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Abstract

This paper deals with the optimization of the observer trajectory for target motion analysis. The observations are made of estimated
bearings. The problem consists in determining the sequence of controls (e.g. the observer headings) which maximizes a cost functional.
This cost functional is generally a functional of the FIM matrix associated with the estimation of the source trajectory parameters.
Further, note that these parameters are only partially observed. The determinant of the Fisher information matrix (FIM) has all the
desirable properties, the monotonicity property excepted. This is a fundamental difference with ‘‘classical’’ optimal control. The
analysis is thus greatly complicated. So, a large part of this paper is centered around a direct analysis of the FIM determinants. Using
them, it is shown that, under the long-range and bounded controls hypotheses, the sequence of controls lies in the general class of
bang-bang ones. These results demonstrate the interest of maneuver diversity. More generally, they provide a general framework for
devising a strategy for optimizing the observer trajectory, only based on the observations (i.e. the bearing rates). ( 1999 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Passive bearings-only tracking (BOT for the sequel)
techniques are used in a variety of applications (Nardone
et al., 1984; Aidala and Hammel, 1983) like sonar, in-
frared tracking (Barniv, 1985), optronic or electronic war-
fare. In the passive sonar context, the basic problem
of target motion analysis (TMA) is to estimate the traject-
ory of a moving object (e.g. position and velocity for
a rectilinear motion) from noise-corrupted sensor data.
Classical bearings-only TMA methods are restricted to
constant motion parameters (usually position and velo-
city) (Nardone et al., 1984) even if extensions to maneu-

vering sources constitute an important area of present
research (Chang and Tabaczinski, 1984; Blom and Bar-
Shalom, 1988). In the case of a maneuvering source,
a leg-by-leg2 hypothesis for the source trajectory is quite
common in the sonar context.

In the BOT context, the source trajectory is only
partially observed through noisy non-linear measure-
ments (estimated bearings). Here, a moving observer
passively monitors noisy bearings to estimate a source
trajectory. A great deal of work has yet been devoted to
the analysis of the observability (Nardone and Aidala,
1981; Le Cadre and Jauffret, 1997). However, this is
a binary (yes/no) analysis and a practical fundamental
question remains: if the system is observable what is the
accuracy of the source trajectory estimate? The TMA
methods are now well understood and their performance
has been carefully investigated, at least for simple scen-
arios (Nardone et al., 1984; Trémois and Le Cadre, 1996).
It is quite evident that the performance of any TMA
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method is highly depending on the observer maneuvers
Mc Cabe, 1985; Fawcet, 1988). In the past, the import-
ance of this problem has been recognized even if efforts
were, for a large extent, devoted to the considerably
simpler case of bearings-only localization (i.e. the source
is fixed). For instance, Liu (1988) and then Hammel et al.
(1989) have considered a lower bound of the determinant
of the two-dimensional Fisher information matrix (FIM),
allowing to approximate the problem within the general
framework of optimal control (see Section 3).

The general problem consists in optimizing controls,
which are kinematic parameters of the observer, in order
to optimize the statistical behavior of the TMA. A classi-
cal approach consists then in considering the (FIM) and
more precisely its determinant. The choice of the determi-
nant functional is reasonable (Helferty and Mudgett,
1993; Jauffret and Musso, 1991). This is a common cost
functional in the estimation literature. The relations be-
tween the criteria derived from various functionals have
been thoroughly studied in the optimal design literature.
Furthermore, we shall show that, under hypotheses rea-
sonable in the BOT context, the maximum of det(FIM) is
attained when the sphericity criterion is maximum. More
generally, note that this problem is, of course, not specific
of TMA and arises in a great variety of applications,
mixing estimation and control. A good example is the
optimisation of tracking performance (Kershaw and
Evans, 1994). The absence of any a priori knowledge
about the source trajectory is also a great source of
difficulty. This is solved by considering the problem in its
natural framework, i.e. that of modified polar coordi-
nates, thus separating the observable and unobservable
parameters as well as their respective effects.

Another reasonable assumption consists in modelling
the observer trajectory by a sequence of legs. A leg is
a part of the trajectory where the motion is rectilinear
and uniform (constant velocity vector) (Nardone et al.,
1984). Then, the problem consists in determining the
sequence of observer headings which optimize a cost
functional (Holtsberg, 1992). For instance, Fawcett
(1988) has considered a two-leg observer trajectory and
has determined the heading of the second leg which
maximizes the accuracy of the source range estimation.
Jauffret and Musso (1991) and Hammel et al. (1989) have
extended this work to an arbitrary number of observer
legs (up to 20 for Hammel, 1988). Even if this approach is
mainly computational, interesting and thorough insights
have been obtained by this way. Another view of the
problem has been provided by Olsder (1984) and Pas-
serieux and Van Cappel (1991, 1998). In their ap-
proaches, the FIM components are included in the
source state. The corresponding methods lie in the class
of optimum design approaches, thus assuming that the
source trajectory is known. In Olsder’s work (1984), the
idea is that, given a certain maneuver, a better maneuver
is found and this procedure is repeated up to conver-

gence, possibly to a local extremum. However, a system
of 18 nonlinear coupled differential equations is needed
which leads to a certain numerical burden. The approach
of Passerieux and Van Cappel (1991, 1998) is also quite
brilliant but seems less demanding. The aim of such
approaches is mainly to provide a catalogue of recom-
mended maneuvers (see Section 4).

In fact, the optimal control approaches are very at-
tractive. Unfortunately, as we shall see later, the det
functional does not have the monotonicity property (see
Sections 2 and 4) so it is not at all true that adding
a control optimal for the time t to a control sequence
optimal up to time t#1 will yield an optimal control
sequence up to time t. This explains, for a large part, the
complexity of the analysis. Practically, this means that
our problem cannot be treated (in its full generality) with
the methods of optimal control. So, a large part of the
paper is centered a direct analysis of the FIM determi-
nants which will play the central role. More precisely, we
shall show that using elementary multilinear algebra,
accurate approximations of det(FIM) may be obtained.
More specifically, we shall prove that det(FIM) may be
approximated by a functional involving only the success-
ive source bearing rates, thus yielding the general form of
the optimal controls (observer maneuvers). In particular,
it will be shown that, under the long-range and bounded
controls hypotheses, the sequence of optimal controls
is a bang-bang one. These results demonstrate the
interest of maneuver diversity. More generally, they
provide a general framework for optimizing the observer
trajectory and constitute the major result of this
paper.

First, a general presentation of the problem will be
given in Section 2. Connections with optimal design
approaches and optimal control are also included. The
applications of optimal control theory are considered in
Section 3. Section 4 constitutes the core of the paper. It
relies upon a direct analysis of the FIM determinant.
First, a constant source bearing rate is considered. Then,
using the same formalism, these results are extended to
the case of time-varying (piecewise constant) source bear-
ing rates. The optimisation problems are presented in
detail. This is followed by a geometric interpretation and
general conclusions.

Standard notations will be used throughout this
paper:

f a bold letter denotes a vector while a capital standard
letter denotes a matrix,

f a capital calligraphic letter generally denotes a sub-
space or a subset of vectors,

f the symbol (*) means transposition,
f r

x
and r

y
represent the relative x and y coordinates,

v
x

and v
y
denote the relative x and y velocities,

f t or k is the time variable, r is the distance (range), h is
a bearing and u a heading,
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Fig. 1. Typical TMA scenario.

f the symbol i"means approximation at the ith order,
f det represents the determinant, tr stands for the trace,

diag denotes a diagonal matrix.
f Id

n
is the n-dimensional identity matrix, the symbol cov

stands for the covariance matrix,
f BOT: bearings-only tracking; RUN: rectilinear uni-

form motion; TMA: target motion analysis; FIM:
Fisher information matrix; PMP: Pontryagin max-
imum principle.

