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G. Pompidou, B. P. 56, La Valette du Var, France, E-mail:
(jauffret@isitv.univ tln.fr).

0018-9251/99/$10.00 c° 1999 IEEE

I. INTRODUCTION

Bearings-only tracking (BOT) is the determination
of the trajectory of a target solely from bearing
measurements. The BOT area has been widely
investigated [1—4] and numerous solutions for this
problem have been proposed [5].
However the measurement equation relating

the target bearing to its state is highly nonlinear.
Classical least square methods as the Kalman filter
cannot be directly applied. This advocates for the
use of extended Kalman filter for which convergence
is improved by using modified polar coordinates
[4]. Another approach is the pseudolinear estimator
(PLE) formulation proposed in [1] which lumps the
nonlinearities into the noise term, resulting in a linear
measurement equation. However, the measurement
matrix contains elements that are functions of noisy
bearings and, overall, are correlated with the noise
terms of the measurement equation. As a result, the
PLE exhibits a bias which can be severe [1, 3].
To overcome this bias, maximum likelihood and

instrumental variables have been developed [1, 3, 6]
and give satisfactory results. These are gradient
search based on a batch processing of all the available
measurements. The latter feature may be quite useful
if there are missing data (track interruption). So
batch methods are generally considered as reliable.
However, their proper convergence are reputed to be
sensitive to initial conditions and step sizes.
So the objective of this work is to present

sufficient conditions ensuring convergence of iterative
(i.e., gradient-like, instrumental variable) search
methods. A common point of all these algorithms is
that they are of batch type. First, we give a general
presentation of a basic result of Iltis and Anderson
[7]. In fact, a general analysis based on linear and
multilinear algebra reveals the fundamental nature
of the problem and (almost) completely allows us
to avoid boring calculations. It is then possible to
consider a unique framework for target-observer
scenarios of increasing complexity, common to all
the methods. For instance, we consider successively
the cases of a maneuvering observer, a maneuvering
source (with known maneuvering instants) and,
finally, unknown maneuvering instants. Thus, we
can obtain sufficient convergence conditions for
maneuvering source and observer. Besides their
own theoretical interests, these conditions yield
feasible methods for the general BOT problems. All
these conditions come from a unique result which
is strongly related to the quasiconcavity property
(see Section III). Thus, even if the tribute to the
seminal work of Iltis and Anderson is clear, different
interpretations and extensions are developed here.
The paper is organized as follows. Section II

deals with the general formulation of the BOT
problem. The case of nonmaneuvering target and
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observer is considered in Section III. The general
formalism is then presented. Its generality allows
us to straightforwardly handle more complex
scenarios (Section IV), say maneuvering source and
observer scenarios. A geometric interpretation of the
convergence result is provided. Then the convergence
of gradient methods is considered (Section V) and is
followed by the analysis of the instrumental variable
(Section VI). Extensions to constrained TMA (target
motion analysis) problems are considered in Section
V. In Section VII we deal with the estimation of the
unknown source maneuver instants, while the multiple
source case is considered in Section VIII. Finally,
simulation results illustrate the interest of the global
TMA approach.
The following standard notations are used

throughout this work:

1) bold caps are used for vectors while a standard
capital letter denotes a matrix,
2) the symbol (*) means transposition, det

represents the determinant,
3) rx and ry represent x and y relative coordinates,

vx and vy denote relative x and y velocities,
4) integers fi,j,m,kg are generally time variables,

m or j generally represent a maneuver (source or
observer) instant, l is an iteration index, p is the total
number of measurements,
5) diag denotes a diagonal matrix, Idn is the

n-dimensional identity matrix, − is the Kronecker
product,
6) sin(A,B) denotes the sine of the angle formed

with the vectors A and B.

II. PROBLEM FORMULATION

Let us now briefly recall the BOT TMA model
[1, 3] for, first, a constant velocity target. Also, for the
sake of simplicity, the presentation is restricted to the
planar problem.
Let X be the relative state vector of the target (T),

defined by

X=XT¡Xobs
¢
=[rx,ry,vx,vy]

¤: (1)

The discrete time equation of the relative motion
takes the following form:

X(k) =©(k,k¡ 1)X(k¡ 1)+U(k)
where

©(k,k¡ 1) =
µ
Id2 ®Id2

0 Id2

¶
,

Id2
¢
=
µ
1 0

0 1

¶
, ®

¢
= tk ¡ tk¡1:

(2)

In the above formula the vector U(k) accounts for
the effects of the observer accelerations. The matrix
©(k,k¡ 1) is the transition matrix, simply denoted

F in the sequel. Also, for the sake of simplicity, we
assume that ® is 1. The measurement equation is
simply (without estimation noise):

¯k = tan
¡1
Ã
rx,k
ry,k

!
: (3)

From (2) we can see that the target trajectory is
determined by a state vector X defined at a given
instant called the reference time. Note that this
reference time is arbitrary. So, the TMA problem may
be converted to the estimation of the state vector X.
Let B̃ be the history of measured bearings, then the

likelihood functional is [1]

p(B̃ j X̂) = cstexp[¡ 1
2kB̃¡B(X̂)k2§¡1 ]

where1

B̃= ( ˜̄1, : : : ,
˜̄
p)
¤

˜̄
k = ¯k +wk, w : N (0,§):

(4)

Obviously the likelihood functional depends
nonlinearly on X and there is no explicit solution
for determining the maximum of the likelihood
functional. This problem is usually solved by using
a Gauss—Newton algorithm [1] which has the general
form2

X̂`+1 = X̂`¡ ½`
"Ã

@B̂
@X

!¤
§¡1

@B̂
@X

#¡1

£
Ã
@B̂
@X

!¤
§¡1(B̃¡ B̂) (5)

where ` is the iteration index, ½` is the step size, and
B̂= B(X̂`).
For the sake of simplicity we simply denote B̂ the

vector B(X̂). Analogously, we denote B the (exact)
measurement vector associated with the exact target
state vector X (no measurement noise).
First, we now consider the (exact) likelihood

functional p(B j X̂) and investigate a functional
of its gradient vector. Then, the analysis will be
straightforwardly extended to the (true) likelihood
functional p(B̃ j X̂) (see Sect. V).
At this point, it is worth stressing that the

likelihood functional is not concave. This is illustrated
by Fig. 1. The exact Hessian matrix of the likelihood
functional is calculated (see (40)) for various values
of the components of the source state vector. For
instance, we consider velocity components variations,
vx is varying between 0.9 m/s and 1.1 m/s while vy
values are comprised between 7.9 m/s and 8.1 m/s.
The exact values of vx and vy are, respectively, 1 m/s
and 8 m/s. The values of the couple vx,vy for which at

1wk: white gaussian noise (WGN) sequence.
2§ =Diag(¾2i ), ¾

2
i : noise variance of the ith measurement.
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Fig. 1. Eigenvalues of exact Hessian matrix (exact values of vx
and vy : 1 m/s and 8 m/s).

least one eigenvalue of the Hessian matrix is negative
are represented by a point (in black). It is clear from
Fig. 1 that the likelihood functional is not concave,
even in a small neighborhood of the exact values
of the state vector components. This constitutes the
major motivation of this paper and we shall show
that convergence of the iterative methods may be
guaranteed despite the rather pathological shape of
the Hessian eigenvalues.

III. CASE OF NONMANEUVERING TARGET AND
OBSERVER

Similarly to Iltis and Anderson [7] we consider the
following quadratic functional of X̂:

L(X̂) = kX̂¡Xk2: (6)

Iltis, et al. show that this functional is a Lyapunov
function [8] for the (continuous) differential equation:

d

dt
X̂=G(X̂): (7)

In (7), G(X̂) is the gradient vector of the (reduced)
log-likelihood functional (4) at the point X̂.
Also, similarly to [7] we consider the following

functional of X̂:

_L(X̂) = 2(X̂¡X)¤ d
dt
X̂

= 2(X̂¡X)¤G(X̂): (8)

Let us now detail the vector G(X̂). Assuming a
constant data rate (i.e., ®= 1) and a reference time
equal to zero, elementary (classical) calculations yield
[1]:

G(X̂) =H¤(X̂)

0BB@
¯1¡ ˆ̄

1

...

