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Abstract

Search theory is the discipline wiich treats the problem of
how best to find the optimal distribution of the total search
effort which marimizes the probability of detection. In the
Yelossical” search theory, the farget is satd detected if o de-
tection occurs ot eny time of the time frame. Here, the tar-
get track will be said detected if elementary detections oceur
at various times. That means that there is a test for accep-
tation (or detection) of e target track and thet the problem
i3 to aptimize the allocation of the search effort for irack
detection. Keywords: Search theory, optimization, duality,
detection

1 Introduction
Search theory is the discipline which treats the problem

of how best to search for an object when the amount
of searching efforts is limited and only probabilities of
the object’s possible position are given. An importan-
1 literature has been devoted to this subject, includ-
ing surveys [1] and hooks [2], (3], [4). The situation is
characterized by three data: (i) the probabilities of the
searched object (the "target”) being in varicus possi-
ble locations; (ii) the local detection probability that a
particular amount of local search effort should detec-
t the target: (iii) the total amount of searching effort
available.

However, we shall consider here a radically different
prablem. The problem is to detect target tracks. Inthe
Pclassical” search theory, the target is said detectod if
a detection cceurs at any time of the time frame. Here,
the target track will be said detected if elementary de-
tections occur at various times. That means that there
is a test for acceptation (or detection) of a farget tracly
associated with a spatio-temporal modelling of the tar-
get track. Moreover, we shall not consider (in general)
bounds relative to the search effort at each period. The
bound is relative to the global search effort.

The paper is organized as follows. In section 2, the
optimization framework is presented; followed by the
general formulation of tho search problem {see section
3). In section 4, we deal with the 2-period search prob-
lem, for the ” AND” detection rule. Then, the optimiza-
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tion problems are detailed and solved, while they are
extended to the n-period search in section 5. Another
detection rule is considered in section 6, the "MAJORI-
TY? detection rule. For a more extensive presentation
(including simulation results}, we refer to [5].

2 The optimization framework

The major part of this paper is centered around the
following (primal) optimization problem :

min —P with: P = Eﬂ F(:El‘g,mg'g,---,ﬁn‘g) ,
where ;

pd Flrie 326, 2n0) = Fplz,0)piza ) - plne))

under the resource constraints :

Ea Ty *Fxap ot rpe =9,

&T1p =0 y 2.0 20, yEn,@ >0 V(ﬂ) .

(2.1)

In 2.1, %1 p represents a rescarch effort, affected to the
cell indexed by the parameter 8, at the search period .
The index % takes its values in the subset {1,---,n}.
The parameter € takes its values in a multidimension-
al space, characterizing the target trajectory (e.g. ini-
tial position and velocity) and the n-dimensional vector
X & (%16, %29, Tp,g) represents the effort veetor
associated with the target trajectory (or track) indexed
by #. Furthermore, p{x; ) is the elementary probabili-
ty of detection in the cell (k, ), for a search effort =, »;
while f is a given differontiable function. The following
simple remarks are then fundamental :

e the functional F (w14, -,%ne) is a differentiable
functional of the variables x4,

e the constraints are qualificd since they are linear,

s the "hard constraint” is the cquality constraint {i.e.
Yo ®Le + @8- - Tae = B), the inequality con-
straiuts being dmplicitely taken into account.

These considerations lead us to consider and use ba-

sically the dual formalism. The following dual function
is considered :

'ﬁb(}‘) = inf:ﬁ,m"wwn.s ’C(A) )

where :

f.(/\) =—-P4 /\(Ze T T Ta0cc + Lnp QJ) .
(2.2)
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We stress that, in our framework, the function ¥(A)
may be explicitely determined on the subset defined
by the inequality constraints. The dual problem (D}
then takes the following form :

D : max, P(A). (2.3)

The decisive benefits of this approach are :

e the maximization of t(}) is an (unconstrained)
monodimensional ! problem,

o the function {}) is differentiable,

o from the solution A of the dual problem, the so-
" lution X of the primal problem P is deduced (say
X(A)). The couple (A, X) is a saddle point of the

primal-dual problem.

3 Modelling and formulation of
the problem

Assuming the target motion rectilinear and uniform, it
is completely defined by its initial position vector (2}
and a velocity vector (v), i.e, 8 = (i,v). Assumptions
of our search problem are as follows :

s A target moves in a search space consisting of a
finite number of search cells ; = {ep,z }, in dis-
crete time T = {1,2,.--,n}. We further assume
that the sequence of (searched) cells {cg,¢}, is com-
pletely defined by the parameter (6} (condition-
ally deterministic motion). Thus, the mapping
Cp,1 = Cp - —% Cg,n 18 @ bijection. In the simpler
case (rectilinear motion of the target}, this func-
tion mapping is simply a translation of vector v

The search effort applied to cell eg ; is denoted @ 9
(z1,0 = 0).