2. Problem formulation

The general notations are identical to those of the
reference paper (Nardone et al., 1984). The physical para-
meters are depicted in Fig. 1. The source, located at the
coordinates (r

x4
, r

y4
) moves with a constant velocity vec-

tor v (v
x4

, v
y4
) and is thus defined to have the state vector:

X
4
¢[r

x4
, r

y4
, v

x4
, v

y4
]*. (2.1)

The observer state is similarly defined as

X
3%#

¢[r
x3%#

, r
y 3%#

, v
x3%#

, v
y3%#

]*,

so that, in terms of the relative state vector X defined by

X"X
4
!X

3%#
¢[r

x
, r

y
, v

x
, v

y
]*,

the discrete-time equation of the system (i.e. the equa-
tion of the relative motion) takes the following form
(a¢t

k`1
!t

k
"cst):

X
k`1

"FX
k
#u

k
, (2.2)

where

F"'(k, k#1)"A
Id

2
0

aId
2

Id
2
B , Id

2
¢A

1

0

0

1B .

In the above formula t
k
is the time at the kth sample,

while the vector u
k
"(0, 0, u

x
(k), u

y
(k))* accounts for the

effects of observer accelerations (or controls). We denote
U

n
¢(u

1
,2 , u

n
), the sequence of observer controls up to

time n. Eq. (2.2) assumes that between t
k

and t
k`1

the
source motion is rectilinear and uniform, this hypothesis
will be taken along the whole paper. All along the paper,
the vector X denotes the relative state vector at a given
instant. An usual choice for the reference time is 0, in this
case X is X

0
. For the sake of brevity, the reference time

will be generally omitted. Indeed, it is a fundamental
result that our analysis is independent of the reference
time (cf Proposition 2).

As usual in passive TMA (Nardone et al., 1984), the
available measurements are the estimated angles hª

k
(bear-

ings) from the observer to the source, so that the observa-
tion equation stands as follows (w

k
is the measurement

noise):

hª
k
"h

k
#w

k
, (2.3)

with

h
k
"tan~1 A

r
x
(k)

r
y
(k)B .

The measurement noise w
k

is usually modelled by an
i.i.d. zero-mean, gaussian process with a given variance
p2. The four-dimensional state equation (2.2) and the
non-linear measurement equation (2.3) define the bear-
ings-only motion analysis process (TMA). Given the his-
tory of measured bearings #ª ¢Mhª

i
Nn
i/1

the likelihood
function is (Nardone et al., 1984)

P(#ª DX)"cst exp [!1
2
E#ª !# (X)E2& ] ,

#(X) defined by Eqs. (2.2) and (2.3),

E#ª !#(X)E2& ¢ (#ª !#(X))*&~1(#ª !#(X)),

&"diag (p2).

(2.4)

The maximum likelihood estimate (MLE) Xª is the
solution to the likelihood equation

Xª "argmaxX log [P (#ª DX)]. (2.5)

The above equation does not have explicit solution.
So, the following Gauss—Newton algorithm is usually
considered (i is the iteration index):

Xª
i`1

"Xª
i
!o

iCA
L#(X)

LX B
*

&~1
L#(X)

LX D
~1

X"Xª
i

]A
L#(X)

LX B
*

&~1 (#ª !# (Xª
i
) ) (2.6)

with o
i
being the step size of the algorithm.

The calculation of the gradient vector of the compo-
nents of #(X) is easily derived from Eqs. (2.2) and
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3 L#(X)/LX"(G

1
,2 , G

n
)*.

4X is X
0

if the reference time is 0.
5F denotes a FIM matrix, UM

k
the optimal sequence of controls from

n to k.

(2.3), yielding

tan(h
k
)"

r
x
(k)

r
y
(k)

"

r
x
(0)#kv

x
#+

l
u
l,x

r
y
(0)#kv

y
#+

l
u
l,y

,

and consequently

L
Lr

x
(0)

tan(h
k
)"

1

cos2(h
k
)

Lh
k

Lr
x
(0)

"

1

r
y
(k)

,

so that

Lh
k

Lr
x
(0)

&

cos2 h
k

r
y
(k)

"

r
y
(k)

r
k

cos h
k

r
y
(k)

"

cos h
k

r
k

. (2.7)

The other components of the partial derivatives are ob-
tained by the same way, giving

Lh
k

Lr
y
(0)

"!

sin h
k

r
k

,

Lh
k

Lv
x

"

k

r
y
(k)

cos2 h
k
"

k

r
k

cos h
k
,

Lh
k

Lv
y

"!

k

r
k

sin h
k
.

(2.8)

Collecting the previous results, the partial derivative
matrix of the bearing vector #(X) with respect to the
state components is deduced (Nardone et al., 1984),
yielding

L#(X)

LX
"A

cos h
1

r
1

!

sin h
1

r
1

cos h
1

r
1

!

sin h
1

r
1

F
cos h

n
r
n

!

sin h
n

r
n

n cos h
1

r
n

!

n sin h
n

r
n
B , (2.9)

where Mh
i
Nn
i/1

represent the source bearing at the instant
i and Mr

i
N the source-observer distance. In Eq. (2.9) the

reference time is the instant 0 (see Proposition 2). Con-
sider now the case of a non-maneuvering source (con-
stant velocity vector), then the calculation of the FIM is
a routine exercise yielding, under the Gaussian assump-
tion (Nardone et al., 1984)

FIM (X,U)"A
L#(X)

LX B
*

&~1A
L#(X)

LX B . (2.10)

We shall use this formulation of the FIM along the
whole paper. Actually, the performance of any TMA
algorithm is dramatically related to the observer maneu-
vers. So, optimizing these maneuvers represents the main
problem in TMA. It is therefore not surprising that
a great deal of work has been devoted to this subject. The
problem then consists in determining a sequence of con-
trols maximizing a cost function. Since we deal with the
estimation of the source trajectory (the vector X, in fact)
it seems reasonable to consider that the cost function
is a functional of the FIM, leading to the following
problem:

Denoting G
k
3 the gradient vector of the log-likelihood

functional (2.4), i.e. .

G
k
"

1

p
k
r
k

(cos (h
k
),!sin (h

k
), k cos(h

k
),!k sin (h

k
))*,

the problem is to determine the sequence of controls
Mu

1
,2 , u

n
N (denoted U

n
) such that

U
n
Pargmax Cdet A

n
+
k/1

G
k
G*

kBD , (2.11)

tan(h
k
)"

r
x
(0)#kv

x
#+k

l/1
u
l,x

r
y
(0)#kv

y
#+k

l/1
u
l,y

.

In Eq. (2.11), the gradient vector G
k
denotes, in fact, the

vector GX
k
(X

k
"f

k
(X,U

k
), see Eq. (2.2)). The difficulty

and the originality of the above problem stem from the
two following facts. First, the source motion is unknown
which means that the reference state vector X is un-
known.4 The problem is to optimize its estimation. So,
practically, the sequence of bearings is unpredictable.
Second, we deal with a global optimization problem
which means that we seek for an optimal sequence of
controls maximizing a cost function based on the whole
FIM matrix. Of course, the problem is drastically eased
by considering an additive (matrix) cost functional, but
(as we shall see later) if the problem becomes far simpler
the associated solutions optimized observer trajectories)
perform quite poorly. Moreover, in this context, our
problem can be treated by means of the dynamic pro-
gramming principle. Unfortunately, it necessarily re-
quires that the cost functional f (from H

n
, the vector

space of n-dimensional Hermitian matrix to R) satisfies
the following motonicity property, denoted MDP
(Matrix Dynamic Programming Property) and defined
below:

Definition 1. The function f (H
n
PR, differentiable, C2)

has the MDP if the following implication holds, whatever
C3H

n
:

f (B)'f (A)N f (B#C)'f (A#C).

