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Abstract: This report deals with search for a target following a Markovian move-
ment or a conditionally deterministic motion. The problem is to allocate the search
efforts, when search resources renew with generalized linear constraints. The model
obtained is extended to resource mixing management. New optimality equations
of de Guenin’s style are obtained. Practically, the problem is solved by using an
algorithm derived from the F.A.B. method.
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Détection d’une cible markovienne avec optimisation
des efforts de recherche sous contraintes linéaires
généralisées

Résumé :  Ce rapport concerne la recherche d’une cible suivant un mouvement
markovien ou conditionellement déterministe. Le probléme est d’allouer un effort
de recherche, lorsque les ressources de détection disponibles se renouvellent suivant
des contraintes linéaires généralisées. Le modele obtenu est étendu a la gestion de
mélanges de ressources de détection. De nouvelles équations de de Guenin sont
obtenues. Pratiquement, le probléme est résolu en utilisant un algorithme dérivé de
la méthode F.A.B.

Mots clés : Théorie de la recherche, Détection, Optimisation, Mouvement
markovien, Gestion de capteurs
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1 Introduction

Search theory is the discipline which treats the problem of how best to search for
an object when the amount of searching efforts is limited and only probabilities
of the object’s possible position are given. Search theory came into being during
World War II with the work of B.O. Koopman and his colleagues [1] in the Antisub-
marine Warfare Operations Research Group (ASWORG). Since that time, search
theory has grown to be a major discipline within the field of operations research.
An important literature has been devoted to this subject, interested reader may
consult various extensive surveys [4], introductory texts [3], and books [5], [6], [7], [8]-

The situation is characterized by three data:

(i) the probabilities of the searched object (the “target”) being in various possible
locations;

(ii) the local detection probability that a particular amount of local search effort
should detect the target;

(iii) the total amount of searching effort available. The problem is to find the
optimal distribution of this total effort, i.e. which maximizes the probability
of detection.

Solving such problem requires to optimize a huge amount of variable (3600 to
12600 for our examples). Decisive improvements have been made for finding search
strategies that maximize the probability of detecting a moving target within a fixed
amount of time periods. In particular, Brown has proposed an iterative algorithm
in which the motion space and the time frame have been discretized, and the search
effort available for each period is infinitely divisible between the grid cells of the
targegt motion space. In this approach, the search effort available for each period is
bounded above by a constant that does not depend on the allocations made during
any other periods.

However, even if the general formalism of search theory will be of constant
use subsequently, we shall consider now a specific problem. In the framework of
“classical” search problems, the amount of search effort available at each period is
bounded above by a fixed and known value. However, for a multi-period search, the
final result (the global probability of detection) is tightly related to the sequence
of successive search amounts. Thus, optimizing the sequence of search amounts is
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4 Frédéric Dambreville , Jean-Pierre Le Cadre

quite challenging. However, it is not possible to optimize separately the sequence
of search amounts and the search plans (i.e. the distribution of elementary search
efforts). Here, we shall consider general constraints relative to this sequence of
search amounts. These constraints may take into account specifications relative
to the renewal of search resources (see section 3) as well as general operational
requirements. It is worth stressing that associated optimization problem has not be
fully addressed in the literature.

The general optimality equations are derived by means of a method largely
inspired from classical search theory (namely de Guenin’s equations), though they
are considerably more complicated (see section 2.2). An original algorithmic ap-
proach has been used for solving the optimization problem. It combines theoretical
results of section 2.2 with a study of the differential changes of the non-detection
probability (see section 4). In order to render the problem feasible, the Markovian
hypothesis (relative to the target motion) is instrumental, allowing us to use
the Brown’s implementation (see section 4 and 5). Various extensions will then
be considered, namely extension to mixed resources (section 5) and inequality
constraints (section 6). Finally, our methods are illustrated by simulation results
(see section 7).

