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Abstract 
Search thconj is  the  discifdine udaich treats the problem of 
how best to find the optimal distributaon of the  total search 
effort which maximizes the probability of detection. In the 
"classical" search theory, the target is said detected if a de- 
tection occurs at any time of the time frame. fiere, the tar- 
get truck will  be surd detected i f  elementary detections OCCUT 

at v a ~ o u s  times. That means that there is a t e s t  Jar accep- 
tat ion (or dekeciion) of a target track rand that the p r o b h  
is to optimize the allocatson of the  search effort for  tmck 
detection. Keywords: Search theory, optimization, duality, 
detection 

I Introduction 
Search theory is the discipline which treat.s the problem 
of how best to  search for an objcct when the amount 
nf searching efforts is  limited and only probabilities of 
the object's possible position are given. An importan- 
t litcraturc has been dcvoted to this subject, includ- 
ing surveys [l] and books [2], [3], [4]. The situation is 
characterized by three data: (i) the probabilities OF the 
searched object (the "targct") being in various possi- 
ble locations; (ii) the local detection pr06abikity that a 
particular amount of local search effort should dctec- 
t the target: (iii) the total amount of searching effort 
available. 
However, we shall consider here a radically different 
problem. The problem is to detect target tracks. In the 
"classical" search theory, the target is said detectcd if 
a detection occurs at any time of the time frame. Here, 
the target, track will be said detected if elementary de- 
tections occur at various times, That means that there 
is a test for acceptation (or dctection) of a target track; 
associated with a spatio-temporal modelling aE the tar- 
get t,rack. Moreover, we shall not consider (in general) 
bounds relative to the search effort at each period. The 
bound is relative to the global search eifort. 
The paper is orgauized as follows. In section 2, the 
optimization framework is prcscntcd; followed by the 
gencrnl formulation of thc scarch problem (sec section 
3). In section 4, we deal with the 2-period search prob- 
lem, for the "AND" detection rule. Then: thc optirnka- 

'This work has been supporbcd by DCN/lngPnicric/Sud, (Dir. 
Const. Navales), France 

tiori problems are detailed and solved, whiIe they are 
extended to thc n-period search in section 5. Another 
detection rule is considered in section 6, the " h i ~ ~ O I t 1 -  
W' detection rule. For a more extensive presentation 
(including simulation results), we refer t o  [ 5 ] .  

2 The optimization framework 
The major part of this paper is centered around the 
following (primal) optimization problem : 

In 2.1, X ~ , O  represents a rcscarch effort, affected to the 
ccll indexed by the parameter 8, at the search period k. 
The index k takes its valucs in the subset { 1, . . . , n}. 
Thc parameter 0 takes its valucs in a multidimension- 
al space, characterizing the target trajectory (e.g. ini- 
tial position and velocity) and the n-dimensional vector 
Xo = (q,~,  5 2 , ~ ~ .  ' z,,o)* reprcsents the efFort vcctor 
associated with the target trajectory (or track) indexed 
by 8. Furthermore, p ( s h , e )  is the elementary probabili- 
ty of detection in the cell ( k ,  €9, for a search effort ~ : g , o ;  
while f is a given differcntinble function. The following 
simple remarks are thcn fundamental : 

the functional F ( 2 1 . 0 , .  , , ,zn30) is a differentiablc 
functional of the variablcs z k , ~ ,  

the constraints a r e  qualificd since they a te  linear, 

the  "hard constraint" is the cquality constraint (i.e. 
2 1 , ~  + 5 2 , e .  . . + xnqd = Za), the inequality con- 

These considerations lead us to considcr and use ba- 
sically the dual formalism. The following dual function 
i s  considered : 

A 

straints bcing implicitely taken into account. 
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We stress that, in our framework, the function $(A) 
may be cxplicitely determined on the subset defined 
by the inequality constraints. The dual problem (a) 
then takes the fallowing form : 

2) : maxx $(A) I (2.3) 

The decisive benefits of this approach are 1 

the maximization of $(A) is an (unconstrained) 
monodimensional problem, 

I the function $(A) is differentiable, 

from the solution of the dual problem, the so- 
- lution x of the primal problem P is deduced (say 
- X(X)). The couple (A, X) is a saddle point of the 
primal-dual problem. 