An interpretation of this definition in terms of dynamic
programming (maximization) is the following type of
inequality (Le Cadre and Trémois, 1997):5

maxUM *
k
fA

k
+
i/n

GX
i
G*X

iB4max
uk

[ f MGX
k
G*X

k
#F (X

0
,UM *

k`1
N]

which must be valid for the strategy UM *
k
, optimal up to

time k, and for k"n!1,2 , 0. Roughly, the MDP
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6C is a given vector.

appears as a material form of a ‘‘comparison’’ principle.
So, it plays a fundamental role in dynamic programming.
A fundamental question consists in determining the func-
tionals f having the MDP property. An answer is pro-
vided with the following result.

Proposition 1. ¸et f satisfy the MDP property, then

f (A)"g (tr(AR)).

where g is any monotonic increasing function and R is
a fixed matrix.

We refer to Le Cadre and Trémois (1997) for the proof
of Proposition 1. It is simply based on the fact that if
+f (A) and +f (B) are not colinear, then their respective
orthogonal subspaces are distinct which implies that
there exists a matrix C for which the MDP is not satis-
fied. Therefore, +f (A) and +f (B) must be colinear, what-
ever A and B. This is a very strong property. In turn, this
yields the general form of f. Consider for instance
f (A)"log det A, then (Lancaster and Tismenetsky) for
a non-singular matrix A,

Df
A
(C)"tr (A~1C)"(+*f (A),C),

and we see immediately that f does not have the MDP
property. The same remark is valid for functionals as
simple as f (A)"tr(A~1).

Actually, our problem presents strong similarities with
the theory of optimal experiment design (Whittle, 1973).
More precisely, this general problem consists in deter-
mining the values of the experiments X

k
, or more gener-

ally a continuous distribution m (dX) in a design space
which optimize the estimation of an unknown parameter
conditioning the observation (X

0
, here). So, the following

matrix M(m) is considered:6

M(m)+(1/n)
n
+
k/1

GX
k
G*X

k
,

"PGX G*X m (dX) . (2.12)

The design problem is to determine m so as to maxi-
mize some functional ' of M(m). Various choices for
' have been proposed in the literature, the two common-
est ones being those of C-optimality and D-optimality,
for which, effectively:6

'(m)"!C*M(m)~1C,
(2.13)

'(m)"log (det(M(m)).

Now, for the case of D-optimality in particular, consider-
able use has been made of the equivalence theorem,

stating that the three following characterizations of a
D-optimal design m* are equivalent:

(i) m* maximizes det (M(m)),
(ii) m* minimizes dM (m)¢ supX3s d(X, m), where

d(X, m)"G*XM(m)~1GX , (2.14)

(iii) dM (m*)"dim(X).

These equivalences were first proved by Kiefer using
game-theoretic methods. A general version of this the-
orem (with a simpler proof ) was later given by Whittle
(1973). Moreover, a characterization of the D-optimality
in terms of invariance of ranking has been obtained. All
these considerations plead for considering D-optimal
design despite the fundamental difficulties mentioned
above. Various algorithms for the calculation of D-opti-
mal design have been proposed (Atwood, 1973), a general
formulation stands as follows (i is the iteration index,
dX the measure concentrated on X and the ' design
functional):

m(i#1)"
im(i)#dX(i)

i#1
,

where

X(i)"arg maxD(X, m
i
),

and

D(X,m)"'(m, dX), (2.15)

'(m, g)"limeP0e~1 ['M(1!e)m#egN!'(m)].

Let us now consider the trace of the FIM; direct calcu-
lations yield

tr (G
k
G*

k
)"EG

k
E2"

1#k2

p2
k
r2
k

,

whence

tr (FIM)"
N
+
1

(1#k2)

p2r2
k

. (2.16)

Thus, since tr(FIM) is independent of the bearings
sequence M#N, functionals involving the trace functional
are quite simple. However, the associated optimization
problems are restricted to minimizing a functional of the
source-observer distance. Fortunately, for our problem
(see Eq. (2.11)), the above result means that maximizing
det(FIM) reverts to optimize (as a by-product) the FIM
conditioning.

In this spirit, an elegant approach (Olsder, 1984;
Passerieux and Van Cappel, 1991) for this particular
optimal design problem consists in considering it as an
optimal control problem where the cost is reduced to
Q"det [F (¹)]. Then, the state vector comprises the
FIM elements. However, we note that, basically, the cost
functional does not have an integral part. So, it is easily
shown that the Pontryagin Maximum Principle (PMP
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7The symbol ‘‘Gram’’ denotes a Grammian matrix (Lancaster and

Tismenetsky, 1985)
8 (sin2 (h

j
!h

j`1
)&hQ 2

j
).

for the rest) simply reverts to a direct maximization of det
(FIM) as described below.

Actually, a simple and intuitive approach, to this prob-
lem, is to model the observer trajectory by a certain
number of legs and to optimize the various headings
(Mu

k
N) of the observer (Hammel, 1988). Rather surpris-

ingly, it may be easily shown that this intuitive approach
and the optimal control based method (Passerieux and
van Cappel, 1991) (discrete time formulation) leads to an
identical optimization problem. However, we stress that
this requires the knowledge of the gradient vectors MG

k
N

and thus implicitly assumes that the source trajectory is
known. Furthermore, local extrema are quite likely. So,
the object of this approach is mainly reduced to provide
a databank of recommended maneuvers.

In order to remedy for the previous problems, we shall
first consider integral approximations of the FIM deter-
minant. It will then be possible to use efficiently the PMP
formalism (see Section 3). However, the interest of such
approximations is relatively limited, essentially because
the integral cost, derived in this way, are very poor
approximations of the exact determinant. This is parti-
cularly true when the observer is maneuvering. So, a di-
rect analysis of the FIM determinant is required (see
Section 4). This constitutes the conerstone of this paper.

3. Optimal control theory approaches

This section is divided in two parts. The first one deals,
in the localization context, with the maximization of
a lower bound of the FIM determinant. The basic tool is
the Minkowski’s inequality which is again used, in the
second part, to derive a lower bound for the moving
source case.

3.1. Optimal observer trajectory for localization

In fact, an important part of previous works has been
devoted to the localization problem, i.e. the restriction of
the TMA problem to the fixed source case. First, we stress
that this case is considerably simpler in comparison with
the moving source one. However, the interesting feature
of this approach is that an integral approximation of
the cost functional has been considered. Let us present
briefly this approximation.

At first, the analysis is restricted to the estimation of
the source position (r

x
, r

y
). The FIM matrix is thus two-

dimensional. Let us consider the temporal evolution of
the FIM, i.e.

F
k`1

"F
k~1

#M
k

and M
k
"G

k
G*

k
#G

k`1
G*

k`1
,

where

G
k
"

1

pr
k
A

cos h
k

!sin h
k
B . (3.1)

Invoking the Minkowski’s inequality, which is valid
for n-dimensional positive-definite matrices A and B, i.e.
[det (A#B)]1@n5(detA)1@n#(detB)1@n, we obtain

[det (F
k~1

#M
k
)]1@25(detF

k~1
)1@2#(detM

k
)1@2

so that

[det (F
k`1

)]1@25(detF
0
)1@2#

1

2

k
+
j/1

[det (M
j
)]1@2. (3.2)

It now remains to calculate det (M
j
). Elementary calcu-

lations yield7

det (M
j
)"det [(G

j
, G

j`1
) (G

j
, G

j`1
)*]

"det [Gram (G
j
, G

j`1
)]

"

1

p4r2
j
r2
j`1

sin2 (h
j
!h

j`1
). (3.3)

A lower bound of the FIM determinant has thus been
derived. An attractive approach consists then in consid-
ering the maximization of this lower bound instead of the
direct maximization of det (FIM). The above calculations
(see Eq. (3.2) and (3.3)) suggest to consider the following
integral cost8 (Liu et al., 1988):

C
T
"P

T

0

hQ (t)
2p2r2(t)

dt . (3.4)