¯p¡ ˆ̄
p

1CCA

where
¯i
¢
=¯i(X),

ˆ̄
i

¢
=¯i(X̂)

and

H(X̂) =

0BBBBBBB@

cos ˆ̄1
r̂1

¡sin
ˆ̄
1

r̂1

cos ˆ̄1
r̂1

¡sin
ˆ̄
1

r̂1
...

...
...

...

cos ˆ̄p
r̂p

¡sin
ˆ̄
p

r̂p

pcos ˆ̄p
r̂p

¡psin
ˆ̄
p

r̂p

1CCCCCCCA
r̂i = (r

2
x,i(X̂) + r

2
y,i(X̂))

1=2, H¤(X̂) : 4£p:
(9)

We now calculate the (1£p) row matrix (X̂¡X)¤
¢H¤(X̂) of which the kth element (denoted Ik) takes
the following form:

Ik =
1
r̂k
(X̂¡X)¤

0BBBB@
cos ˆ̄k

¡sin ˆ̄k
k cos ˆ̄k

¡k sin ˆ̄k

1CCCCA
=
1
r̂2k
(r̂y,k,¡r̂x,k,kr̂y,k,¡kr̂x,k)(X̂¡X): (10)

The second equality of (10) has been obtained by
expliciting the values of cos ˆ̄k and sin

ˆ̄
k (ref. time

= 0):
cos ˆ̄k = r̂y,k=r̂k, sin ˆ̄k = r̂x,k=r̂k: (11)

Let us now denote Ŵk the four-dimensional vector
defined by

Ŵk

¢
=(r̂y,k,¡r̂x,k,kr̂y,k,¡kr̂x,k)¤

then, Ik (10) may be calculated by means of the two
following elementary lemmas. First, let us rewrite Ik in
a more compact form:

Ik =
1
r̂2k
Ŵ¤
k(X̂¡X)

then we have the following.

LEMMA 1 The following equality holds:

Ŵ¤
kX̂= 0, k = 1, : : : ,p:

PROOF The following equality is straightforwardly
deduced from the definition (see (10)) of Ŵk, i.e.,

Ŵk =MkX̂

where

Mk =

0BBB@
0 1 0 k

¡1 0 ¡k 0

0 k 0 k2

¡k 0 ¡k2 0

1CCCA=
µ
J kJ

kJ k2J

¶

=
µ
1 k

k k2

¶
− J (12)
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with

J
¢
=
µ

0 1

¡1 0

¶
and − : Kronecker product [9]:

From (12), we have

Ŵ¤
kX̂= X̂

¤MkX̂

but the matrix Mk is antisymmetric [9] so that X̂
¤MkX̂

is null.

LEMMA 2 The following equality holds:

¡ 1
r̂2k
Ŵ¤
kX=

rk
r̂k
sin( ˆ̄k ¡¯k):

PROOF First, the vectors X and X̂ are partitioned in
position (R) and velocity (V) subvectors as below:

X
¢
=
µ
R

V

¶
, X̂

¢
=
µ
R̂

V̂

¶
we then obtain

Ŵ¤
kX= (R̂

¤,V̂¤)
µ
J kJ

kJ k2J

¶µ
R

V

¶
= (R̂+ kV̂)¤J(R+ kV): (13)

Now the following elementary remark is instrumental.
If U and U0 are two vectors of R2, then:

U¤JU0 = uxu
0
y ¡ u0xuy

= det(U,U0): (14)

Collecting (13) and (14), we obtain

Ŵ¤
kX= det(R̂+ kV̂,R+ kV)

and therefore

1
r̂2k
Ŵ¤
kX=

rk
r̂k

det(R̂k,Rk)

kRkkkR̂kk
=
rk
r̂k
sin(R̂k,Rk) (15)

where

Rk
¢
=R+ kV, R̂k

¢
=R̂+ kV̂:

Now we have from the azimuth definition:

sin(R̂k,Rk) = sin(¯k ¡ ˆ̄
k)

which proves Lemma 2. The following result has thus
been proved.

PROPOSITION 1 From Lemmas 1 and 2 the time
derivative _L(X̂) of the Liapunov function L(X̂) (eq. (6))

is
_L(X̂) = 2(X̂¡X)¤G(X̂)

=¡2
pX
k=1

( ˆ̄k ¡¯k)Ik

=¡2
pX
k=1

rk
r̂k
( ˆ̄k ¡¯k)sin( ˆ̄k ¡¯k): (16)

The above result (16) is quite identical to the
Iltis one [7] and may also be proved by direct
trigonometric manipulations. However the main
advantage of the matrix formulation lies in the fact
that it can be straightforwardly extended to more
complex source-observer scenarios.
When all the f¯k ¡ ˆ̄

kgpk=1 lie in the interval
]¡¼,¼[, all the scalars ( ˆ̄k ¡¯k) sin( ˆ̄k ¡¯k) are
positive which implies that _L(X̂) cannot be null and
in turn the gradient vector G(X̂) cannot be the zero
vector. Therefore, a local maximum of the likelihood
functional cannot exist on all the X̂ domain verifying
the above condition.
According to (16), the above condition can imply

the convergence of the gradient algorithm only if
the stepsize is correctly chosen and if the gradient is
a descent direction. This is the object of Section V,
where sufficient convergence conditions are derived.
Further, note that the observability conditions do
not appear in the previous analysis. In fact, the
problems are not of the same nature and there is no
contradiction since convergence means convergence
towards observable parameters. However, practically,
it is worthy that the TMA problem be observable.
For instance, the classical TMA problem will be
(generally) observable if multiple measurements (e.g.
multiple arrays) are available at each scan. We refer to
[10] for an elementary proof.
Up to now, our analysis was largely inspired

by the work of Iltis, et al. The Lyapunov function
(6) played a main role. Another point of view is
that of numerical analysis. The basic scalar product
(X̂¡X)¤G(X̂) will then receive another (perhaps
more natural) interpretation. At this point, it is worth
to recall the general definition of a quasiconvex
functional [13].

DEFINITION 1 Let f : S! E, where S is a nonempty
convex set. The functional f is said to be quasiconvex
if, for each X1 and X2 2 S, the following inequality
holds true for each ¸ 2 [0,1]:

f[¸X1 + (1¡¸)X2]·maxff(X1),f(X2)g:

Analogously, the functional f is said quasiconcave
if ¡f is quasiconvex. Practically, the following
(classical) characterization of a differentiable
quasiconvex functional [13] is very useful.
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THEOREM 1 [13] Let S be a nonempty open convex set
and let f be differentiable on S. Then f is quasiconvex
if the following statement holds:

If X1,X2 2 S and f(X1)· f(X2),
then r¤f(X2)(X2¡X1)¸ 0:

(17)

The definition of _L(X̂) (see (8)) is thus quite
similar to the differential characterization of the
quasiconvexity. Actually, the aim of the “main results”
(see Sections III—VI) is to prove that the likelihood
functional is quasiconcave on a “reasonable”
domain of the state space. In fact, these results (see
Properties 1, 2, 3) imply the validity of the following
proposition:

If: ¡L(X̂)¸¡L(X), then:

¡r¤L(X̂)(X̂¡X) =G¤(X̂)(X̂¡X)· 0:
(18)

From which, we deduce that the log-likelihood
functional L is quasiconcave. A general property of
quasiconcave functionals is that a local maximum
is actually a global maximum [13], on the
quasiconcavity domain. However, note [7] that the
tan¡1(¢) function is only defined without ambiguity in
the range [¡¼=2,¼=2].