3 Modelling and formulation of 
the problem 

Assuming the target motion rectilinear and uniform, it 
is completely defined by its initial position vector (e) 
and a velocity vector (v), i.e. 0 E (i,v). Assumptions 
of our search problem are as follows : 

a A target moves in a search space consisting of a 
finite number of search cells C, = (cg,t }e in dis- 
crete time T = ( 1 , 2 , . - . , ~ } .  We further assume 
that the sequence of (searched) cells { c o , ~ } ~  is com- 
pletely defined by the parameter (e) (condition- 
ally deterministic motion). Thus, the mapping 
cg,l 3 C Q , ~  . . -+ is a bijcctian. In the simpler 
case (rectilinear motion of the target), this func- 
tion mapping is simply a translation of vector w 

The search effort applied to cell cg,t is denoted Z ~ , O  

b t , O  I 0). 

The conditional probability of detecting thc target 
given that the target is in the cell Ce,t and that the 
search effort applied to this cell is is p ( s t , e ) .  
This probability is a classical exponential law, i.e. 
p(Xt ,#)  = l-exp(-wt,o zr,b). The term W ~ , O  stands 
for the particular conditions of detection (visibili- 
ty) for thc cell CO,$ . 

4 The 2-period search for the 
"AND" track detection rule 

First, we shall deal with the two period search problem 
(i.e. n = 2). More specifically, we shall say that thc 

l l n  the case o f  a unique "hard" resource constraint 

target track has been detected if the target has been 
detected at each (temporal) period of the search . We 
then have to solve the following search problem : 

min -p where: p = gl(@ p(zl,S) p(s2 ,S)  , 
under the constraints : 
CO ( z I , ~  + ~ 4 0 )  @ ,x1,8 I O  , x ~ , B  2 0 , v(S) 

(4.4) 
In the above equation x1,d (respectively z2,~) denotes 
the search effort applied to  the cell c@,I (respectively 
cg ,~ ) .  Then, we form the Lagrangia.n of the primal 
probIem 4.4, i.e. : 

- ~ P l , O ~ l , O  - E P z , 8 2 2 , 6  3 

8 B 

P1,8 2 0, P 2 , S  2 0 .  

In order to apply the Karush-Kuhn-Tucker conditions 
of optimality (KKT for the sequel), we must consider 
two cases. 

4.1 KKT optimality conditions and 
their consequences 

case 1 ( xl,b > 0 )  
In this case, tho KKT condition { p l , ~  x 1 , ~  = 0 }  im- 
plies {PI,@ = O}. Then, the KKT stationarity condi- 
tion (for the Lagrangian) simply results in : 

8 C(X) = - W g l ( o ) e - ~ " l . e  (1 - e-wrZ.0 ) + X = O .  

(4.51 
GG 

From 4.5, we note that the assumption x l , ~  > 0 implies 
82,d > 0, otherwise the multiplier X should be zero. 
Indeed, if X = 0 then it is easily seen (see 4.5) that the 
value of the dual function $(A) = in€(,,.,,,,,,) L(X)  is 
--CO. Since, we have to  maximize $(A), we see that X is 
necessarily strictly positive (see 4.5 for the sign). Thus, 
4.5 implies the validity of the following equation : 
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, 

The abovc equality is fundamental for solving the 
problcm. 

case 2 ( x1,o = 0) 
Assume now that ~ , 4  > 0, then the KKT condition 
(relative to X Z J )  should imply {see 4.6, with $ 1 , ~  = 0) : 

and, in turn, that the multiplicr X should be zero. Un- 
der this assumption, the value of $(A) is -m. Hence, 
wc can restrict to the strictly positive values of A )  which 
means that the assumption x1,o = 0 implies X ~ , O  = 0. 
Indeed, the hypothesis x2,o > 0 should imply the valid- 
ity of 4.6 and, in turn, the multiplier X should be zero 
since we assume the nullity of %I,%, which contradicts 
the fact that X i s  strictly positive. 

4.2 Solving the dual problem 
In conclusion, the following result has been stat- 
ed : z1,o = 52,e. so that, we have now to deal with 
the following (simplified) optimization problem : 

min -P where : P = Cogr(e)  ( P ( z I , o ) ) ~  , 
under thc constraints : 
cB = ~2 , W  2 0 , y e )  . 

(4.9) 
Again, we examine the necessary conditions induced 
by the KICT tticorcm. Now, we consider the reduced 
Lagrangian functional C(X) given by : 

.E(X) = - 
0 

(4. LO) 
The positivity constraints rclativc to the search vari- 
ables { x ~ , o ]  arc implicitely taken into account by re- 
stricting DUI search to positive values of the variables 
ZQ. Under the assumption that x1,o is strictly posi- 
tive and difEerentiating C(X) relatively t o  q o ,  we then 
obtain : 

, 

(4.11) 
Equation 4.11 is a second order equation (in XI+@), al- 
lowing us to  determine gl,#, for a given vahic of . 
N ~ t e  that we restrict to thc roots (0 or 2) of 4.11 lying 
inside the interval 10,1], and select the root (dcnot- 
ed & s ( X )  ) which minimizes thc reduced Lagrangian 
functional L(X) ). 