Using the transversality and stationarity conditions
(for the Hamiltonian), the costates are first determined,
leading to consider a rather intricated system of differen-
tial equations involving rR , r̈, hQ , h® and u. Rather sur-
prisingly however, assuming v (the observer velocity
modulus) constant, an explicit resolution of the optimal-
ity conditions can be obtained, simply yielding (Hammel
et al., 1989) (u is the optimal control)

uR
*
"!2hQ . (3.5)

This results in a feasible control since an estimation of
hQ can be obtained from the estimated bearings. The value
of the Hamiltonian along an optimal trajectory is con-
stant (Hocking, 1997) and stands as follows:

H
015

"!

v2

r4hQ
, (3.6)

which means that the product r4hQ is constant (v constant).
An optimized trajectory thus represents a trade-off be-
tween the range and the bearing rate. So, we can consider
that the observer heading is, at first, approximately equal
to the bearing. Then, as the source-observer range de-
creases, the bearing rate increases. The observer is thus
‘‘spiralling’’ around the source.
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3.2. Optimizing the observer trajectory for TMA

Obviously, this lower bound approach may be ex-
tended to a moving source. The only changes ( for the cost
functional) and the FIM structure and dimension which
result in (see Section 4):

det (M
j
)+16A

sin (hQ
j
)

r
j
p
j
B
8

,

so that, C
T

becomes

C
T
"P

T

0

hQ (t)2
2p2r2(t)

dt. (3.7)

We note that the only change in Eq. (3.7) (versus Eq. (3.4))
is the exponent of hQ . Again, this problem can be investi-
gated by the optimal control approach. However, a main
difficulty appears. The source is moving, so we cannot
assume that the modulus of the (relative) observer velo-
city is constant. The analysis of optimality conditions is
considerably complicated by the presence of additional
terms (related to source motions) in the expressions of
bearing and range-rates, thus requiring the use of numer-
ical methods (Teo et al., 1991). In order to simplify the
calculations, a reasonable assumption is that the ob-
server velocity is far greater than the source one.

Then, the system Hamiltonian is

H"!A
hQ
rB

2
#j

1
v sin u#j

2
v cos u. (3.8)

The costates j
1

and j
2

are explicited by the method
presented in Appendix B, the optimal control u

*
is then

deduced:

4A
rR
rB

2
#uR

*
hQ "!1. (3.9)

The (constant) value of the system Hamiltonian along
an optimal trajectory is

H
015

"!

1

r2ChQ 2#2 A
rR
rB

2

D . (3.10)

An optimized observer trajectory is thus a trade-off be-
tween the three terms r, rR /r, hQ . The term (hQ 2#2 (rR /r)2)
decreases as the square of the source-observer distance.

Numerous integral criteria may be considered but not
any seems really suitable for TMA. Actually, as it will be
shown in the next section, it is impossible to approximate
conveniently a relevant cost functional (e.g. detF or
tr (F~1)) by an integral one.

4. A direct analysis of the FIM determinant

For the sake of simplicity, the following assumptions
are made along this section. First, the distance will be

assumed to be constant. Further, we consider that the
diagonal noise matrix & is proportional to the identity
(i.e. &"p2Id). Even if the first hypothesis seems rather
restrictive, we shall see later (see Section 4.4) that the
effects of range and bearing-rate variations are de-
coupled, allowing us to analyze separately their effects.
Furthermore, the effects of range variations are concen-
trated in a multiplicative term, factor of the determinant.

A direct analysis of the effect of the observer controls,
based on the discrete-time equation of motion (Eqs.
(2.2)— (2.12)) seems unfeasible. We shall thus consider
a simplified model of the source motion:

h
i`j

"h
i
#jhQ #+

k

u
k
, (4.1)

where hQ is the bearing rate (for a given reference time),
and u is the bearing rate change corresponding to an
observer maneuver (control). For the sequel, the controls
will be the observer bearing-rate changes u

k
.

The aim of this modelling is to obtain an explicit
analysis of the FIM determinant. Obviously, the effects of
the observer maneuver are only indirectly analyzed.
However, the bearing rates are directly related to the
cartesian parameters (see Appendix A). Overall, the bear-
ing rates being estimable from the sensor outputs, we can
thus derive feasible methods for the observer trajectory
optimization. ¹he fundamental interest of this approach
lies in the fact that no a priori knowledge of the source
trajectory is assumed. More generally also, the problem
is only partially observable. For the Modified Polar
Coordinate coordinates (Aidala and Hammel, 1983),
only Mh, hQ , rR /rN are available measurements. Further,
we shall prove that det(FIM) is independent of h
(cf. Proposition 2). Then, since the effects of bearing-rate
changes and range variations are decoupled, it is quite
natural to concentrate our efforts on the effects of bearing
rate changes.

We shall denote by F
k0,4

the FIM corresponding to an
arbitrary reference time k

0
and four consecutive measure-

ments, h
k0

,2 , h
k0`3

. Then the FIM F
k0,4

takes the fol-
lowing form:

F
k0,4

"(pr)~2G
k0,4

G*
k0,4

,

where

G
k0,4

"(G
k0

, G
k0`1

, G
k0`2

, G
k0`3

) .

and G
k
is the gradient vector of the observation h

k
w.r.t.

X
0
, i.e.

G
k
"(cos h

k
,!sinh

k
, k cos h

k
,!k sin h

k
)*. (4.2)

Assuming G
k0,4

invertible, we have

det(F
k0,4

)"(pr)~8(detG
k0,4

)2.

Of course, our attention is not limited to four measure-
ments per leg. So, the previous calculations will now be
extended to any number of measurements. Let l be the
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—————
9Note that in Eq. (4.3) the source-observer distance is again assumed

to be constant.

number of consecutive measurements and consider now
the (4]4) FIM F

k0,l
(l54) defined as in Eq. (4.2) by9

F
k0,l

"(pr)~2G
k0,l

G*
k0,l

,

where

G
k0,l

"(G
k0

,G
k0`1

,2 ,G
k0`l), l50. (4.3)

Using classical properties of multilinear algebra,
namely the Cauchy—Binet formula (Lancaster and
Tismenetsky, 1985), det (F

k0,l
) is given by the following

formula:

det (F
k0,l

)"(pr)~8+
E

[det (G
E
)]2 ,

where E is the index subset defined by

E"Mi
1
, i

2
, i

3
, i

4
N s.t. 14i

1
(i

2
(i

3
(i

4
4l,

and

G
E
"(C

i1
, C

i2
, C

i3
, C

i4
), C

ij
¢G

k0`ij
. (4.4)

We stress that the above formula plays a central role in
the analysis of the FIM determinant.

4.1. The case of constant bearing rate

In Eq. (4.4) C
ij
stands for the i

j
th column of the matrix

G. Considering, for instance, a first-order expansion of
the bearings h

k0`i
(i.e. h

k0`i
1"h

k0
#ihQ ), the calculation of

det(F
k0,l

) is reduced to the calculation of the determi-
nants det (G

E
). Now each of these determinants is the

determinant of a 4]4 matrix. Its calculation is greatly
eased by using the following basic result.

Proposition 2. ¸et E be the first vector of the canonical
basis of R4, (E"(1, 0, 0, 0)*), then the following equality
holds:

detG
E
"det (Ri1

1
E, Ri2

1
E, Ri3

1
E , Ri4

1
E). (4.5)

Proof. Consider the determinant detG
E

(see Eq. (4.4))
where as previously, E"Mi

1
, i

2
, i

3
, i

4
N and i

1
(i

2
(

i
3
(i

4
, then

detG
E
"det (G

i1
,2 ,G

i4
)

"det (Ri1
1
G

k0
, Ri2

1
G

k0
, Ri3

1
G

k0
, Ri4

1
G

k0
),

where

R
1
¢A

R
0

R
0

0

R
0
B and R

0
¢A

cos hQ
!sin hQ

sin hQ
cos hQ B (4.6)

In the same spirit, the vector G
k0

may be written as

G
k0
"¹k0

1
E,

where

¹
1
¢A

¹
0

¹
0

0

¹
0
B and ¹

0
¢A

cos h
!sin h

#sin h
cos h B ,

h¢h
k0

/k
0
, E"(1, 0, 0, 0)* (4.7)

Now the following properties are instrumental:

f the matrices R
0

and ¹
0

are rotation matrices, hence
they commute,

f det (R
1
)"det2 (R

0
)"1.

f det (¹
1
)"det2 (¹

0
)"1.