2 The search problem

2.1 One period search

The problem is to detect a target z, lying in a space E, and whose location is
characterized by a (known) density a(z). To make this detection, a limited amount
of search resource ¢ is available. This (total) search effort may be distributed along
the whole space E. To describe the distribution of the search effort, we denote ¢ (z)
the search density allocated to z € E. The limitations on search resource inferred
by ¢ yields the following condition on the search effort distribution ¢(z) :

/ o) de < . 1)
E

Under the assumption that the target’s location is  and when the local search effort
is p(z), we call py(¢(z)) the probability not to detect the target (this probability
may depend upon z). For z fixed, p, decreases with the effort used and then p!, < 0.
We suppose the detection follows the rule of decreasing return, so that p/, increases
strictly with ¢. According to these notations, our problem is to find the search effort
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Optimization of Search Efforts under Generalized Linear Constraints )

© under the condition (1) in order to minimize P, 4(¢p), the global probability of non
detection:

Poalep) = /E () palip(e)) di 2)

As the probability of non detection decreases with the increase of search effort, the
condition (1) becomes (3) :

/ olz)de = . 3)
E

From (2), (3) and from the positivity of density ¢, the de Guenin’s equations [9]
are obtained (see equation (4)). They give optimality conditions on ¢, scaled by a
scalar term 1 <0, i.e. :

a(z) pye(2) =0 if a(z) > n/p,(0),
{ o(z) =0 else. (4)

Using inversion of p, in (4), function ¢, is obtained. Since p, is strictly monotonic
increasing, ¢, increases uniformly (i.e. for each z € E) with 1 and / op(z) dz

E
increases. Then ¢, will satisfy (3) for only one value of 1. Once the good value of
7 is obtained (e.g. by means of an elementary dichotomy), the optimal function ¢
is deduced (p!, is invertible) from equation (4).

This very fast method, tracing back to the seminal work of B.O. Koopman
and J. de Guenin, has been extended by S.S. Brown to deal with multi-period
search for a Markovian moving target. It will be of constant use subsequently.

2.2 Multi-period search

Our objective is to detect at one or more time-period a target moving in a given space
E (assuming stationarity for each period). The detection is done within 7" time-
periods and the search ends after the first detection. We define # = (z1,...,z7) the
position of the target during the time-periods 1,2,...,7. We assume that the target
motion is probabilistic and Markovian. Because of the Markovian property, the
probabilistic density a(Z) = a(z1,...,zr) of the target trajectory may be written
as a product of elementary densities, i.e. :

T-1

a(@) = [] crp+1(@r zot1) - (5)
k=1
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6 Frédéric Dambreville , Jean-Pierre Le Cadre

For each time-period k a given amount of search effort ¢y is available. It may be
distributed along the search space E. The (local) search effort, applied to the point
zr € F at time k, is denoted ¢y (x). So, at each time-period, the following (equality)
constraint (6) is commonly considered in the search theory literature:

Vke{l,...,T},/Egok(m)d:v:gbk. (6)

We call pg 5, (¢ (xk)) the probability not to detect the target within the time-period
k, when its location is indeed z. We still assume that the detection follows the
law of diminishing return. Thus for z; fixed, pj, ,, < 0 and py , is strictly increasing.

The problem is then to find the functions ¢; in order to minimize P, 4(¢)
the global probability of non detection, under the constraint (6). Since the
elementary detections are independent, P, 4(¢) stands as follows:

k=T

k=T
Pra(p) = / a(@) [ peei(orlzr)) ] da - (7)
BT k=1 k=1
For a particular time-period , Pp4(p) can also be written:

Poi() = /E B2 () D (o)) it

where: oo (8)
BE(wx) = \/ET—I a(T) 151;[§T (pk,zk(@k(fﬂk))dﬂﬁk) :

This shows that, when the search efforts are fixed for all the time-periods, except
for a given one denoted k, the optimization problem may be solved as the following
1-period de Guenin’s problem:

Minisize: Poalpe) = [ F2() pralipn(a)) do
FE
9)
subject to: / pr(z)de = ¢, and @, > 0.
E

Then, the following de Guenin’s conditions are obtained and inverted by the algo-
rithm described in section 2.1:

BE(2) Pl o (0n(2)) = n i BE() > 0 /P 2(0)
{ oe(z) =0 else. (10)
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Optimization of Search Efforts under Generalized Linear Constraints 7