2Note that we must test and compare the value of L(X) not 
only for the roots of 1.11, but also for it5 lower bound (i.e. Xl,e = 
1 H 21,o  = 0 

We have now to deal with the maximization of the dual 
functional defined by : 

2 
= -&, gl(e) ( ~ - & , d ~ ) )  1 

",,&) = -E In (&,0(4) i f :  & , s o )  > 0 I 

+ A  (T: &)+ S l , 0 ( 4  - @ )  1 

(4.12) 
whcrc the symbol (O)+  denotes the values of thc index 
for which 4.11 has a root inside [0,1]. The maximiza- 
tion of $(A) is rather easy since it corresponds to  an 
unidimensional search for a concave and diffcrcntiable 
function. In turn, the is no duality gap. 

Notation I The (spatia-tempomi) andex (8 ,  t)  for  
which the research efiorts are strictiu positave are de- 
noted (8 , t )+  (t : index o j  the search period); (O)+  f o r  
the first search period. 

5 The n-period search for the 
"AND" track detection rule 

Qnite sirnilmly to  the 2-period search, we assume that 
thc probability of detection of the track i s  the product 
of elementary detection probability of detection (i.e. at 
each period) and is thus given by : 

p C% 91 (d )  P ( W )  P(Za,o) ' .P(%,O) I 

p(zt.0) = (1 - e--Wk,u 5 ~ ~ 0 )  = 1, - - > n  I 

(5.13) 
I 

and the optimization problem is again : 

min -PI 
iindcr the constraints ; (5.14) CO [w f * ' 4- 3;n,O] = * I 
X l - 0  2 0 I ' ' 1 Z n , 8  2 0 I v(0) * 

Assume x l , ~  f 0, then by a reasoning strictly iden- 
tical to the 2-period c a e ,  wc deduce that 22,~ # 
0 ' . . , # 0. The optimality equations deduced 
from the ICKT conditions then yield the following (non- 
linear) system of n equations : 

"The scalar w k , ~  stands for the possibly changing visibility 
conditions from one pcriorl to  another one 
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Consider now the abovc system, dividing row (I) by 
row (p) and denoting Y I , ~  = ~1 XI,O ;. . , Y,,o = 
T~ X,,o , we obtain : 

A A 

Consequently, zp,o is deduced from q , o l  itself given 
by: 

The problem is thus reduced to the determina- 
tion of E ~ , ~ .  From 5.16 we have I - X,,o = 
[a1 (1 - Xl,o)]  / (Xl,o(cu, - a,) +- a l ) .  Inserting this c- 
quality in 5.15, we see that XI,@ is a root of the follow- 
ing n-th order polynomial equation : 

pm 

a1n-2 X1,O (1 - Xl,o)"-3-rI ( X I $  (ai - a1) + 01) = 0 . 
i=2  

(5.17) 
The value of X,,#(X) is the root of 5.17 which min- 
imizes the Lagrangian, deduced from 5.13; where 

' .. ,gn,B are determined (from by 5.16. The 
computation load is relatively modest. Ram gl,o, the 
dual function +(A) is deduced, i.e. : 

(5.18) 
The problem is simply to determine the value of 1 
which maximizes the concave function $(A) 

So far, the problem has been considered in it- 
s full generality. To illustrate the previous cdcu- 
lations, assume now that the visibility coefficients 
{ w r , ~ ,  * - , w,,~]  are equal altogether, i.e. : p ( z r , @ )  = 
y (1 - e-w k = 1,. . , n then the optimality e- 
quations 5.15 and 5.16 simply reduce to  Y1,o = . . . = 
Y,,e , so that Xl,0 = . . = X,,e and the probabili- 
ty of track detection as well as thc dual function $(A) 
become : 

P 
IlO) 

= c0 gl(e) [y (1 - e-w Z V ) ] ~  . 
= - C(S)+ Pl(d) [r (1 - xl,e(4) I "  
+A (n  &)+ x1,dX) -a)  . 

(5.29) 
Again, we have to deal now with a simple monodi- 

mensionai optimization problem, involving a concave 
functional. 

Let us denote $(A> the optima1 value of the (total) 
search effort for a given A; thon the fallowing result 
holds : 

Propositian 1. cB(X) is a decreasing fvnction o f X  . 