The conditional probability of detecting the target
given that the target is in the cell ¢+ and that the
search effort applied to this cell is 24 is p(r.s).
This probability is a classical exponential law, i.e.
p{zt,5) = 1—exp(—wy. g T 9). The term w; g stands
for the particular conditions of detection {visibili-
ty) for the cell eq .

4 'The 2-period search for the
?AND” track detection rule

First, we shall deal with the two period search problem
(i.e. n = 2}, More specifically, we shall say that the

HIn the case of a unique "hard” resource constraint
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target track has been detected if the target has been
detected at each (temporal) period of the search . We
then have to solve the following search problem :

1 1,8 2 0 12,8 2 ] N V(G) .

d
(4.4)

In the above equation 1,4 (respectively s ) denotes
the search effort applied to the cell ¢g; (respectively
¢p,2). Then, we form the Lagrangian of the primal
problem 4.4, ie. :

min —P  where: P =37, g:(8) p(z1,6) p(w2,0) ,
under the constraints :

2o (metaog)=20

L) =~ al) (1-e o) (1- e
8

+ A (le,a +Y @8- ‘1’) '
[:} [
=3 mewe — Y p26T26
#

4
=0 pee20.

In order to apply the Karush-Kuhn-Tucker conditions
of optimality (KKT for the sequel), we must consider
WO cases.

4.1 KKT optimality conditions and
their consequences

case 1 (x4 > 0)

In this case, the KKT condition {50 219 = 0} im-
plies {p1,8 = 0}. Then, the KKT stationarity condi-
tion (for the Lagrangian) simply results in

Fmﬁ;; L= —wg(fre ¥ e (1—e®)}+ A =0.

(4.5)
From 4.5, we note that the assumption &1 4 > 0 implies
9,0 > 0, otherwise the multiplier A should be zero.
Indeed, if A = 0 then it is easily seen (see 4.5) that the
value of the dual function 9(A) = infi; . .. ) L(A) is
—o0. Since, we have to maximize (), we see that A is
necessarily strictly positive (see 4.5 for the sign). Thus,

4.5 implies the validity of the following equation :

5—%; L) = —wg (@) e V728 (1 —e"Woe) 4+ A =0,
(4.6)
By collecting 4.5 and 4.6, and denoting X

e WFLE Hop = e”WEL we obtain :

Xl‘g (1 — Xgig) = X2,3 {1 _ Xl,ﬂ) 1
s0, that :
X199 =Xap

{4.7)

ile g1 =24 .
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The above equality is fundamental for solving the
problem.

case 2 {x15=0)
Assume now that 224 > 0, then the KKT condition
(relative to #2 ¢) should imply {see 4.6, with £1,5 = 0} :
2_£(A)=X=0, (4.8)

EPY

and, in turn, that the multiplier A should he zero. Un-
der this assumption, the value of (A} is —oo. Hence,
we can restrict to the strictly positive values of A, which
means that the assumption 1,9 = 0 implies @25 = 0.
Indeed, the hypothesis @2 4 > 0 should imply the valid-
ity of 4.6 and, in turn, the multiplier A should be zero
since we assume the nullity of ¢, which contradicts
the fact that A is strictly positive.

4.2 Solving the dual problem

In conclusion, the following result has been stat-
ed: 1,4 = Ta,¢. J0 that, we have now to deal with
the following (simplificd) optimization problem :

min —P where: P = 3", 01(6) (p(z1,6))°
P ¢ under the constraints :
Zs Tye — ‘I)/2 21,0 = 0 E V(g) .
(4.9)
Again, we examine the necessary conditions induced
by the KKT theorom. Now, we consider the reduced
Lagrangian functional £(A) given by :

L) ==Y @ (8) (1— 7o) 4 (2 P cb)
[} g

(4.10}
The positivity constraints relative to the search vari-
ables {x1,0} arc unplicitely taken into account by re-
stricting our search to positive values of the variables
z1,. Under the assumption that z; 4 is sirictly posi-
tive and differentiating L£{\} relatively to 1,5, we then
obtain :

PEO) = 9 i) emwore (L - emw510) +24 =0,
or, equivalently :
Xip (1= X160} = 7Py -
(4.11)
Equation 4.11 is a second order equation (in X1}, al-
lowing us to determing z; 4, for a given value of A .
Note that we restrict to the roots {0 or 2) of 4,11 lying
inside the interval [0,1], and select the root (denot-
ed X, o(A) ) which minimizes the reduced Lagrangian
functional £{\} 2).
2Note that we must test and compare the value of £{A} not

enly for the roots of 4.11, but also for iis lower bound f{i.e. X7 4 =
1 & 20 = 0