IV. EXTENSION TO MANEUVERING SOURCE AND
OBSERVER SCENARIOS

We now show how the previous formalism may be
extended to more complex scenarios. First, we restrict
our attention to a nonmaneuvering target.
We consider that the observer trajectory is a

leg-by-leg one and we denote m its maneuver instant.
According to (2), (3), we have (j ¸ 0):

r̂x(m+ j) = r̂x(0)+ (m+ j)v̂x+ jux

r̂y(m+ j) = r̂y(0)+ (m+ j)v̂y + juy
(19)

ux,uy: observer change of velocity (maneuver) and
k =m+ j j ¸ 0.
Using (19), the previous formalism yields

r̂2k fX̂¤H¤(X̂)gk = (R̂¤,V̂¤)
·
Mk

µ
R̂

V̂

¶
+ j
µ
JU

kJU

¶¸
where

Mk =
µ
1 k

k k2

¶
− J

U=
µ
ux

uy

¶
, k =m+ j

so that3

r̂2k fX̂¤H¤(X̂)gk = j(R̂+ kV̂)¤JU: (20)

3fX̂¤H¤(X̂)gk denotes the kth element of X̂¤H¤(X̂).

Similarly, the other term of _L(X̂) is obtained

r̂2k fX¤H¤(X̂)gk = (R,V)¤
·
Mk

µ
R̂

V̂

¶
+ j
µ
JU

kJU

¶¸
= (R+ kV)¤J(R̂+ kV̂) + j(R+ kV)¤JU:

(21)

Let us now calculate the following bilinear form:

(R+ kV+ jU)¤J(R̂+ kV̂+ jU)

= (R+ kV)¤J(R̂+ kV̂) + jU¤J(R̂+ kV̂)

+ j(R+ kV)¤JU+ jU¤JU: (22)

Now, the antisymmetry property of J yields

U¤J(R̂+ kV̂) =¡(R̂+ kV̂)¤JU
U¤JU= 0:

(23)

From (20), (21), (22), and (23) the following
equality is deduced

r̂2k f(X̂¡X)¤H¤(X̂)gk
=¡(R̂+ kV̂+ jU)¤J(R+ kV+ jU)
=¡det[(R̂+ kV̂+ jU), (R+ kV+ jU)]

or, more simply

r̂2k f(X̂¡X)¤H¤(X̂)gk
=¡rk

r̂k
sin(R̂+ kV̂+ jU,R+ kV+ jU)

=
rk
r̂k
sin(R+ kV+ jU,R̂+ kV̂+ jU)

=
rk
r̂k
sin( ˆ̄k ¡¯k)

so that finally

_L(X̂) =¡2
pX
k=1

rk
r̂k
( ˆ̄k ¡¯k)sin( ˆ̄k ¡¯k): (24)

Note the similarity of (24) with (16). Analogously
to the case of a nonmaneuvering observer, _L(X̂) will
be (strictly) negative if all the f ˆ̄k ¡¯kgpk=1 lie in
the interval ]¡¼,¼[. Therefore a local minimum
of the likelihood functional cannot exist on all the
corresponding X̂ domain. Note that observability is
generally ensured for a leg-by-leg observer trajectory
[14, 15]. Further, from (24) we note that the speed of
convergence of an iterative algorithm is proportional
to
Pp
k=1 rk=r̂k(

ˆ̄
k ¡¯k)sin( ˆ̄k ¡¯k).

Assuming now that the target maneuver instant is
known, the previous analyis can be extended to the
case of a maneuvering source. Indeed, the main change
is the dimension of the state space (eqs. (2), (3)).
Consider, first, a two-leg path of the source. Opposite
to the case of a nonmaneuvering source, two transition
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matrices (F1 and F2) are now required [15]. The state
equations then take the following general form:¯̄̄̄

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄

X1 = F1X0
...

Xm = F
m
1 X0Ã source maneuver instant

Xm+1 = F
m
1 F2X0

...

Xm+mobs+1 = F
m
1 F

mobs+1
2 X0 +U

Ã obs. maneuver instant
...

with4

F1 =

0B@Id Id 0

0 Id 0

0 0 Id

1CA=
0B@1 1 0

0 1 0

0 0 1

1CA− Id2
F2 =

0B@Id 0 Id

0 Id 0

0 0 Id

1CA=
0B@1 0 1

0 1 0

0 0 1

1CA− Id2
X0 = (rx,0,ry,0,vx,1,vy,1,vx,2,vy,2)

¤:

(25)

This time, the dimension of the state vector X
is equal to 6. The parameters (rx,0,ry,0) represent
the initial source position and (vx,i,vy,i)i=1,2 are the
components of the relative velocity vector on source
legs 1 and 2. The matrices F1 and F2 are the transition
matrices for respectively the source leg 1 and leg 2.
Note their different structures. This formalism makes
it possible to define parameterizations of the state
vectors Xk involving only the state vector X0.
We state without proof the following elementary

lemma.

LEMMA 3

For fm,jg 2N2, Fj2 F
m
1 =

0B@Id mId jId

0 Id 0

0 0 Id

1CA
and : Fj2 F

m
1 = F

m
1 F

j
2 : (26)

According to the new state equations, we must
replace (12) by

Ŵk =MkX̂ (27)

where, this time k =m+ j, (m instant of source
maneuver):

Mk =

0B@ 1 m j

m m2 mj

j mj j2

1CA− J
X̂= (r̂x, r̂y, v̂

1
x , v̂

1
y , v̂

2
x , v̂

2
y )
¤:

4mobs is the maneuver instant of the observer.

In (25) the index m denotes the target maneuver
instant while (r̂x, r̂y) is its initial position and (v̂

i
x, v̂

i
y)

are its velocity components on the ith leg.
As previously, the matrix Mk is antisymmetric so

that the previous reasoning holds and once again gives
an identical result (cf. (24)). Let us briefly detail the
corresponding calculations.
First, assuming the observer not to be

maneuvering, then

Ŵ¤
k(X̂¡X) =¡X̂¤MkX: (28)

Now

Mk =

0B@ 1m
j

1CA− (1,m,j)− J
so that

Ŵ¤
k(X̂¡X) =¡(R̂+mV̂1 + jV̂2)¤J(R+mV1 + jV2)

= rkr̂k sin(
ˆ̄
k ¡¯k): (29)

The case of a maneuvering observer is treated in the
same way. Let us denote mobs, the instant of observer

maneuver, then we have (k0
¢
=(k¡mobs)):

r̂2k fX̂¤H¤(X̂)gk = (R̂¤,V̂¤1,V̂¤2)

264Mk
0B@ R̂

V̂1

V̂2

1CA+ k0
0B@ JU

mJU

jJU

1CA
375

= k0(R̂+mV̂1 + jV̂2)
¤JU: (30)

Similarly, we have

r̂2k fX¤H¤(X̂)gk = (R+mV1 + jV2)¤J(R̂+mV̂1 + jV̂2)
+ k0(R+mV1 + jV2)

¤JU (31)

so that, finally, the following equality is still valid:

r̂2k f(X̂¡X)¤H¤(X̂)gk =
rk
r̂k
sin( ˆ̄k ¡¯k):

Obviously, this reasoning can be also extended to
any number of legs. For the sake of brevity, such
straightforward extensions are not detailed. The
following general result has thus been obtained.