The matrices R
1

and ¹
1

then also commute and using
this property detG

E
becomes

detG
E
"det (¹k0

1
Ri1

1
E,¹k0

1
Ri2

1
E,¹k0

1
Ri3

1
E,¹k0

1
Ri4

1
E)

"det (¹k0
1

) det (Ri1
1
E, Ri2

1
E, Ri3

1
E, Ri4

1
E)

"det (E,Ri2~i1
1

E,Ri3~i1
1

E,Ri4~i1
1

E). (4.8)

Furthermore, the following property has thus been
proved in passing: detG

E
is independent of k

0
and h

k0
.

This remarkable property is due to the basic properties
of the determinant and the structures of the matrices
R

1
and ¹

1
. K

The above determinant itself (i.e. detG
E
"

det (E, Ri
1
E,Rj

1
, E,Rk

1
E)) can now be easily calculated by

means of exterior algebra (Yokonuma, 1992; Darling,
1994), yielding the following simple and general result:

Proposition 3. ¹he following equality holds:

detG
E
"j(k!i) sin ((k!j)x) sin (ix)#i (k!j)

sin ( jx) sin ((i!k)x),
where

i"i
2
!i

1
, j"i

3
!i

1
, k"i

4
!i

1
. (4.9)

Proof. The calculation of det G
E
is greatly eased by using

exterior algebra. First, let us briefly recall the definition
of the exterior powers of a vector space. Let » be an n-
dimensional vector space over R, then "2» consists of all
formal sums +

i
a
i
(U

i
'V

j
), where the ‘‘wedge product’’

U'V is bilinear and alternate. This definition is straight-
forwardly extended to higher exterior powers (Darling,
1994). For any basis MV

1
,2 ,V

n
N of », the set of p-vectors

MV
i1
'2'V

ip
, i

1
(2(i

p
4nN forms a basis of the

n!/(n!p)!p!-dimensional vector space "p». In particular,
"4R4 is one-dimensional, and throughout the paper we
make intensive use of the isomorphism "4R4,

"2R4'"2R4. The exterior algebra formalism thus ap-
pears as an economical way to conduct determinant
calculations.
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—————
10The symbol E denotes the math. expectation.

The canonical basis of R4 is denoted ME
1
,2 ,E

4
N. For

the coherence of notations, the vector E (Eqs. (4.4)— (4.8))
is identified with E

1
. Then, the components (denoted

a
0
, b

0
, c

0
) of the exterior products E

1
'Ri

1
E
1
, in the

‘‘reduced’’ basis ME
1
'E

2
, E

1
'E

3
, E

1
'E

4
N of "2(R4) are

straightforwardly calculated and given below:

a
0
"!sin (ix)QE

1
'E

2
,

b
0
"i cos (ix)QE

1
'E

3
, (4.10)

c
0
"!i sin (ix)QE

1
'E

4
.

Similarly, the components of Rj
1
E
1
'Rk

1
E
1
, in the

‘‘reduced’’ basis ME
3
'E

4
, E

2
'E

4
, E

2
'E

3
N are

a
1
"jk sin (( j!k)x)QE

3
'E

4
,

b
1
"(k!j) sin ( jx) sin (kx)QE

2
'E

4
, (4.11)

c
1
"j sin ((k!j)x)!(k!j) sin ( jx)QE

2
'E

3
.

The determinant det G
E

is deduced from the above
calculations, by considering the sum of the coefficients
of the vector E

1
'E

2
'E

3
'E

4
which spans the one-

dimensional space "4 (R4), i.e.

detG
E
"a

0
a
1
!b

0
b
1
#c

0
c
1
,

"j (k!i) sin ((k!j)x) sin (ix)

#i(k!j) sin ( jx) sin ((i!k)x). K (4.12)

Using Proposition 3 and the Cauchy—Binet formula,
a general formulation of det (FIM) stands as follows:

det (FIM)"+14i(j(l4l [ j(k!i) sin ((k!j)x) sin (ix)

#i(k!j) sin ( jx) sin ((i!k)x)]2.

Practically, the following approximations are easily
deduced from the above property.

Result 1. The following approximation of detG
E

holds
(x"hQ @1):

detG
E

6"
(ijk)

3
(k!i) (k!j) ( j!i)x4,

and therefore

det (F
k0,l

)+ +
14i(j(k4l C

(ijk)

3
(k!i) (k!j ) ( j!i)D

2

A
hQ
prB

8
.

(4.13)

From Result 1, the following approximation is deduced:

det(F
k0,l

)+a~1[l3(1#l)4(l2#2l!8) (l2#2l!3)2

](2#l)3]A
hQ
prB

8
,

Jl16A
hQ
prB

8
. (4.14)

Using the previous formalism, an extension to higher-

order expansions of h
k0`i

is quite straightforward but not
truly enlightening.

Remarks. (1) If a third-order expansion of h
k0`i

is con-
sidered instead of the first-order one, then the value of
det (FIM) is exactly zero.. This corroborates the fact that
the TMA problem is not observable when the observer
does not maneuver.

(2) However, the BOT problem is observable if multiple
measurements are available (at each time). In this case,
bounds derived from Eq. (4.13) are accurate.

(3) In fact, a small variation model for the bearing rate,
i.e. hQ

k`1
"hQ

k
#g

k
(g

k
w.g.n. N(0, q2)) yields a value of

the type (4.13), Eq. (4.13) roughly appears as an
upper bound of det (FIM). More precisely, we obtain10

E [det (FIM
t,t`3

)]+(16c
3
/r8) exp (!3

2
q2) (sin (hQ ))8.

It has thus been shown that det (F
k0,l

) is proportional to
l16(sin h0 /pr)8. As practically, h0 is very small (see Appendix
A), this means that det (F

k0,l
) remains very small as far as

no real observer maneuver occurs. So, we shall now inves-
tigate the effects of a bearing-rate change.

4.2. The case of bearing-rate change

We shall now quantify the effects of observer maneu-
vers. First, the following property is an extension of the
previous one to this case.

Consider that the temporal evolutions of the source
bearings on two successive legs are described by the fol-
lowing two linear models (k@

0
¢k

0
#j; observer

maneuvering instant):

h
k0`i

1"h
k0
#ihQ

1
on the 1st obs. leg 04i4j,

(4.15)
h
k@0`m

1"h
k@0
#mhQ

2
on the 2nd obs. leg m50.

Then the following property holds and extends the
previous result (Proposition 3):

Proposition 4. Consider the case of two consecutive
bearing rates x and y; then we have ( j@"i!j)

det (Ri
1
E
1
, Rj

1
E
1
, Rj

1
Rk

2
E
1
, Rj

1
Rl

2
E
1
)

"(k)( j@!l) sin ( j@x)sin ((k!l)y),

#j@(l!k) sin (ky) sin ( j @x!ly). (4.16)

Furthermore, the following approximation holds:

L
Ly

det (Ri
1
E
1
,Rj

1
E
1
,Rj

1
Rk

2
E
1
,Rj

1
Rl

2
E
1
)+kl ( l!k) ( j!i)y.

Proof. In Eq. (4.16), the matrices R
1

and R
2

are
the bearing-rate matrices (cf. Eq. (4.6) associated
with the bearing-rates x and y. Mimicking the proof of
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Fig. 2. Evolution of the FIM determinant det Fl
1
l
2
.