Brown’s algorithm follows these general guidelines. The distributions of the search
efforts are successively optimized for each time-period (See Figure 1), the other
ones being fixed. Convergence requires only a few iterations. A fundamental

Figure 1: Algorithm for multi-period search

ingredient of this algorithm is to use basically the Markovian assumption relative
to «, so as to drastically reduce the computation requirements for the integral (8),
(Forward And Backward algorithm [10], [11]). As we shall see later, this idea will
be instrumental for the development of a feasible algorithm for solving the search
problem with generalized constraints.

Until now, the constraints we considered were directly related to the values
of ¢r. The aim of this article is to generalize the multi-period search to more
flexible constraints. This includes especially simple cases of resource renewal.

3 Generalized constraints

As seen previously, the algorithm of Brown supposes the time-splitting ¢ of the
contraints to be known. For example, Brown’s algorithm does not know how to
share (optimally) the global amount of search resources between each period of
search. First, we shall consider a simple linear framework allowing us to deal with a
great variety of resource time-sharing and to solve efficiently the related optimization
problems.

3.1 Resource time-sharing specifications

A general formulation of resource time-sharing will be built below and illustrated
by two examples. It will be of constant use subsequently.
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8 Frédéric Dambreville , Jean-Pierre Le Cadre

3.1.1 Splitting non renewable resources

We dispose of a total amount of search resources equal to N, one time-period only

usable. As we want to optimize the probability of detection within the T' periods,
T

we have to split NV into 7" period resources ¢y so that Z ¢r = N, or equivalently:
k=1

where A is the matrix Ayr = (1 ... 1) with T columns, ¢ is the T-dimensional
vector of search efforts and 7 is the 1-dimensional vector ¥)yr = (N). In section 7,
we will refer to this matrix as Ayg and to this vector as ¥ yg.

3.1.2 Splitting renewable resources

Assume now that we have a search amount N renewable after some time-periods
(time for replenishment, for moving, etc.). For example we can think that resources
renew after two periods so that the same resource cannot be used simultaneously
in two consecutive periods. That means for two following periods k and k£ + 1
the relation ¢y + ¢rr1 = N. These relations are equivalent to the following linear
constraints:

Ap=1p, (12)

where A is the pseudo-diagonal matrix Ar = (ar(4,7))i; with T —1 rows and T
columns defined by:

{Vie{l,...,T—l}, ag(i,i) = ap(i,i+1) =1, (13)

ar(i,j) = 0 else.

and 1) is the vector g = (N ... N)! with T — 1 components. In section 7, we will
refer to this matrix and its corresponding constraint vector as Ag and ¥g.

3.1.3 The general optimization problem

More generally, the linear formulation:

Ap =1 (14)

of period-sharing constraints seems sufficiently versatile to handle a great variety of
resource allocation problems.
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Using the above notations, our objective is still to minimize the non detec-
tion probability P, 4(¢) defined in (7), but now under the following generalized

constraints:
A (/ (Pk(x) dl’) = (¢j)1<j<@ s (15)
E 1<k<T =

where A represents the matrix of resource renewal. In the general case, the A matrix
is rectangular, the column number being greater than the row one. In equation (15),
1) is the vector of resource constraints. Its dimension is ©. Furthermore, a reasonable
hypothesis is that AX = 1) admits at least one solution.

3.2 Generalized de Guenin’s equations

We shall now prove that any search effort ¢ minimizing P,4(¢) under con-
straints (15) will satisfy optimality equations rather analogous to the de Guenin-
s’s equations. The following optimality conditions extend the classical ones (see
equation (4)) to the generalized constraints.

Property 1 Let o = (‘Pk)lgkgT be an optimal solution. Suppose Vk, pi # 0, then:

1. There is a vector p = (“k)lgkg(a such that, for each element @ of ET verifying
VE, or(ax) > 0, we have:

(pz,akwk(ak))ﬂz’(ak)) — Ay (16)

1<k<T
2. Letn=Alp. Let k € {1,...,T} and a,, € E, then:

@ "l
PRlan) < 0r )

= @ulag) =0. (17)
Compared with (10), (16) shows interdependence between the optimality equations.
Consequently, they cannot be solved by a direct application of the Brown’s algorith-
m.