PROPOSITION 2 Suppose that the instants of source
maneuvers are known, then the time derivative _L(X̂) of
the Liapunov function L(X̂) (eq. 6) is

_L(X̂) = 2(X̂¡X)¤G(X̂)

=¡2
pX
k=1

( ˆ̄k ¡¯k)Ik

=¡2
pX
k=1

rk
r̂k
( ˆ̄k ¡¯k)sin( ˆ̄k ¡¯k): (32)

We stress that Propositions 1—3 are valid under
the assumption that the source maneuver instants (or
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change-points) are (exactly) known. Extensions to
the case of unknown change-points are considered
in Section VII. More precisely, a global optimization
procedure for estimating the trajectory (including
the change-points) of a maneuvering source are
presented. If the change-points are not the exact ones,
the scalar Lk

¢
= r̂2k f(X̂¡X)¤H¤(X̂)gk (see (24))

becomes5

Lk =
rk
r̂k
sin(R̂+m0V̂1 + (k¡m0)V̂2

+ j0U,R+mV1 + (k¡m)V2 + j0U):
(33)

Thus, the previous result is still valid when
the change-points are not the exact ones, but
the corresponding sign condition becomes more
constraining (i.e., it is not the sign of

P
i xi sin(xi)).

REMARKS
1) We have noted the fundamental role (in

convergence analysis) of the sum:
Pp
k=1(rk=r̂k)

¢ ( ˆ̄k ¡¯k)sin( ˆ̄k ¡¯k). A geometric interpretation
of this sum is that it represents (approximately) a
weighted sum of the areas of the parallelograms
spanned by the vector couples fR̂+ kV̂+ jU,
R+ kV+ jUg.
2) The validity of the proof of Propositions 1—3 is

due to the special structure of the matrix Mk (see (25),
(26)). More precisely, we have seen that

Mk =

0B@ 1 m j

m m2 mj

j mj j2

1CA− J
= Tm,j − J: (34)

The matrix Tm,j is the “trajectory” matrix of the target.
It admits the following factorization:

Tm,j =

0B@ 1m
j

1CA− (1,m,j):
Thus, Tm,j is a rank one, semidefinite matrix, while Mk
is antisymmetric. These two (elementary) properties
are the fundamental ingredients of the previous
calculations.
3) The uncertainty about the maneuver instant

¿ can be modeled by a randomization (of ¿). This
leads to replace the expression (4) of p(B̃ jX) by the
following:

p(B̃ jX,¿ ) =
X
i

p[B̃ jX,¿i(¿)]p(¿i(¿ )):

For this modeling, the distribution of f¿ig is centered
around ¿ . The problem then consists in determining

5m0 assumed change-point, m actual change-point

the parameters fX,¿g which maximizes p(B̃ jX,¿ ).
This may be achieved by means of a classic iterative
algorithm. The analysis of convergence is similar to
the deterministic case.
4) For the 3-D TMA problem, the receiver

measurements are the bearing (¯k) and the elevation
angles (°k). The previous calculations then yield

_L(X̂) =¡2
pX
k=1

rk
r̂k
( ˆ̄k ¡¯k)sin( ˆ̄k ¡¯k)

¡ 2
pX
k=1

rk
r̂k
(°̂k ¡ °k)cos(°̂k ¡ °k):

5) The main result is readily extended to the case
of a target with a constant acceleration vector. More
generally, this result holds for any measurement (¯t)
equation of the type:

tan(¯t) =
A¤tX
B¤tX

where At and Bt are (time-varying) vectors associated
with the definition of source motion, and while X
is the state vector. Thus for the rectilinear, uniform
motion model, At = (1,0, t,0)

¤ and Bt = (0,1,0, t)
¤.

Extension to the more general case f(¯t) =A
¤
tX=B

¤
tX

requires (at least) the monotonicity of f. It is clear
that the special form of f(¯t) is instrumental.

V. DISCUSSION AND CONVERGENCE ANALYSIS

A. Unconstrained Estimation

Let us now consider the convergence of a gradient
algorithm for the exact case, i.e., the f¯igpi=1 are the
exact ones. The convergence of a variable stepsize
gradient algorithm on the compact domain ¢ can be
proved if the two following conditions are verified
[16].

1) The functional f(X̂) =¡ logp(B j X̂) (cf. (4))
satisfies a Lipschitz condition on ¢, i.e.,

kG(X̂)¡G(Ŷ)k · LkX̂¡ Ŷk, L > 0, X̂,Ŷ 2¢:
(35)

2) For any " > 0, there exists a ± (±(")> 0) such
that

kG(X̂)k ¸ ± for all X̂ s.t. kX¡ X̂k> ":
(36)

Actually, the following inequality is easily deduced
(see Appendix A) from the above conditions:

f(X̂l)¡f(X̂l+1)¸
1
2L
®2l kG(X̂l)k2
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where6 ¯̄̄̄
¯̄̄̄
¯̄
L is defined by (35)

®l
¢
=

(G¤(X̂l)Sl)

kG¤(X̂l)kkSlk
X̂l+1 = X̂l¡ ½lSl:

(37)

In (37) the scalar ®l represents the cosine of
the angle between the descent direction Sl and the
gradient Gl. This allows us to consider a general
form of an iterative algorithm (Gauss—Newton,
pseudo-Newton, etc.). Practically, thanks to this
result and the intermediate value theorem [16], a
sufficient condition of convergence is readily deduced.
Indeed, the inequality (37) asserts that the gradient is
a descent direction when the conditions (35) and (36)
are satisfied. Note that the difficulty of the problem
stems from the nonconvexity of the functional
f. Then, it is not surprising that the convergence
analysis relies on the conditions (35) and (36), which
may be demanding, even for a (general) convex
functional.
We now restrict our attention to the above

conditions. First, let us examine the condition (35).
From the intermediate value theorem, we have [17]

kG(X̂)¡G(Ŷ)k · kX̂¡ Ŷk sup
0·t·1

kH((1¡ t)X̂+ tŶ)k
(38)

where H is the differential matrix of G (i.e., the
Hessian matrix).
Elementary calculations yield the matrix (denoted

D2¯) of second-order partial derivatives of the bearing
¯k(X):

D2¯k =
µ
1 k

k k2

¶
−
µ¡a b

b a

¶
where

a=
sin2¯k
r2k

, b =¡cos2¯k
r2k

(39)

(D2¯)(1,3)
¢
=

@2¯

@rx @vx
, (D2¯)(2,4)

¢
=

@2¯

@ry @vy
, etc:

From (9) and (39), the matrix H is easily deduced,
yielding7

H(X̂) =
Ã
@B̂
@X

!¤ Ã
@B̂
@X

!
+(C1 jC2 jC3 jC4)

6Sl is the descent direction.
7From (40), we note that H(X̂) is the sum of a nonnegative definite
matrix ((@B̂=@X)¤(@B̂=@X)) and another matrix which is not
generally nonnegative definite. Hence, it is impossible to obtain a
general conclusion about the positive definiteness of the Hessian
matrix H(X̂).

where

@B̂
@X

=H(X̂) (cf. (9))

C1 =

0BBBBBBBBBBBBBBB@

sin2 ˆ̄1
r̂21

¢ ¢ ¢ ¢ ¢ ¢ sin2 ˆ̄p
r̂2p

cos2 ˆ̄1
r̂21

¢ ¢ ¢ ¢ ¢ ¢ cos2 ˆ̄p
r̂2p

sin2 ˆ̄1
r̂21

¢ ¢ ¢ ¢ ¢ ¢ psin2 ˆ̄p
r̂2p

cos2 ˆ̄1
r̂21

¢ ¢ ¢ ¢ ¢ ¢ pcos2 ˆ̄p
r̂2p

1CCCCCCCCCCCCCCCA
(B̃¡ B̂):

(40)

Expressions of vectors Ci stem from (39). We
deduce from (9) and (39), (40) that kH((1¡ t)X̂+ tŶ)k
is bounded on any compact subset of R4 excluding
the origin, hence the Lipschitz condition (35) holds on
such a subset.
Let us now examine the second condition (36).