We have now to deal with the maximization of the dual
functional defined by :

W) ==Yy, a8 (1-X0)°,
+A {2 gy, E1,0(0) — ‘1’) )
() = =3 In{X, ,(N) if 1z 4(N) >0,

(4.12)
where the symbol {#).. denotes the values of the index
for which 4.11 has a root inside [0,1}. The maximiza-
tion of ¥(A) is rather easy since it corresponds to an
unidimensional search for a concave and differontiable
function. In turn, the is no duality gap.

Notation 1 The (spatio-temporel) index (8,1) for
which the research efforts are strictly positive are de-
noted (6,8)4. (t : index of the search period); (84 for
the first search period.

5 The n-period search for the
”AND” track detection rule

Quite similarly to the 2-period search, we assume that
the probability of detection of the track is the product
of elementary detection probability of detection {i.e. at
each period) and is thus given by 3

{ P =73 0:(0) p(x1,6) plixae) - plzn)
Plzpe) =; (L—e™wae @0y E=1,--x,n,
(5.13)
and the optimization problem is again :
min -1,
P nunder the constraints ; (5.14)

Lot +an=2,
&18 205"'1571,9 =0, V(g) '

Assume 15 # 0, then by a reasoning strictly iden-
tical to the 2-period case, we deduce that #ay #
0,---,zns # 0. The optimality equations deduced
from the KKT conditions then yield the folowing (non-
linear) system of n equations :

m Xio(l—1 Xog)--- (L= Xn.ﬁ) =

o Xoo (1= X1}~ (1 = vn Xn) = grrnisy =

In Xn,ﬂ (1 - M Xl,!i) s (1 — Tn—-1 Xn-—l,d?) = m)\g_l(ﬂ =c

(5.18)

#The scalar wy ¢ stands for the possibly changing visibility
canditions from one¢ period to another one
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Consider now the above system, dividing row (1) by
row (p) and denoting Y14 = m Xie .- Yae =
“Yp Xpg , We obtain :

Yia (1-Ype) _ oy

Yoo (I-Yie} — ap ? (5.16)

: . _ op Y18
ie Y0 = +TWY1,9 e Tar

Consequently, #,,¢ is deduced from 1,9, itself given

by:
= —|ln| —
e w1, [ (Yl,e

The problem is thus reduced to the determina-
tion of z,. From 5.16 we have I — Xpp
for (1 — X101/ (X100 — @) + ). Inserting this e-
quality in 5.15, we see that X, ; is a root of the foltow-
ing n-th order polynomial equation :

. 2

0™ Xy (1 Xp0)" ][ (Xup (s — ) + o) =

i=2

. {5.17)
The value of X, 4(X) is the root of 5.17 which min-
imizes the Lagrangian, deduced from 5.13; where
Ty g, 2o are determined (from z, ) by 5.16. The
computation load is relatively modest. From z, 4, the
dual function ¥(A) is deduced, i, :

Z zpo— P

(0:K)+

{6.18)

The problem is simply to determine the value of A
which maximizes the concave function #(A).

pA) == 3 [ % 0~ Xea)+2

@+ b+

So far, the problem has been considered in it-
s full generality. To illustrate the previous caleu-
lations, assume now that the visibility coefficionts
{wi,0, -+, wWne} are equal altogether, i.e. :plrye) =
¥ (l—e~¥*e) k=1,---,n then the optimality e-
quations 5.15 and 5.16 simply reduce to ¥, 9 = -+
¥ne 5 80 that X1 9 = -+ = X, 9 and the probabili-
ty of track detection as well as the dual function ¥(A)
become :

P o=y a@) b et
PA) = _E(a)+ g1(8) [’7 (1 _Kl,&(’\))]

2 (7 Sy, 21600 — @)
{5.19)
Again, we have to deal now with a simple monodi-
mensional optimization problem, involving a concave
functional.

0.
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Let us denote ®(A} the optimal value of the (total)
search effort for a given A; then the following result
holds :

Proposition 1 $(\) is a decreasing function of A .

Proof Deroting 8, the track parameter,
the Lagrangian L£{A) of the constrained problem

s L0 = P+ A0 58 (P =
S5 91(8)plers) Plong) )i so, that : YA =
~p5> + A, and consequently :
L) . BL(A)
MAA —, TS .
4\2 > /\1 = 6331',0 6&:;‘.3 y (5 20)

hence z; o(A1) 2 2; 0(Xa) (¥4, 8); and in turn 2(Az) <
B{Aq).