1 A* denotes the transpose of the A matrix.
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10 Frédéric Dambreville , Jean-Pierre Le Cadre

Proof of 1. Let ¢ be an optimal solution. We shall consider (small) variations of
@, both horizontally and vertically, satisfying the constraints. Each of these type
of variations will give a differential property, which the optimal solution ¢ must
satisfy. The property (16) will be proved by gathering these sub-properties.

Let kK € {1,...,T} and let a, and b, be two elements of E satisfying ¢y (ax) > 0
and ¢x(b;) > 0. We consider d¢ an infinitesimal scalar variation. The search
distribution ¢ is changed to yield ¢ by the following procedure:

{ Pr(as) = prlas) +dt , @u(bs) = px(bs) —dt ,

Pr(zk) = i (zK) else. (18)
As @ is such that constraint (15) is fulfilled, we easily prove that ¢ satisfies it too. As
wxlag) > 0and g (be) > 0, @ still satisfies to the positivity density constraint ¢ > 0,
as long as dt is sufficiently small. With ¢ satisfying the optimization constraints
and ¢ being optimal, we must have P,4(¢) < P,q($). Using the formulation (8),
we make a first order expansion of P,4(®) on dt and simplify each member of the
obtained inequality, thus yielding:

0< (pfﬁ,aﬁ (pr(ax)) B (ax) _p;,bn(‘Pn(bn))ﬂf(bn))dt . (19)
As the sign of dt is arbitrary, we then deduce:
0= (pia,am (‘Pn (a%))ﬂ:g(an) _pjg,b,i (‘Pn(bn))ﬂff(bn)) . (20)

The only constraint upon the choice of a,, and b, is that ¢ must be strictly positive
on theses points. The following lemma has thus been obtained:

Lemma 1 Let ¢ be an optimal solution. Then for all K € {1,...,T}, there is a
constant ¢, so that:

Vz € E, pp(@) > 0 = pi 1 (0x(2)) B (2) = cx -

Now, let @ € ET such that Vk, ¢k (ar) > 0. Let dt be an infinitesimal scalar and A
any vector of ker A. We define d¢ = dt A and denote d¢y the k-th component of d¢.
We then build ¢ a perturbation of ¢ by the following procedure:

{ VEe{l,...,T}, ¢rlar) = erlax) +doy (21)
Pr(z) = pr(z) else .
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Since Vk, ¢k (ar) > 0, the perturbed search distribution ¢ remains positive as long
as dt is sufficiently small. Furthermore, we have:

A ( /E or(z) dac) =4 ( /E or(z) dac) c+Adg. (22)

As Ad¢p = dt(AX) =0 and since ¢ satisfies the constraint (15), this condition is
fulfilled for ¢. As ¢ is optimal, we deduce that P,4(¢) < P,4(¢). Using the formu-
lation (8), we make a first order expansion of P, 4() relatively to d¢t and we simplify
each member of the obtained inequality, thus yielding:

0 @V (tho (or(o0)E (@) (23)
1<k<T
The sign of dt being arbitrary, the following equality holds:
N (halr(a)BE @) =0, (21)
1<k<T
This equality holding true for any A € ker A, we obtain:
(PhotrtaBE@)  clera)®. (25)
1<k<T

Now, consider the constants ¢, defined by the lemma 1. From equation (25), we
infer that (cx);<j<r € (ker A)E. As (ker At = Im(A"), there is a p vector such that

(ck)1<p<r = A" p. From lemma 1 the property (16) then follows.

Proof of 2. Suppose that ¢,(a,) = 0. Let us consider the horizontal variation of
@ as it has been defined in the precedent proof. That is, we choose dt > 0 (since
vr(ak) = 0), by so that ¢, (bs) > 0 and build ¢:

{ Prlan) = prlax) +dt , Pu(bs) = pr(bs) —dt, (26)

Pr(zk) = pr(zk) else .

