following DEL(G,(t)) 
list (containing the co-ordinates of the vertex, the indi- 
ces of the non-null components, and the indices of the 
a-vectors for which this point is really a vertex) is gen- 
erated: 

Here is the list of a-vector combinations associated 
with n9, for which intersection search has to be done: 
cue, al, (U2 + yes 
ao, al, a" + no (there is no vertex associated to a' 

and a4 that belongs to VER(G,(t)) and 
not to DEL(G,(t))) 

ao, al, a5, -+ no (there is no vertex associated to a1 
and a5 that belongs to VER(G,(t)) and 
not to DEL(G,(t))) 

a", a*, a4, + yes 
ao, a?, a5, + no (there is no vertex associated to a? 

and a5 that belongs to VER(G,(t)) and 
not to DEL(G,(t))) 

ao, (u4, cy5, + yes 
Here is the list of a-vectors combinations associated 
with q, for which an intersection search has to be 
done: 
a", + yes 
ao, cys + yes 
a0, a', a5, + no (there is no vertex associated to a' 

and cy5 that belongs to VER(G,(t)) and 
not to DEL(Gn(t))) 

There are five systems to solve, which is exactly the 
number of vertices to add. 

In the Cheng approach, it would have been necessary 
to compute the intersection of all pairs and triples of a- 
vectors. This means: 
(i) 6*5*3 = 90 intersections of pairs (with the three 
sides of the simplex) 
(ii) 6*5*4 = 120 intersections of triples. 
One can compare these 21 0 intersections computations 
with the five required by the new algorithm. The latter 
requires more memory because it has to manage lists. 

5 Optimal observer trajectory for target motion 
analysis 

In the problem of target motion analysis (TMA), we 
are dealing with the estimation of the whole target 
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trajectory. The source movement is modelled by a 
Markov chain with finite state number (see Section 2), 
and one can consider the observer trajectory as a com- 
mand, and then apply the POMDP framework to this 
problem. 

The measurements (bearings) are discretised, and the 
function to maximise is related to the uncertainty on 
the estimation of the target trajectory (Fisher informa- 
tion matrix) F. 

In [29] it has been proved that the only information 
functionals (i.e. functionals of F )  suitable for dynamic 
programming is of the formflF) = g (tr(AF)) when F is 
the FIM, A is a constant matrix and g is a monotoni- 
cally increasing function (from R to R). Using this 
fact, the trace of the FIM will be used as the cost func- 
tion. The FIM F is the sum of instantaneous elemen- 
tary FIMs, which depend on the trajectory of the target 
as well as on the observer trajectory. 

A compound vector (n, p, 4) E n x D x C will be 
used where: 
(i) ~ ( k )  = Pr{the target is in cell j at the begining of 
time period k } ;  
(ii) p = the displacement vector of the observer; 
(iii) t = the arrival cell of the observer. 
As in the target search problem, only a subset of con- 
trols are available at time k - 1 if the control (p, 4)  has 
been conducted at time k. This subset depends only on 
t and is defined by: 

B ( v , k )  = Bi, = { (p ,e)  E D x Clp = k + .Q] 
where p = k -+ t means that p is the displacement vec- 
tor that originates from k and arrives in t .  It is neces- 
sary to include the displacement vector in B, because 
the cost. the FIM trace, depends on it. Using previous 
notations, w $ + ~ )  is the imediate reward cost condition- 
ally to the following event: the observer arrives in state 
4 and while it was moving according to the displace- 
ment vector p, the target moved from state i to s ta te j  
and generated the observation 19. This process is 
described in Fig. 2. 

‘ \ j  
north 

observed 
azimuth 

t 

on the final position of the observer as: 

where R@, 
is defined by: 

is a diagonal matrix whose (j, j )  element 

r::”(~) = pr(Qlj, p, e )  
In other words, r& e) (0) is the probability of observing 
I9 if the target is at state j ,  while the observer has been 
displaced by a vector p to the state 4. The displacement 
vector is not necessary since the observation occurs at 
the end of each step. Thus we have: 

This implies that: 

j , e  
the dynamic programming equation becomes: 

r 

1 
1 + Cpa3rS~l/t-1(T(nlele),II,&) 

3 8  

As Bk depends only on k ,  this means that, whatever the 
displacement v that was finished on state k (whatever 
the origin of the displacement), identical probability 
distributions will yield identical values of the cost func- 
tion, or: 

K(T, l’, k )  = K(T, k )  
r 

‘ k  

Fig.2 T pica1 scenario of observer going from state k to state [accord- 
ing to dispicement vector p and receiving observation @from target that 
went from state i to state j during the same time interval 

It can be noted that the transition matrix is inde- 
pendent of the movement and the position of the 
observer, i.e.: 

The function T, which updates the vector n condition- 
ally on the decision and the new observation, depends 

P ( P 4  1 p 
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1 + pz,r$vt-l (~(r l t ,  e ) ,  l) 
3,e 

with: 
V0(7r, k )  = 0 Y(T, k )  E II x c 

That cost function can be proved to be piecewise linear 
and convex. 
Property 2: For t = 0, ..., T, Vt(n, k )  is piecewise linear 
and convex in n. That is: 

where A(t, k )  is a finite set of Nf,k vectors. 
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Since this result is crucial for our application, a gen- 
era1 proof is given b,-l I ow: 
Proof ofproperty 2: 

t = 0 : A(0,k)  1 0  V o ( ~ , k )  = 0 ,  

= max (7r,P) 
P € A ( l , k )  

where: 