—————
11The type of the expansion only depends on the relative values

of i
1
, i

2
, i

3
, i

4
.

—————
12l

i
measurements associated with hQ

i
, i"1, 2.

Proposition 3, we calculate the components (a
0
, b

0
, c

0
)

of E
1
'Rj{

1
E
1

in the ‘‘reduced’’ basis ME
1
'E

2
, E

1
'E

3
,

E
1
'E

4
N of "2(R4) as well as that of Rk

2
E
1
'Rl

2
E
1

in
ME

3
'E

4
, E

2
'E

4
, E

2
'E

3
N (denoted (a

1
, b

1
, c

1
), yielding

a
0
"!sin ( j @x), a

1
"kl sin ((k!l )y),

b
0
"j @ cos ( j @x), b

1
"(l!k) sin (ky) sin (ly),

c
0
"!j@ sin ( j @x), c

1
"k sin ((l!k)y)!(l!k) sin (ky) cos (ly).

The first part of Proposition 4 is obtained by calculating
the scalar a

0
a
1
!b

0
b
1
#c

0
c
1
. Expliciting the scalar

a
0

La
1

Ly
!b

0

Lb
1

Ly
#c

0

Lc
1

Ly
,

yields the second part.
From Eq. (4.16), the following approximations are

easily deduced:

det (Ri
1
E
1
, Rj

1
E
1
, Rj

1
Rk

2
E

1
, Rj

1
Rl

2
E
1
)

+kl (l!k) ( j!i)y (x!y#cx2y). (4.17)

The above property allows us to approximate
det (FIM) in the case of a maneuvering observer and thus
to investigate the effects of the observer maneuvers. In
particular, the role of the bearing-rate changes then
clearly appears. Indeed, since the parameters hQ

1
and

hQ
2

are usually small (both are proportional to 1/r2), we
shall examine an expansion of det (G

E
) w.r.t hQ

1
and

hQ
2

around the point (0, 0). Then, we obtain the following
types11 of fourth-order expansions (in hQ

1
and hQ

2
) of

det (G
E
), given by Eqs. (4.16) and (4.17):

(detG
E
)2KK(y (x!y))2,

(4.18)
K(x(x!y))2

with

K'0, x¢hQ
1
, y¢hQ

2
.

This result is quite fundamental for TMA (see Prop-
osition 5) and will be clarified by a geometric interpreta-
tion (see Section 4.3).

The effects of the observer maneuvers on the FIM
determinant is now illustrated. Thus, in Fig. 2, det (F

l1l2
) is

plotted versus the measurement index. The scenario para-
meters are described in the Fig. 2. The observer maneuver
induces a dramatic increase of the FIM determinant
which is precisely located at the maneuver instant.

For the two bearing-rate case, the expansion of
detF

k0, l1, l2
12 is

F
k0,l1,l2

K

1

(pr)8 C
5
+
i/1

P
i
(l
1
, l

2
)y5~ixi~1D , (4.19)

where the polynomials MP
i
(l

1
, l

2
)N5

i/1
are detailed in

Appendix C. From Eqs. (4.18) and (4.19), we note that the
maximum value of det F

k0,l1,l2
is proportional to l12hQ 4

(l
1
Kl

2
, hQ

1
K!hQ

2
). The result must be compared with

Eq. (4.14). In fact, denoting by Fl (x) the FIM associated
with a constant bearing-rate x and Fl/2, l/2 (x,!x) the
FIM associated with a two-leg observer trajectory (leg 1:
l/2 meas., bear. rate x; leg 2: l/2 meas., bear. rate !x),
Eqs. (4.13) and (4.17) yield the following important result:

Result 2. The gain of the maximal bearing-rate change
(mid-course) is

det [Fl/2, l/2 (x,!x)]

det (Fl (x))
K134 l~4x~4

K134 (*x)~4, (4.20)
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Fig. 3. Evolution of the FIM determinant as a function of the first leg
length for a two-leg receiver trajectory. Fig. 5. Details of optimized receiver trajectories.

Fig. 4. Optimized receiver trajectory for two source-receiver ranges.

where *x denotes the total bearing variation (i.e.
*x"lx). For usual scenarios, *x is (quite) small with
regard to 1 and, therefore, the increase in the FIM deter-
minant gained by optimized observer maneuvers may be
rather impressive. Further, note that this gain is propor-
tional to (*x)~4. The above calculation is easily extended
to the case of a maneuvering source. The dimension
of the state vector is then equal to 6, while the gain
of a bearing-rate change is, this time, proportional
to (*x)~8.

The following example may be rather enlightening. We
present in Fig. 3, the values of detFl

1
, l

2
(x,!x)]

(x"10~4) as calculated as a function of the first leg
length l

1
(see Appendix C). We can remark that the

optimum is attained for very unequal leg lengths. Actual-
ly, it seems that the optimum corresponds to a ‘‘long’’
first leg in order to maximize the observer baseline,
followed by a ‘‘short’’ second leg.

Formula (4.19) may be easily extended to the three-leg
case (i.e. Mx, y, zN). As previously, det F

k,l1 ,l
2
,l

3
is an homo-

geneous polynomial in (x, y, z), i.e.

detFl
1
,l

2
,l

3
K

1

(pr)8 C+
i,j,k

P
i,j,k

(l
1
, l

2
, l

3
)xiy jzkD , (4.21)

with

04Mi, j, kN44 and i#j#k"4.

For the sake of brevity, the analytical expressions of the
P
i,j,k

are not detailed. Practically, for equal legs (i.e.
l
1
"l

2
"l

3
"l), the maximum value (x"!y"z) of

detF
k,l1 ,l

2
,l

3
is approximately 45 l12hQ 4.

Let us now illustrate the above results. The source-
observer scenario is depicted in Fig. 4. The source is in
rectilinear and uniform motion. The observer motion is
modelled by a three-leg path. Furthermore, it is assumed
that the modulus of the observer velocity is constant. The
controls are the successive observer headings. They are

optimized by means of a standard numerical optimiza-
tion procedure. The optimized observer trajectories are
presented in Fig. 5. Note that the general shape is a ‘‘Z’’
which is stretched when the source-observer distance
decreases. This result is quite general, whatever the rela-
tive source-observer position and the number of observer
legs.

The computation of the bearing rates is also quite
illustrative (see Fig. 6). Actually, we see that the optimal
headings u

k
induce a bang-bang behavior of hQ . More

precisely, the sequence of optimized controls (i.e. the
observer headings) leads to choose alternatively the two
bearing-rate bounds (i.e. !hQ

.!9
, hQ

.!9
, see Appendices A,

B and D). This quite agrees with the theoretical results.
The previous results are more formally summarized by

the following property.
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Fig. 6. Values of hQ for the two scenarios. Fig. 7. Values of hQ for the two scenarios.

Proposition 5. ¸et x
1
,x

2
,2 ,x

n
be the consecutive

bearing rates, then

arg
x1

,2 ,x
n
maxdet (FIM)"e(hQ

.!9
,!hQ

.!9
, hQ

.!9
,2 ),

e"$1. (4.22)

We refer to Appendix D for a proof of Proposition 5.
Since the values of (!hQ

.!9
, hQ

.!9
) can be estimated by the

observer (e.g. from the estimated bearings), it remains to
determine the optimal number of switching (Sussmann,
1979) (from hQ

.!9
to !hQ

.!9
) as well as their locations.

Using the previous results, the problem may be for-
mulated as follows. Consider a multileg observer
trajectory, then the problem consists in maximizing
det (Fl

1
,l
2
,l
3
,2 ) (l

i
is the length of the ith leg) given below:

(pr)8det (Fl
1
,l
2
,l
3
)+P(l

1
,hQ

.!9
)hQ 8#P(l

1
, l
2
, hQ

.!9
) (2hQ

.!9
)4

#P(l
1
, l
3
, hQ

.!9
) (2hQ

.!9
)4#2 . (4.23)

The polynomials P(l
i
, l
j
) have the form given in Ap-

pendix C. The corresponding optimization problem may
be solved by numerical methods. However, it seems
rather impossible to derive a general bound relative to
the number of switching.