Proof : Denoting 0, the track parameter, 
the Lagrangian L(X) of the constrained problem 
is L(A,6') = -17 + X ( C ~ y l ~ ~ , ~  - +) ( P  = 
CO Q 1 ( 0 ) P ( q S )  . . . P ( . z . , ~ , B )  1; so, that : = 
I- ::, + X , and coiisequontly : 

6 The "MAJORITY" rule far track 
detection : 

Up to now, our analysis has been restricted to an 
"AND" rule for track detection. For numerous appli- 
cations, a MAJORITY rule is also quite realistic. This 
means that a track is said detected if a "sufficien- 
t" number of elementary detcctions occur "along" the 
track. We have now to face specific problems. First, it 
is dificult to give a general formulation (for the gcncr- 
a1 n-period search) of the detection rule. Second, the 
optimization problems become far more intricated. 

6.1 The 3-period case and the "MAJOR- 
ITY" track detection rule 

The detection function is modified in order to take in- 
to  account a majority ruIc ("MAJORITY'~) for decision. 
More precisely, the track is said to  be detected if thc 
target is detected at least at 2 periods. With this rule, 
the probability OF detection becomes : 

(6.21) 

+ P ~ , ~ , ~  s,~,~ + &,0,3 p1,0,3 + P1,2,3 

In 6.21, the notation Po,2,3 corresponds to the fol- 
lowing hypothesis: no detection at period 1, detection 
at periods 2 and 3, idem for P1,2,0 and P~,o,s. The 
natation P1,2,3 corresponds to a detection at each pe- 
riod. Finally, the weights po,2 ,3 , .  I ,  /31,2,3 are relat- 
ed to thc information "gain" associated with an ele- 
mentary event. Thus, the elementary detection terms 
P0,2,3 , * , P1,2,3 have the following form : 
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Then, inserting 3 3  = f(y1) yz (see 6.24) in 6.22, we 
obtain the following 2-th order equation : 

(a - b V I )  Y; + ( c  - d 9:) $2 + ( e  U? + f 91) = 0 , 
where the coefficients (a, b, e, d )  are easily calculated. 
In this case (z:k,o # 0 j k = 1,2,3) ,  the distribution of 
the search efforts is now completely dctmmined tiy the 
optimality equations. 

Also from the optiindity equations, we see that 
the nullity of the search effort at two periods (i.e. 
yk = pn, = 1 for IC # k ' )  restilts in the nullity of 
the total scarch effort (i.e. y1 = y2 = y~ = 1). So, 
we must consider the cases wherc thc search effort is 
null at one period. In this cwc, only two optimdity 
equations arc valid. Consider €or instance (other cases 
are cornpIetdy similar), the case x2,o = 0, then we 
obtain 42 y~ {l - ~ 3 )  = , 

x 

6.2 The n-period search and the '?MA. 
.JORITY" track detection rule 

We shall now restrict to the fallowing track detection 
rule. The track is said detected if, at Ieast, (n  - 1) 
elementary detections occur (for a n-period scarch). 
Thus, the probabilties of the following evcnts are con- 
sidered : 

4 = l i b , 2 ,  ..., la 
4 131,0,2, ..., n 

P, 9 , 2  ,.1., n-1,0 

P* P1,2,-..,n = n;:; (1 - Y i )  I 

= !I1 rIL, 11 - Y i )  I 

= Y1 nL,+2 0 - V i )  I 

= pn n;:; (1 - y i )  , L (6.25) 

'The index of missed detection is the index of d 
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For the sake of simplicity, the following assump- 
tions are ma&: the (detection) coefficients ( i c ,  
@o,a, ...,n, ,&,o,2, ..., n, - * * , / % , 2  ,..., see 6.23) are eqlld 5 ,  

Let us first assume that the search efforts arc non-zero 
for dl the periods (i.e. : zl # 0, ' . .  ,xn # D), then the 
KKT conditions result in : 

(6.26) 
Since the term bctwccii brackets is well defined and 
non-zero, we dcdscc from 6.26 that = ~ 3 ,  and mare 
generally considering the difference equations obtained 
by substracting row (i + 1) to row i in the optimality 
cquations , we have y1 = y2 = - 4 .  = pn. Moreover, 
wc can prove that the search efforts (for a given track 
parameter {S}) is either zero for d l  the periods or zero 
for at  most onc period. The rest of the derivation is 
identical to the 3-period case. 

7 Conclusion 
The problem under consideration was thc optimization 
of the search effort for detecting tracks. In order to 
develop feasible methods, we focused on discrete (both 
in time and space) optimization . Under simple con- 
straints (relative to the distribution of the search cf- 
fort), the dual formalism appears as a feasible and ver- 
satile approach. 
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SAs seen previously (see section 6.1)> this assumption does 
not reduce the generality of O H T  approach. 
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