6 The "MAJORITY” rule for track
detection :

Up te now, our analysis has been restricted to an
?AND" rule for track detection. For numerous appli-
cations, a MAJORITY rule is also quite realistic. This
means that a track is said detected if a "sufficien-
t” number of elementary detections cccur "along” the
track. We have now to face specific problems. First, it
is difficult to give a general formmlation (for the gener-
al n-period search) of the dstection rule. Second, the
optimization problems become far more intricated.

6.1 The 3-period case and the "MAJOR-
ITY” track detection rule

The detection function is modified in order to take in-
to account a majority rule (" MAJORITY") for decision.
More precisely, the track is said to be detected if the
target is detected at least at 2 periods. With this rule,
the probability of detection becomes :

P = Z n () [Bo,2,3 Fozs (6.21)
s

+ Brao Przo+B0s Proat Bres Puosl.

In 6.21, the notation Py g3 corresponds to the fol-
lowing hypothesis: no detection at period 1, detection
at periods 2 and 3, idem for P20 and P The
notation ) 23 corresponds to a detection at each pe-
riod. Finally, the weights & 23, -, B1,2,3 are relat-
ed to the information ®gain” associated with an ele-
mentary event. Thus, the elementary detection terms
FPoz3,+, Pras have the following form :
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For the sake of simplicity, the following assump-
tions are made: the (detection) coefficients (.e.

— —w #1, _ p—u g, . p—W &3,
Fopg= e7voe (1 e m“} (L—e” R Boa,mms 1,021+ * 5 12,0, 566 6.23) are equal 5,
P120= e W E3,8 (1—6 1,9} {]_ﬁe wzz,s) ,

v B _ _ Let us first assume that the search efforts are non-zero
Pos= e Mfw(xll” e ml'a_)w (ml N “ zs's_)w‘m for all the periods {i.e.: zy # 0, +,z, # 1), then the
Plaz= (1-e #) (L—em o) (1 - e(ﬁ 2;)‘9) * KKT conditions result in :

Defining the reduced Lagrangian as £{A) = —P +
A3y (1,0 + @20+ map) — 8) , we adopt the follow- n h "
; , , Yn
e : mpliciby 4 : ya — T S R
ing netations for the sake of simplicity {(¥2 —¥3) i;:l&_z[‘a [(1 —w)  O—w) 1)
Bo2,z =01, Pra0 =03, Pros =6z, fr2s =97, (6.26)

{ Xig=e "0 Sy, Xgp =075 Sy
(6.23)
Assumning that yy, ¥, ya differ altogether from 1, the
KKT conditions yield :

1 (é"‘ 45] ‘*62)-}—(52 —5*

= 24
bs [m & — 61 —53) 1 55 & (6.24)

Yz .

Then, inserting y3 = fly1) y2 (see 6.24) in 6.22, we
obtaln the following 2-th order equation :

(a-by) vi+(c—du?) yat (e +Fm) =0,

where the coefficients (a,b, ¢, d) ave casily caleulated.
In this case {2p,e # 0; k= 1,2,3), the distribution of
the search efforts is now completely determined by the
optimality equations.

Also from the optimality equations, we see that
the nullity of the search effort at two periods (i.e.
yy = Yy = 1 for k # k') results in the nullity of
the total search effort (e, ¢, = y» = ¥a = 1). So,
we must consider the cases where the search effort is
null at one pericd. In this case, only two optimality
equations are valid. Consider for instance (other cases
are completely similar), the case 29 = 0, then we

Since the term between brackets is well defined and
non-zero, we deduce from 6.26 that ¥ = ys, and more
generally considering the difference equations obtained
by substracting row ({ + 1) to row ¢ in the optimality
equations , we have y1 = yp» = -+ = y,. Moreover,
wo can prove that the search efforts (for a given track
parameter {#}) is either zero for all the periods or zero
for at mest onc period. The rest of the derivation is
identical to the 3-period case.

7 Conclusion

The problem under consideration was the optimization
of the search effort for detecting tracks. In order to
develop feasible methods, we focused on discrete {both
in time and space) optimization . Under simple con-
straints (relative to the distribution of the search of-
fort), the dual formalism appears as a feasible and ver-
satile approach.
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n
Po=Ran =1 [l (1—w),
Py BPosen  =u Il e0-w),
i -1
P B8lpne10 = [l C~w).
-1
P, BPa-n =100 (L—w) .
(6.25) TR Ao . . .
As seen previously (see section 6.1}, this assumption does
The index of missed detection is the index of § not reduce the generality of our approach.
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