Finally, if the cost functional is replaced by the trace,
the (optimized) observer trajectory is quite different.
Actually, minimizing the distance becomes quite pre-
dominant. Thus, the evolutions of the bearing rates
corresponding to the scenario depicted in Fig. 4 are
presented in Fig. 7. We may note that the optimized
bearing rates no longer exhibit a bang-bang behavior.
A comparison of the statistical bounds, associated with
the observer trajectories corresponding to the optimiza-
tion of the two functionals (i.e. det and tr), shows a very
clear supremacy of the det.

4.3. Geometric interpretations of the properties of the FIM
determinant

Since we are especially interested in the effects of ob-
server maneuvers, we shall investigate them by means of
the previous results and differential calculus. Consider,
for instance, the following determinant (E"E

1
):

f (y)"det (E,Ri
1,x

E,Rj
1,x

E,Rk
1,x

Rl
1,y

E), (4.24)

where x"hQ
1
, y"hQ

2
.

Let us now calculate the partial derivatives Lf/Ly(x); we
obtain

L f

Ly
(x)"l det (E,Ri

1,x
E,Rj

1,x
E, Rk`l~1

1,x
S
1,x

E), (4.25)

where S
1,x

"(L/Ly)R
1,y

)
(y/x)

,, or, explicitly

S
1,x

"A
S
0,x

S
0,x

0

S
0,x
B , (4.26)

with

S
0,x

"A
!sinx

cosx

!cos x

!sinxB .

Using the definitions of R
1,x

and S
1,x

, and denoting
J the two-dimensional n/2 rotation matrix, elementary
calculations yield:

Proposition 6. ¹he following properties hold:

S
0,x

"JR
0,x

,
L
Lx

S
0,x

"J2R
0,x

"!R
0,x

,

(4.27)
Rk

1,x
Sk{
1,x

"Sk{
1,x

Rk
1,x

"Sk`k{
1,x

, Rk
1,x

Sk{
1,y

"Sk`k{
1,x`y

.
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—————
13On a leg, the following formula holds: h® "!2 (rR /r) hQ .

The above results give the algebraic rule for analyzing
the partial derivatives of f. Thus, from Proposition 6, we
directly deduce

L f

Ly
(x)"l det (E,Ri

1,x
E,Rj

1,x
E,Sk`1

1,x
E),

(4.28)
L2f

Ly2
(x, x)"!l2det (E,Ri

1,x
E,Rj

1,x
E,Rk`l

1,x
E), etc.

At this point, it is worth noting that the vector
Sm
1,x

E"(!sin mx , cos mx ,!m sin mx , m cos mx )*
(Eqs. (4.25) and (4.26)) is approximately orthogonal to the
vectors ME,Ri

1,x
E,Rj

1,x
EN. This fact is typical of a

four-dimensional state vector and corresponds to a
diversity in maneuvers. Thus Eq. (4.28), (Lf/Ly)(x)
is proportional to x, while (L2/Ly2)(x,x) is proportional
to x4, so that

f (y)+cx(y!x). (4.29)

From Eq. (4.28) it is clear that the increase of det (F
x,y

) is
maximized when the terms (x (x!y))2 are maximized.
Since hQ is bounded, an optimal sequence of controls is
necessarily a bang-bang one (see Appendix D).

4.4. The effects of range variations

Up to now, the effects of range variations have not
been considered. However, the analysis is greatly
simplified if we remark that the effects of range and
bearing-rate variations are geometrically decoupled.
This follows easily by considering det (G

E
). Indeed,

including the range, the elementary determinant det (G
E
)

becomes

det G
E
"det A

1

r
i1

Ri1
1
E,2 ,

1

r
i4

Ri4
1
EB ,

"

1

r
i1

2

1

r
i4

det (Ri1
1
E,2 ,Ri4

1
E ), (4.30)

so that

det(F
k,l

)"(1/p8)+
E
CA

1

r
i1

2

1

r
i4
B det(Ri1

1
E,2 ,Ri4

1
E )D

2
.

More precise calculations can be achieved if we consider
(for instance) a first-order expansion of the source-
observer distance (i.e. r

k`i
1
"r

k
#irR ). Roughly, the matrix

R
1

is then replaced by (1#rR /r)~1R
1
. For instance, the

basic result then becomes

det(F
k,4

)J
1

p8r12
P
l
(hQ )Q

l
(rR ).

with (4.31)

Q
l
(rR )"r4

0
#g

1
r3
0
rR#g

2
r2
0
rR 2#g

3
r
0
rR 3#g

4
rR 4.

This approximation is valid as long as rR /r@1.13 If this
assumption is valid and if the total duration is ‘‘reason-
able’’, the conclusions of the previous sections still hold,
since the effects of bearing-rate changes are preeminent.

5. Conclusion

The optimization of the observer maneuvers has been
considered along this paper. This problem is not relevant
of classical optimal control. So, a large part of this paper
is centered around the approximation of the cost func-
tional. Using basic tools of multilinear algebra, it has
been proved that this functional may be accurately ap-
proximated by a functional involving only the successive
bearing-range rates of the source. The approach is thus
quite indirect but has the great advantage to involve only
observed data. In particular, it has been shown that
under the long-range and bounded controls hypotheses,
the sequence of optimal control lies in the general class of
bang-bang (relatively to the bearing-rates) one. These
results have been illustrated by simulation results. They
demonstrate the interest of maneuver diversity. More
generally, they provide us with a simple and feasible
approach for optimizing the observer trajectory.
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Appendix A: Calculation of the bearing-rate bounds

This appendix deals with the calculation of the bounds
for the bearings rate hQ under the following hypothesis:

1. The source velocity vector V
s
is fixed.

2. The modulus v
0

of the observer velocity is fixed
(EV

0
E2¢v2

0
).

First, recall the basic expression for the bearing-rate hQ :

hQ "
1

r2
det(V, R),

where V and R are the relative velocity and position
vectors.

From the above formula hQ is maximum when V is
orthogonal to R, i.e.

V"A
v
x

v
y
B"

a
r A

r
y

!r
x
B . (A.1)

J.-P. Le Cadre, S. Laurent-Michel/Automatica 35 (1999) 591—606 603



—————
14These results are obtained by means of symbolic computations.
15n is the total number of measurements.

We thus have

EVE2"a2"EV
0
E2#v2

s
!2V*

0
V

s

"!v2
0
#v2

s
#2V*

0
V

"(v2
s
!v2

0
)#2

a
r

V*
0
JR,

where J is the n/2 2D-rotation matrix. The scalar a is
thus defined as one of the solutions of the second-order
equation

a2!
2

r
(V*

0
JR)a#(v2

0
!v2

s
)"0. (A.2)

Expliciting the scalar product V*
0
JR, i.e.

(V*
0
JR"ar#V*

4
JR), the previous equation becomes

!a2!2a
V*

0
JR

r
#(v2

0
!v2

s
)"0. (A.3)

If the modulus of the observer velocity (v
0

is superior
to the source one (v

s
), the above equation has two roots,

a
1

and a
2
, of opposed signs and the following inequality

holds:

!hQ
.!9

4hQ 4hQ
.!9

,

where (A.4)

hQ
.!9

"a
1
, !hQ

.!9
"a

2
.

Appendix B: An optimal control approach

This appendix deals with the optimal control problem
of the Section 3.2 and, more precisely, with the solution of
the optimization problem associated with (3.7).

Expliciting the PMP optimality conditions, we have:

LH

Lu
"!

L
Lu A

hQ 2
r2B#j

1
v cos u!j

2
v sin u,

LH

Lr
x

"!