From the main results (i.e., Property 1 and 2), we
have

(X̂¡X)¤G(X̂) =
pX
k=1

rk
r̂k
( ˆ̄k ¡¯k)sin( ˆ̄k ¡¯k):

(41)

The following inequality is then deduced from (41)
and the Cauchy—Schwartz inequality [9]:

kG(X̂)k ¸ 1

kX̂¡Xk

¯̄̄̄
¯
pX
k=1

rk
r̂k
( ˆ̄k ¡¯k)sin( ˆ̄k ¡¯k)

¯̄̄̄
¯

¸ 1
M¢

¯̄̄̄
¯
pX
k=1

rk
r̂k
( ˆ̄k ¡¯k)sin( ˆ̄k ¡¯k)

¯̄̄̄
¯ : (42)

Now since the compact domain ¢ does not contain
the origin and since the sum

Pp
k=1 rk=r̂k(

ˆ̄
k ¡¯k)

¢ sin( ˆ̄k ¡¯k) admits a strictly positive lower bound
when the condition kX̂¡Xk ¸ " holds, then (36) holds
true.
Up to now our attention has been restricted to the

case of noise-free measurements. Let us now consider
noisy measurements, (3) becomes

˜̄
k = tan

¡1
Ã
rx,k
ry,k

!
+wk

wk : wgn:

(43)

Denote X̃ the state vector which maximizes
the likelihood functional (4), then L(X̂) (eq. (6)) is
naturally replaced by

L0(X̂) = kX̂¡ X̃k2: (44)
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Using the previous calculations, we then obtain

(X̂¡ X̃)¤G(X̂) =¡2
pX
k=1

˜̃rk
r̂k
( ˆ̄k ¡

˜̃
¯k) sin(

ˆ̄
k ¡

˜̃
¯k),

where : ˜̃rk
¢
=rk(X̃) and

˜̃
¯k

¢
=¯k(X̃):

(45)

The analysis of a gradient method is thus quite
similar to the previous one. In particular (45) is a
sufficient condition which guarantees the numerical
convergence towards X̃ (for convenient stepsizes). It
remains to examine the consistency of the estimator
X̃. Usually, such analysis is conducted under
the assumption that observations are identically
distributed.
Here, this assumption is not valid. This problem

has been considered in [20, pp. 186—191]. With
our notations, it has been shown that consistency
is ensured if the following conditions are satisfied8

(8X,X0):

lim
p!1

1
d2p

Ã
pX
k=1

Hk(X
0)H¤k(X

0)

!
=O

lim
p!1

1
dp

Ã
pX
k=1

(¯k(X)¡¯k(X0))Hk(X)
! (46)

exists and is non zero.
In (46), fdpg is an arbitrary sequence of positive

numbers, while Hk is the kth column of the matrix H
(i.e., H¤k = 1=rk(cos(¯k),¡sin(¯k),k cos(¯k),¡k sin(¯k)).
For the sequence fdpg= fp2g, the first condition of
(46) is thus satisfied. The second stems from the form
of Hk(X) (see (9)). When p tends towards infinity, the
bearing-rate approaches zero thus implying that the
second condition holds. However, note that the true
statistical problem is to determine how far X̃ is from
the exact state vector X. But, this is beyond the scope
of this work and we refer to [1, 10].

B. Constrained Estimation

It is easily seen [1, 10] that the possibility of
large errors grows with the range-to-baseline ratio.
When unreasonable estimates are obtained, additional
information may be available which, if properly
used, could improve the TMA solution. Perhaps the
two most readily available constraints on the state
vector are relative to target range and speed.9 More
specifically, it is quite reasonable to assume that the
state vector components are bounded. This leads to
consider the following type (primal problem P) of
constrained optimization problems:¯̄̄̄

Minimize f(X) = kB̃¡B(X̂)k2
§¡1

subject to g(X)· 0:
(47)

8O is the zero matrix.
9A pioneering work about this problem can be found in [1, 18].

In (47), the m-dimensional function g is generally
linear and represents the velocity and position
constraints (e.g., ¡vmax · vx, vy · vmax). This problem
can be efficiently solved by means of Lagrangian
duality [13], leading to consider the following
Lagrangian dual problem:¯̄̄̄

¯̄̄Maximize µ(U)

subject to U¸ 0
where: µ(U) = infXff(X) +U¤g(X)g:

(48)

Numerous methods are available for solving the dual
problem. Among them, one of the more feasible is the
cutting plane method, detailed in [13, pp. 224—230].
However, for our application, Uzawa’s method has
attractive features. In its spirit, it consists in solving
the (difficult) constrained problem by means of a
sequence of unconstrained problems. Let us briefly
recall the principle of this method. A couple (Xk,Uk)
is recursively defined by10¯̄̄̄

Xk = arg infX[f(X)+U
¤
kg(X)]

ui,k+1 =maxfui,k + ½gi(Xk),0g, 1· i·m (49)

where ½ is the algorithm stepsize, ui and gi are the
ith components of U and g(X), the vector Uk is the
vector of Lagrangian multipliers at the iteration k.
Thus, ui,k+1 may be interpreted as the projection
of the element ui,k + ½gi(Xk) on R+,m (i.e., uk+1 =
P+(uk + ½g(Xk)).
The sum of a quasi-convex (f) and a convex

function being quasi-convex, the convergence of an
iterative algorithm is a consequence of the previous
results. Convergence towards the exact state vector can
occur only if this state vector belongs to the constraint
subset.
Now, invoking the strong duality theorem [13],

there exists a saddle point (let us denote X and U
the corresponding values of the state vectors and
multipliers) for which the values of the primal and
dual problems are equal (no duality gap). Assuming,
further, the constraints linear and since the projection
operator does not increase the distances (g(X) = CX),
we then obtain [19]½ rf(Xk)¡rf(X)+C¤(Uk ¡U) = 0

kUk+1¡Uk · kUk ¡U+ ½C(Xk ¡X)k:
(50)

From (50), the following inequality is
straightforwardly deduced [19]

kUk+1¡Uk2 · kUk ¡Uk2 + ½2kC(Xk ¡X)k2

¡ 2½(rf(Xk)¡rf(X),Xk ¡X):
(51)

Usually, an upper bound of the scalar product
(rf(Xk)¡rf(X),Xk ¡X) is a direct consequence

10In this section k denotes the index of the iteration.
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of the convexity (and more precisely coercitivity)
of f. We cannot use this argument here. Instead we
can use the previous results for calculating an explicit
expression of this scalar product, i.e.,

(rf(Xk)¡rf(X),Xk ¡X)

= 2
X
i

½
(¯i¡¯i,k)sin(¯i¡¯i,k)

µ
ri
ri,k
+
ri,k
ri

¶¾
:

(52)

Invoking (52), it is always possible to determine an
upper bound of the stepsize ½ such that the scalar
product (rf(Xk)¡rf(X),Xk ¡X) is bounded by a
given scalar ®. We then have

kUk+1¡Uk2 · kUk ¡Uk2

¡ ½f2®¡ ½kCk2gkUk ¡Uk2: (53)
Now, if the stepsize ½ is such that 0· ½· 2®=kCk2,
then the sequence fkUk ¡Ukgk is decreasing.
Therefore, this sequence will converge for a
convenient choice of the stepsize. The convergence
of the sequence kX¡Xkk is then a direct consequence
of (53) and the strong duality theorem [13].
In practice, however, the adequacy of the stepsize

is a salient feature of this method. So, it is worth
using (52) and (53) in order to obtain an acceptable
upper bound of ½.

VI. ANALYSIS OF INSTRUMENTAL VARIABLE
METHOD

In the BOT context a classical variant of the
gradient algorithm is the modified instrumental
variable (MIV) method. It has been carefully studied
by various researchers [1, 3, 6].
This method relies upon a quite subtle

reformulation of the measurement equation which
results in a pseudomeasurement derived from the
known observer state and the available measured
bearings, and is “linearly” related to the target state.
In this spirit the more direct approach is the
pseudolinear estimate (PLE). However, the PLE
method is known to produce a (very) biased state
estimate [1, 3].
An MIV method has been examined that uses

successive state estimates to generate the instrumental
variables in an iterative algorithm [21, 22]. By using
the so-called instruments [22, 23] which in our
scheme are the predictions of the values of the present
regressors based on past measurements, consistent
estimates can be obtained.
Let us now recall the general form of the MIV

in the BOT context. Given the linear dynamic
system and measurement equation ((1) and (2)), the
pseudomeasurements zk are defined by

zk = robs,x(k)cos
˜̄
k ¡ robs,y(k)sin ˜̄k (54)

where

1) ˜̄k is estimated bearings,
2) (robs,x(k),robs,y(k)) is Cartesian coordinates of the

observer at time k.