4 1 ,  k )  = { Q(%P, 4 E Rk} 

Assume that eqn. 13 holds at time t - 1, then: 

&-1( i7 , iJ )  = max CaJrJ 
a E A ( t  - 1 , e )  

3 

Using the previously defined T function: 

The recursion hypo-thesis is that V r - l ( ~ ,  e )  is piecewise 
linear and convex. This means that the space of proba- 
bility distribution c m  be divided into regions in which 
the cost function can be computed using only one 
a-vector. Thus, we can introduce the following nota- 
tion: 

where o 3 - l d z ,  e designates the a-vector taken from 
A(t - 1, e), which is used to compute the cost function 
V(., e)  for the distribution vector T(n+!, 0). 

The dynamic programming equation is: 

r 

L 

1 

This can be rewritten: 

So, Vt(n, k)  is piecewise linear and convex. 

6 Simulation results 

In the simulation we have conducted, the physical 
space is a square with side 25km. This area is divided 
into 25 square regions (square with side 5km), which 
are labelled. Whenever an object, the source or the 
observer, is in the region labelled 'i', it is said to be in 
state number i (cf. Fig. 3) .  

Fig.3 State space of observer and target 

At each time period, the observer and the target can 
stay on the current cell but can also move north, east, 
south and west, if that movement is possible within the 
grid. The source motion conforming to a Markov proc- 
ess, a transition matrix (of size 25 x 25) has to be 
defined. It has been chosen to allow the source to stay 
on the current cell with probabilitv 0.4 and to move to 
an adjacent cell with probability 0.6h [30] where n is 
the number of accessible cells. 

The observation process has also to be defined. To 
limit the numerical burden, only four observations (sec- 
tors) are possible: north-east, south-east, south-west, 
north-west. To simplify even more, a target which is in 
sector j is detected in that sector with probability 1 (cf. 
Fig. 4). 
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Fig.4 
sign 

Map of observations available from observer that stands at k’ 

5 -  

The a-vectors were computed for ten iterations, and 
so can be used for scenarios that contain ten or fewer 
iterations. The point now is to test whether or not the 
algorithm provides good estimates of the source’s tra- 
jectory. 

In all the scenarios that will be shown, the trajectory 
of the source is the continuous line, the observer one is 
the dashed line and the source trajectory estimation 
(the highest probability one) is printed with the dot- 
dashed line. If the source (or its state estimation) or the 
observer stays on a state more than one iteration, mul- 
tiple ‘+’ or ‘*’ signs are printed on the diagonal. The 
cells represent squares of 5km x 5km, and the time 
duration of an iteration is 500s. This means that the 
scenarios that are represented in Figs. 5-7 have a total 
duration of 5000s. (approximately lh  25 min) and that 
the target speed is around 10 knots in each case. 

I I I I 1 
j 

5 

4 1  i--’ 
3 !  I I 

I I I I I 
0 1 2 3 4 5 

Fig.5 , Simulation 1 
Graduation 5 km 

In all the scenarios it may be noticed that the estima- 
tion is better at the end than at the beginning. This is 
because the observer gets closer and closer to the 
source. This behavioural aspect of the optimal trajec- 
tory was pointed out by Olsder [31], Liu [32]  and Pas- 
serieux et al. [33]. When the source is far from the 
observer, the latter will get the best estimation if it 
moves orthogonaly to the azimuth of the source. On 
the other hand, if the source is near to the observer, the 
latter will have the best estimation if it gets closer to 
the source. A local coefficient to maximise is ph2, 
where p is the derivative of the azimuth, and r is the 
source-observer distance. 

The first simulation (Fig. 5) represents a source that 
is on left side of the grid and that moves upward. The 
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estimation is perfect, except at the beginning where the 
available information is not sufficient. 

The second simulation (Fig. 6), is a source that exe- 
cutes a ‘Z’ in the middle of the observed surface. The 
estimation is quite good, even if the last manoeuvre 
cannot be followed. 

Fig.6 , Simulation 2 
Graduation 5 km 

Fig.7 , Simulation 3 
Graduation 5km 

Finally, the third and last simulation (Fig. 7) repre- 
sents another ‘S’ trajectory. The initial position of the 
observer is quite far from the source, but the estimation 
is perfect except at the beginning. 

In all these simulations. almost perfect estimations 
are obtained with quite coarse information (only four 
directions). There are numerous reasons for these good 
results. One reason is that the cells represent squares of 
5km x 5km, which means that, if the real source state 
and its estimation are in the same cell, they can be 
quite far apart from each other. Another one is that the 
grid is composed of only 25 cells, which is not enough 
for real applications. 

7 Conclusion 

The problem of optimisation of the observer path in 
the context of manoeuvring target motion analysis has 
been addressed. Markov chains are used to model the 
ownship and the target motion. The theory of the par- 
tially observable Markov decision process is then uti- 
lised to determine an optimal control law for the 
observer, thus solving a very intricate problem. 
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Numerous tests have been conducted for a 5 x 5 
state-space grid, giving, in general, good results for the 
target trajectory estimation. The main difficulty that 
has been encountered is still a numerical burden, and 
memory requirements. However, this approach appears 
to be feasible and useful if the problem is conveniently 
simplified. 
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