1

r4 C
LhQ 2
Lr

x

r2!
Lr2

Lr
x

hQ 2D . (B.1)

Owing to the classical relations (v
0
Av

4
)hQ"

v/r sin(u!h ), rR"v cos(u!h ), LH/Lu is easily calculated
yielding:

LH

Lu
"!2

rR hQ
r3
#j

1
v cos u!j

2
v sin u. (B.2)

Using classical differential calculus, LhQ /Lr
x

and LhQ /Lr
y

are explicited:

LhQ
Lr

x

"!

v

r2
cos(2h!u),

(B.3)
LhQ
Lr

y

"

v

r2
sin(2h!u).

From Eqs (B.1) and (B.3), the following equalities are

easily deduced:

jQ
1
"!

LH

Lr
x

"!

2v

r4
sin(u!h) C

v

r
cos(2h!u)#sin(h)D ,

jQ
1
"!

LH
Lr

y

"!

2v

r4
sin(u!h) C

!v

r
sin(2h!u)#cos(h)D.

(B.4)

Thus, the time derivatives of the costates j
1

and j
2

satisfy the following equation:

jQ
1
r
y
!jQ

2
r
x
"!2

hQ rR
r3

. (B.5)

Then, integrating by parts the optimality condition
LH/Lu*"0, we obtain

j
1
cos h!j

2
sin h"0. (B.6)

It remains to determine the costates j
1

and j
2
. Differ-

entiating (versus time) Eq. (B.6) yields

jQ
1
cos h!jQ

2
sin h!(j

1
sin h#j

2
cos h)hQ "0.

Now

jQ
1
cos h!jQ

2
sin h"!2

hQ rR
r4

,

so that, (B.6):

j
1
"!2

rR
r4

sin h and j
2
"!2

rR
r4

cos h. (B.7)

From Eq. (B.7), we immediately deduce that

jQ
1
"!2

vh
r4

cos (2h!u)#8
rR 2
r5

sin h#
2

r3
uR hQ sin h. (B.8)

Collecting Eqs. (B.8) with (B.4), yields

4 A
rR
rB

2
#uR hQ "!1. (B.9)

Appendix C: The bearing-rate change polynomials

Explicit expressions of the polynomials MP
i
(l

1
, l

2
)N5

i/1
are given below:14,15

P
1
"(a~1)l2

1
(n!l

1
)2[5l8

1
#46l7

1
n!57l6

1
n2#32l5

1
n3

!113l4
1
n4#102l3

1
n5!19l2

1
n6#4l

1
n7],

P
2
"(b~1)l2

1
(n!l

1
)2[!10l8

1
!56l7

1
n#87l6

1
n2

!42l5
1
n3#108l4

1
n4!102l3

1
n5#19l2

1
n6!4l

1
n7],

P
3
"(a~1)l2

1
[30l10

1
!270l8

1
n2#480l7

1
n3!405l6

1
n4

#360l5
1
n5!316l4

1
n6#144l3

1
n7!27l2

1
n8#4l

1
n9],
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P
4
"(b~1)l6

1
[!10l6

1
#36l5

1
n!9l4

1
n2!48l3

1
n3

#36l2
1
n4#5l6

1
],

P
5
"(a~1)l6

1
[5l6

1
!36l5

1
n#54l4

1
n2!32l3

1
n3#9l2

1
n4],

(C.1)
where

a"25920, b"12960, n"l
1
#l

2
.

Using Eq. (C.1), the following equality is easily shown:

5
+
i/1

P
i
(l

1
, l

2
)x5~iyi~1"0 ∀x, y"x, l

1
, l

2
. (C.2)

Appendix D: A proof of the bang-bang property

The aim of this section is to prove Proposition 5. For
the clarity of presentation, the analysis will be first re-
stricted to the case of a unique bearing-rate change.
Then, it will be extended to the general case.

In the unique bearing-rate change case (x and y are the
consecutive bearing rates), the maximization of the FIM
determinant reverts to the following optimization prob-
lem (see Eqs. (4.15)—(4.17)):

min f (x, y)

f (x, y)"ax2(y!x)2#by2(y!x)2,

x!140, y!140, (D.1)

!x!140, !y!140

a and b(0.

The Lagrangian of the above problem is then

¸(x, y)"f (x, y)#u
1
(x!1)#u

2
(!x!1)

#v
1
(y!1)#v

2
(!y!1).

Assume that the solution to the problem lies (strictly)
inside the square of constraints, then the stationary
(Kuhn—Tucker) conditions imply

Lf

Lx
"2ax(y!x)2!2(ax2#by2) (y!x)"0,

(D.2)
Lf

Ly
"2by(y!x)2#2(ax2#by2) (y!x)"0.

In particular, the optimal values of x and y must satisfy

Lf

Lx
#

Lf

Ly
"2(y!x)2[ax#by]"0,

so, that (yOx):

ax#by"0,

whence

f (x, y)"A
a#b

b B
2 a

b
(b#a)x4. (D.3)

Now, both a and b are negative, so is the term
(a/b)(b#a). Thus, the minimum of f (x, y) cannot be
inside the square of constraints which implies that the
minimum of f (x, y) can be achieved only on the bound-
ary of the constraint domain and more precisely for an
extreme point. Thus, the function f (x, y) is minimum for
x"1, y"!1. Proposition 5 is thus proved in this case.

Extension to the general case is a bit more intricated,
even if the basic idea is very similar. Consider, for in-
stance, the case of three bearing-rates (x, y, z) and the
following functional f (x, y, z):

f (x, y, z)"ax2(y!x)2#a@y2(y!x)2#by2(z!y)2,

#b@z2 (z!y)2#cz2(z!x)2#c@x2(z!x)2.

We are now dealing with the following optimization
problem:

min f (x, y, z)

x!140, y!1, z!140,

!x!140, !y!1, !z!140

a, a@,2 , c, c@(0.

(D.4)

For an interior point, the Lagrangian stationarity then
implies

Lf

Lx
#

Lf

Ly
#

Lf

Lz
"0,

or, explicitly

[a(y!x)2#c@(z!x)2]x#[a@ (y!x)2#b (z!y)2]y

#[c (z!x)2#b@ (z!y)2]z"0,

whence

z"d
1
x#d

2
y,

with (D.5)

d
1
"!A

a(y!x)2#c@(z!x)2

c(z!x)2#b@ (z!y)2B ,

d
2
"!A

a@(y!x)2#b (z!y)2

c (z!x)2#b@(z!y)2B .

From Eq. (D.5), we immediately deduce that d
1

and d
2

are negative. The following expressions of the elementary
terms of f (x, y, z) are then obtained:

by2(z!y)2"by2[d
1
x#(d

2
!1)y]2"f

1
(x, y),

c@x2(z!x)2"c@x2[(d
1
!1)x#d

2
y]2"f

2
(x, y),

b@z2(z!y)2"b@(d
1
x#d

2
y)2[d

1
x#(d

2
!1)y]2"f

3
(x, y),

cz2(z!y)2"c(d
1
x#d

2
y)2[(d

1
!1)x#d

2
y]2"f

4
(x, y).

(D.6)

The following simple remarks are then instrumental:
b, b@, c, c@ are altogether negative, as well as d

1
, d

2
, d

1
!1,
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d
2
!1. Using the previous reasoning, we thus see that the

minimum of M f
i
(x, y)N4

i/1
is attained for x"1, y"!1.

Since the same (minimum) property is also verified by the
functions ax2(y!x)2 and a@x2(y!x)2, the minimum of
f (x, y, z) is necessary attained on the boundary of the
cube of constraints. Hence we easily deduce that the
minimum of f is attained for an extreme point of the
boundary, i.e. x"1, y"!1, z"1. Note that the values
of f (x, y, z) are identical on the points x"1, y"!1,
z"1 and x"!1, y"1, z"!1.

By recursion, this reasoning is easily extended to
higher dimension.
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