Useful relations are then [1, 3]

zk = Ã
¤(k)Xobs(k) = Ã

¤(k)XT(k) + ´k

where:¯̄̄̄
¯̄̄̄
¯̄̄
Ã¤(k) = (cos ˜̄k,¡sin ˜̄k,0,0),
´k = rk sinwk ' rkwk,
wk : measurement noise,

Xobs : observer state, XT : target state:

(55)

Given (55) the problem of determining the target
state from an history Zp of pseudomeasurements
(Zp = (z1,z2, : : : ,zp)

¤) takes the form of a linear state
estimation technique. The vector Zp can be written as

Zp = ÃpXT(0)+N
where ¯̄̄̄

¯̄̄̄kth row of Ãp = Ã
¤(k)Fk

= (cos ˜̄k,¡sin ˜̄k,k cos ˜̄k,¡k sin ˜̄k)
N= (´1, : : : ,´p)

¤:

(56)

Minimizing the norm of the error e(e= Zp¡ÃpXT)
yields the PLE but a major drawback of this estimator
is its bias due to the correlation between the terms of
Ãp and N. The MIV approach consists in replacing
the classical optimality equation in the minimization
of e2 by the following one:

A¤p(X̂)[Zp¡ÃpX̂T] = 0: (57)

In (57) A¤p(X̂) is the A matrix associated with X̂.
An iterative estimator of the ftargetg state vector is
deduced from (57) and stands as follows:

X̂T,`+1 = (A¤p(X̂`)Ãp)¡1A¤p(X̂`)Zp
or taking into account the variations of the
source-observer range (R̂ = diag(frigpi=1)):

X̂T,`+1 = (A¤p(X̂`)R̂¡2Ãp)¡1(A¤p(X̂`)R̂¡2Zp): (58)

First let us examine the unicity of the MIV
estimate. Let X be the exact source state vector then
in the exact case (no measurement noise) (57)
becomes

[A¤p(X̂)Ap(X)](XT¡ X̂T) = 0: (59)

Invoking the following classical lemma [9].

810 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 35, NO. 3 JULY 1999

Authorized licensed use limited to: UR Rennes. Downloaded on July 10, 2009 at 11:36 from IEEE Xplore.  Restrictions apply.



LEMMA 4 Let A and B be respectively a (m£ k)
matrix and a (k£m) matrix, then the following
inequality holds:

(rank A+rank B)¡ k
· rank (AB)·min(rank A, rank B):

Applied to A=A¤p(X̂) and B =Ap(X), this lemma
implies the unicity of the MIV solution when the BOT
problem is observable.
Consider now the noisy case, using the previous

calculations (see Sections III, IV), we obtain the
following result.

PROPOSITION 3 The following equation holds:

(X̂¡X)¤A¤p(X̂)[Zp¡Ap(X̂)XT]

=
pX
k=1

rkr̂k[sin(¯k ¡ ˆ̄
k)]

2: (60)

The conclusion is thus quite identical to the
convergence analysis of the gradient method.
It remains to consider the behavior of the MIV

algorithm itself. For that aim, we consider the function
f defined below11

f(X̂T) = [A¤p(X̂)Ãp]¡1A¤p(X̂)Zp
now [1, 3, 6]

Zp = ÃpXT+N
so that

f(X̂T) =XT+(A¤p(X̂)Ãp)¡1A¤p(X̂)N: (61)

Thanks to the fixed point theorem [16, 17] the
convergence of the MIV algorithm will be guaranteed
if we can prove that f is k-Lipschitz (k < 1) (see
(35)). Indeed, the fixed point theorem will imply the
convergence of the sequence Xk+1 = f(Xk).
The two following hypotheses are usual12 [21—23]:

P

µ
lim
p!1

1
p
A¤p(X̂)N

¶
= 0

P

µ
lim
p!1

1
p
A¤p(X̂)Ãp

¶
is non singular:

(62)

The second condition is guaranteed if the
observability conditions [1, 6, 15] are satisfied. For
instance, if an observer maneuver occurs. The first
one results from [22, Theorem 2, p. 709] which states
that (62) holds if the elements of A¤p(X̂) are uniformly
bounded and statistically independent of the elements
of N.

11Ã is the matrix A where ¯k is replaced by ˜̄k .
12The symbol P here denotes the probability.

Then from Slutski’s theorem [22, 25] we have

P

·
lim
p!1(A

¤
p(X̂)Ãp)¡1A¤p(X̂)N

¸

= P

"µ
lim
p!1

1
p
A¤p(X̂)Ãp

¶¡1#
P

·
lim
p

1
p
A¤p(X̂)N

¸
= 0:

(63)

so that X̂ defined by (61) is a consistent estimator.

VII. UNKNOWN CHANGE-POINTS OF SOURCE
TRAJECTORY

Although it has been more than 25 years since
Mc Aulay and Denlinger first published their paper
on tracking a maneuvering target [26], this problem
still motivates a great deal of fruitful research. For
instance, see [27] and the related references. However,
a large part of these efforts is devoted to radar
applications.
The sonar context is rather different. Sudden

maneuvers and leg-by-leg source trajectory is a
realistic hypothesis in the sonar context. Also,
the observations are nonlinearly depending of the
source state. Moreover, the detection of source
maneuvers requires a suitable estimation of the
state, itself needing a sufficient signal-to-noise ratio
and a sufficient number of measurements. All these
considerations plead for a global modeling of the
source trajectory, including its maneuvers and their
detection process. As noticed by Bogler [27] and
accordingly to our analysis, the complete solution
of this problem must be divided into consecutive
steps. First, the maneuver must be detected. Second,
the source trajectory must be estimated. Third,
after detection and correction, the source trajectory
parameters are adjusted in anticipation of future target
maneuvers.
We examine now the case of a maneuvering target

with unknown instant of velocity change. Assuming
this instant (¿ ) real,13 a direct calculation yields (2
legs, X= (rx,ry,vX,1, : : : ,vy,2,¿)

¤):

_L(X̂) =¡2
pX
k=1

rk
r̂k
( ˆ̄k ¡¯k)sin( ˆ̄k ¡¯k)

¡ 2(¿̂ ¡ ¿ )
pX
k=1

( ˆ̄k ¡¯k)
@ ˆ̄k
@¿

where
@ ˆ̄k
@¿

=
kV̂1¡ V̂2k

r̂k
sin(V̂1¡ V̂2,R̂):

(64)

From (64) we see that, unlike the case of known
maneuver instants, it is not possible to give simple
conditions ensuring that _L(X) is non-zero. The main

13Differentiability w.r.t. ¿ is thus assumed.
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result must be replaced by less affirmative discussions.
In particular, we see from (64) that when (¿̂ ¡ ¿ ) is
small in regard to 1 (®= 1), then the second term
of (64) may be neglected in regard to the first one.
This result means that the main results are still
valid as long as the error (¿̂ ¡ ¿ ) is sufficiently
small.
Obviously, the maneuver instant may be included

in the set of parameters and an iterative (e.g., gradient)
method can be easily derived. However, this approach
suffers from a major drawback: the presence of local
minima of the likelihood functional. Instead of it,
a generalized likelihood ratio (GLR) approach is
quite preferable. In fact, this approach consists in
combining an exhaustive search for the change-points
(¿) with an iterative method for estimating the
source kinematic parameters (rx,ry,vx,vy). Sequential
detection of source maneuvers will render the
approach feasible. The convergence of the method
stems from the GLR definition and the previous
results.
Consider, for instance, a two-leg source trajectory,

the GLR takes the following form:

¤(B̃) =
supR,Vp(B̃ jR,V)

supR,V1,V2,¿p(B̃ jR,V1,V2,¿ )
: (65)

Maximization relatively to fR,V1,V2g is achieved
by means of iterative methods (gradient or MIV)
with ¿ fixed. The change point ¿ itself is estimated by
exhaustive search in an “acceptable” interval. Notice
that this approach provides simultaneously estimates
of R,Vi,¿ and detection of the source maneuvers and
avoids numerical problems (local minima).
Practically, it performs very well, allowing us

to obtain a very reliable detection of the source
maneuver as well as an accurate estimation of the
maneuver instant.14 An important drawback may
be its computation cost since it needs multiple
maximizations.
To overcome this problem,15 an approximate

localization of the source maneuvers can be obtained
by sequential detection [20] based, for instance, on the
following type of test [28] which may be viewed as
an approximation16 of a likelihood ratio around the
parameter µ0 2£0:

¤n(B̃2) = (1=n)e
¤
2U

¡1
2 e2 (66)

14Approximating the asymptotic performance of this test is a
difficult task, since the sequence of observations is not identically
distributed.
15Computation cost of an exhaustive search for ¿ .
16More precisely, denoting µ̂ the MLE over £ and µ¤ the MLE
over £0 we consider the following expansion of the likelihood:
l(µ¤) = l(µ̂) + _l

µ̂
(µ¤ ¡ µ̂)¡ (µ¤ ¡ µ̂)¤I(µ̂)(µ¤ ¡ µ̂), I(µ̂) Fisher matrix.

where

e2
¢
= B̃2¡B2(X̂1)

U2 = §2 +H2(X̂1)F
¡1
1 H¤2 (X̂1)

n= dim(e2):

In (66), X̂1 represents the source state vector
estimated using the first batch of measurements (B̃1)
of the first source leg which assumes that no source
change-point occurs during this first set. The vector
B2(X̂1) is the vector of extended (from X1) bearings
on the second set of measurements while B̃2 is the
second set of measurements. The matrix U2 is the
covariance matrix of e2 where the matrix H2(X̂1) is
defined in (9).
Actually, the expression of ¤n (66) stems from the

following considerations

e2 = B̃2¡B2(X2)| {z }
meas. noise

+B2(X2)¡B2(X̂1)| {z }
mod. error noise

so that

cov(e2) = cov[(B̃2¡B2(X2)] +cov[B2(X2)¡B2(X̂1)]
=§2 +H2(X̂1)F

¡1
1 H¤2 (X̂1): (67)

The equality cov[B2(X2)¡B2(X̂1)] =H2(X̂1)
¢F¡11 H¤2 (X̂1) stems from a theorem of Cramér
[25, (p. 47)] and the implicit function theorem
[17]. Let us denote H0 and H1 the hypotheses
associated, respectively, with no source maneuver
and a maneuver. Under H0, n¤ is (asymptotically)
distributed as a central chi-squared random variable
Â2n, while under H1 it is distributed as a noncentral
chi-squared Â2n(±) where the noncentrality parameter ±
is

± = (B2¡B2(X1))¤U¡12 (B2¡B2(X1)): (68)

The power of the test may then be easily derived
[20, 29] from (66) and (68). Classical calculations
yield (´: value of the threshold):8>>>>><>>>>>:

Pfa = exp(¡´=2)
n=2¡1X
i=0

(´=2)i

i!

Pd = 1¡ exp
µ
¡´+ ±

2

¶ 1X
j=0

±j

j!

24(n=2)+j¡1X
i=0

(´=2)i

i!

35 :
(69)

Using the Neyman—Pearson lemma, the above
formula allows us to determine the threshold ´ for
a given level of false alarm. The receiver operating
characteristic (ROC) curves [20] of the test may be
calculated from the above equations. However, the
convergence of the infinite sum may be problematic
when ± is great. From (69), we note that the
probability of detection is tightly related to the value
of ±. As ± is (roughly speaking) proportional to n3,

812 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 35, NO. 3 JULY 1999

Authorized licensed use limited to: UR Rennes. Downloaded on July 10, 2009 at 11:36 from IEEE Xplore.  Restrictions apply.



the test performance is fastly increasing with n. For
instance, even a small change in the source trajectory
may be detected, with a quite acceptable confidence,
for values of n as low as 4. However, practically,
this test is also quite sensitive to the presence of a
(measurement) bias. This may be a serious drawback,
which reinforces the importance of the registration
step [11, 28].

VIII. SOME EXTENSIONS

A. Multiple Receivers

Assuming that the (multiple) measurements are
independent at each scan (m receivers), the scalar
product (X̂¡X)¤G(X̂) is replaced by

mX
j=1

(X̂¡X)¤Gj(X̂)

yielding [7, 10]:

_L(X̂) =¡2
mX
j=1

pX
k=1

rjk

r̂jk
( ˆ̄jk ¡¯jk)sin( ˆ̄jk ¡¯jk) (70)

1· j ·m: index of the jth subarray. The previous
convergence analysis may thus be straightforwardly
extended to multiple receivers, as well as to
registration problems [11, 12].

B. Multiple Source Case

Let us now consider the case of multiple sources.
First, for the sake of brevity, our analysis is restricted
to the case of two sources and two independent
mesurements. The state vector is made of the source
state vectors (X1 and X2) and the mixture parameters
(¼1 and ¼2 = 1¡¼1). At each scan, two measurement
models are observed; with an assignment probability
¼1, resp. ¼2. The likelihood functional L(p) (p scans)
then takes the following form [30, 31]:

L(p) =
pY
t=1

8<:
2Y
j=1

(¼1p(
˜̄
j,t j X1)+¼2p( ˜̄j,t jX2))

9=;
=

pY
t=1

Lt (71)

where ˜̄1,t and
˜̄
2,t are the measurements for scan t.

Let us now briefly detail the term Lt. Omitting the
time index (in Lt), we have

Lt = (¼1p(
˜̄
1 jX1)+¼2p( ˜̄1 jX2))

£ (¼1p( ˜̄2 jX1)+¼2p( ˜̄2 jX2))
¢
=p( ˜̄1,X1,X2)p(

˜̄
2,X1,X2): (72)

Quite analogously to the unique source case, we
obtain (p0( ˜̄j jX1) = (1=¾)p( ˜̄j jX1))
r21rX1Lt = p( ˜̄2,X1,X2)p0( ˜̄1 jX1)¼1[ ˜̄1¡¯(X1)]W1

+p( ˜̄1,X1,X2)p
0( ˜̄2 jX1)¼1[ ˜̄2¡¯(X1)]W1:

(73)

From (73) and Properties 1 and 2, the following
equalities are straightforwardly deducedµ
¾2¼¡11

r̂1
r1

¶
(X̂1¡X1)¤rX̂1Lt

= p( ˜̄2,X̂1,X̂2)p(
˜̄
1 j X̂1)( ˜̄1¡ ˆ̄

1) sin(
˜̄
1¡ ˆ̄

1)

+p( ˜̄1,X̂1,X̂2)p(
˜̄
2 j X̂1)( ˜̄2¡ ˆ̄

1) sin(
˜̄
1¡ ˆ̄

1)

and, similarlyµ
¾2¼¡12

r̂2
r2

¶
(X̂2¡X2)¤rX̂2Lt

= p( ˜̄2,X̂1,X̂2)p(
˜̄
1 j X̂2)( ˜̄1¡ ˆ̄

2) sin(
˜̄
2¡ ˆ̄

2)

+p( ˜̄1,X̂1,X̂2)p(
˜̄
2 j X̂2)( ˜̄2¡ ˆ̄

2) sin(
˜̄
2¡ ˆ̄

2):

(74)
We thus have finally:

(X̂1¡X1)¤rX̂1L(T)

=
X
t

L1 ¢ ¢ ¢Lt¡1(X̂1¡X1)¤rX̂1L(t) ¢Lt+1 ¢ ¢ ¢LT
(75)

where the term (X̂1¡X1)¤rX̂1Lt is given by (74).
Equation (74) extends the main results to the case of a
multiple source mixture. However, the conclusions are
much less affirmative. In fact, let us consider the sign
of the elementary term (X̂1¡X1)¤rX̂1Lt.
Analogously to the unique source case, the term

( ˜̄1¡ ˆ̄
1) sin(

˜̄
1¡ ˆ̄

1) is positive but the trouble
comes from the term ( ˜̄2¡ ˆ̄

1) sin(
˜̄
1¡ ˆ̄

1) which
represents an interaction term between the two
components of the mixture. The analysis of the term
(X̂2¡X2)¤rX̂2Lt leads to an identical conclusion. In
fact, this is due to the combinatorial nature of the data
association problem in the multiple source case. To
overcome this problem, various approaches have been
investigated, either based on mixture modeling and
identification [30, 31] or, gating and pruning [32].
But, the combinatorial problem is always subjacent.
This problem has been thoroughly considered by
Pattipati, et al. [33] using Lagrangian relaxation.

IX. SIMULATION RESULTS

The previous results are now illustrated by
simulation results. The following scenario is
considered. The source trajectory is a leg by leg one
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TABLE I
Parameters of Observer Trajectory (see Fig. 2)

TABLE II
Comparisons Between Local and Global Estimation Methods, SNR = 0 dB

as well as the observer trajectory. This hypothesis is
quite reasonable in the Sonar context.
The observer trajectory is a 4 legs one whose

parameters are given in Table I. The source trajectory
parameters are given in Tables II and III. Notice that
the scenario is identical for Table II and III which
differ only by the source signal-to-noise ratio. The
source change points are also included in the Tables
II and III. The scenario is depicted in Fig. 2, a circle
indicating the source and observer starts. We assume
that each source bearings is estimated by using
10 array snapshots, each snapshot corresponding
to 1 s. Thus, each bearing is estimated on a total
duration of 10 s. Since the total scenario involve
200 estimated bearings, its total duration is 2000 s.
Furthermore successive estimated bearings are
assumed uncorrelated.
The source bearings themselves are simulated

by adding a white noise to the exact bearings whose
variance is given by the Woodward’s formula. In

order to obtain empirical distribution of the estimators
of the source trajectory we consider 100 runs of the
source trajectory estimation for each scenario. The
estimation itself is achieved by means of the MIV
algorithm (see Section VI). This choice avoids the
problems induced by the computation of a convenient
stepsize in the classical gradient algorithm (MLE)
which become rather boring when the source state
dimension increases. Note however that the advantage
is only computational since the results of MLE and
MIV are identical.
We compare two estimation strategies. The first

one is global. The source trajectory is parameterized
by a 8-dimensional state vector whose components
are (rx,0,ry,0,vx,0, : : : ,vy,2). The parameters (rx,0,ry,0)
are the source coordinates at the time origin, while
(vx,i,vy,i) are the source velocity parameters on the
source leg i (0· i· 2). The source change points
are estimated by using the GLR around change points
estimated by a sequential detection scheme (see
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TABLE III
Comparisons Between Local and Global Estimation Methods, SNR =¡10 dB

Fig. 2. Target and observer trajectories. Observer trajectory (in
bold) originates at (0,0). Target trajectory originates at

(10000,10000). Exact parameter values of scenarios in Tables II
and III.

Section VII). The global optimization is initialized by
local estimates, i.e., obtained on a part of one source
leg. Even if these local estimates may be very poor,

no convergence problem occurs for global MIV as far
as the assumed change points are sufficiently close
to the exact ones (generally 10 bearing samples).
The second strategy is local, i.e., source parameters
are estimated on each source leg. The source change
points are assumed to be known. Furthermore, the
TMA problem is observable for each source leg which
means, practically, that an observer maneuver occurs
for each source leg.
Results of these two estimation strategies are

compared, between them, on the first hand, and with
the Cramér—Rao bound on the other (100 trials).
Notice that the calculation of the Fisher information
matrix (FIM) components relative to the source
change-points corresponds to a formal liberty. In
view of Tables II and III, the results of the global
MIV estimation are very close to the bounds, even
if a slight bias appears for the estimation of rx,1,ry,1
(especially at ¡10 dB). The results of the local
estimation are also quite acceptable on the first leg
and very similar to the global optimization results.
However, these good results are due to the strong
observer maneuver which occurs during the first
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source leg. On the contrary, the performance of local
estimation is rather poor on source legs 2 and 3. In
particular, bias and variance of the local estimator are
very important on leg 3. This time, the poor results
of the local approach are due to the fact that the
amplitude of the observer maneuver is weak on the
second leg and very weak on the third one.
On the contrary, the global estimation approach

takes advantage of the observer maneuver occuring
on the first source leg for estimating the kinematic
parameters of the second and third ones. The
performance of the TMA algorithm is thus greatly
improved. This is the common situation for this
type of scenario. Improvement gained by a global
estimation may be quite important.

X. CONCLUSION

A general formalism for the analysis of the
convergence of iterative methods for BOT has been
developed. General results have been obtained.
Extensions of previous results to the case of
maneuvering source and observer constitutes the
major contribution of this work and demonstrate the
effectiveness of our approach. Further theoretical
interest, simple and feasible (sufficient) convergence
criteria have thus been derived which should allow to
handle complex TMA scenarios.

APPENDIX A

This Appendix is devoted to the proof of the
inequality (37) which is instrumental for obtaining
sufficient convergence conditions. This part is inspired
by [16]. We begin with the following basic lemma.

LEMMA 5 Assume that f satifies the Lipschitz
condition (35) then the following inequality holds:

f(X)¡f(Y)¸G¤(X)(X¡Y)¡ L
2
kX¡Yk2:

(76)

PROOF Using the Cauchy—Schwarz inequality, we
obtain

f(X)¡f(Y) =
Z 1

0
G¤[Y+ ¿(X¡Y)](X¡Y)d¿

¸G¤(X)(X¡Y)¡
Z 1

0
kG[Y+ ¿(X¡Y)]

¡G(X)kkX¡Ykd¿

¸G¤(X)(X¡Y)¡LkX¡Yk2
Z 1

0
(1¡ ¿)d¿

=G¤(X)(X¡Y)¡ L
2
kX¡Yk2: (77)

Let us now recall the general form of a descent
algorithm:¯̄̄̄
¯̄̄̄
¯̄̄̄
Xl+1 =Xl¡ ½lSl
where the stepsize ½ satisfies:

f(Xl¡ ½lSl)· (1¡¸l)f(Xl)+¸l!l
with: 0< ¸l · 1 and !l

¢
=min½ f(Xl¡ ½Sl):

(78)

The following equality then holds for any value of
the stepsize ½:

f(Xl)¡f(Xl+1)¸ ¸l[f(Xl)¡!l]
¸ ¸l[f(Xl)¡f(Xl¡ ½Sl)]: (79)

Using the above lemma and the definition of
®l (cosine of the angle between G(Xl) and Sl), we
deduce

f(Xl)¡f(Xl+1)¸ ¸l[½G¤(Xl)Sl¡ 1
2L½

2kSlk2]

= ¸l[½®lkG(Xl)kkSlk¡ 1
2L½

2kSlk2]
(80)

valid for every value of ½. Choosing ½=
(®l=L)(kG(Xl)k=kSlk, the following inequality is
obtained

f(Xl)¡f(Xl+1)¸
1
2L
¸l®

2
l kG(Xl)k2 (81)

and (37) is thus proved.
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Editions de Moscou, 1977 (in French).

[17] Cartan, H. (1977)
Calcul Différentiel.
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