Then, the optimality of ¢ leads to the inequality P,q(p) < P,q(@), which can be
rewritten:

0 < (i, (0x(ar)) B2 (ar) — Dicp, (0r (be))BE (b))t - (27)
As the sign of dt is positive, we only deduce the inequality:
(Prean (0r(ar)) BE (ar) — Prep, (01 (b)) BE (b)) 2 0 . (28)

PIn~ 1278
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Now, invoking the first part of Property 1 yields:

p:s,b,i (0r(bx)) BE (b)) = 1 » (29)

so that:
p:;,mi (prlax))BE(an) = M - (30)

Since @, (a,) = 0, the proof of <= follows.

Now, suppose ¢, (ax) > 0. From the first part of Property 1, we deduce:
P, (P (ax)) BE (a) = nsc - (31)
Since p;’ak strictly increases, we obtain:
Phoya (0082 (ax) <1, (32)

completing the proof.

Comment Dealing with a discrete (in space) version of this problem, Proper-
ty 1 follows easily from the Kuhn Tucker theorem. However, the interdependence
between the optimality conditions prevents utilization of standard optimization ap-
proach based on duality.

4 Numerical resolution

4.1 Algorithm

We shall develop now an original numerical method for solving our optimization
problem. It relies both upon theoretical developments of the previous section and
practical considerations. We can split up (15) into the two following equations:

</E<Pk(fb) dm) \cker = ($)1<k<r (33)

A (¢j)1§k§T = ("/’j)1§j§@ . (34)

This gives us a more tractable framework which will be of constant use subsequently.

Now, define the (constraints) vector ¢ = (#5)1<peps as well as the vector

Irisa
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P 2 (%j)1<j<o- Consider also A™ a matrix such that ker A =Im(A") and a vector
¢o so that A¢py = 1. We call p the number of columns of A™. Then, for each vector
¢ fulfilling (34), there is a vector v € IR? so that ¢ = ¢g + A v. Likewise (34) holds
true for all the ¢ vectors of the preceding form. The basis of the algorithm is to con-
sider variations of the parameter v toward an optimal value for minimizing P,4(y).
For this purpose, we will study the differential behavior of m(pin P.a4(p) relatively

to v. Moreover, we will have to take into account the resource positivity constraints.

Two methods have been developed. The first one is more heuristic and uses
an approximation hypothesis for computing the differential of minP,4(¢) and for
©

choosing the variation dv. The second one is based upon a deeper analysis and is
exact. Remarkably, the results obtained by these two methods are quite similar
even if the convergence of the second one is faster.

4.1.1 An heuristic point of view

Differential behavior of minP,4(p)
)

Let v € RP and ¢ = ¢pg + A v. Assume moreover that v is such that the resource
positivity constraints are satisfied, i.e. ¢ > 0. We then define:

IW)2{keN/1<k<Tand ¢, > 0}.

Let dv be a vectorial infinitesimal variation of v. The infinitesimal variation for ¢
is thus d¢ = A dv. Moreover, let us consider the index subset J and K, defined by:

J(dv) 2 {k € N/1 < k < T and d¢y > 0},

K(dv) £ {k € N/1 < k < T anddgy < 0} .
The positivity constraints relative to ¢ impose on dv the following condition:
Condition 1 Vk € {1,...,T}\ I(v), dép > 0.

Let us assume this condition be satisfied and let ¢ be a search distribution mini-
mizing P4, for the constraint vector ¢. Starting from this optimal distribution, we
are now dealing with the minimization of P, 4 for the resource splitting ¢ + d¢ using
an elementary point change of . By this way, an approximation of dm(gn PL4(p)

will be deduced for the vector v.

PIn"°1278
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Then firstly, we consider a point @ € E7 and build the following change (de-
noted @) of ¢ :

Vk € {1,...,T}, ¢rlar) = prlar) + doy

. (35)
Or(zk) = pr(zk) else .

After a first order expansion of dP = P, 4(¢) — Pph4(p) relatively to d¢ and simpli-

fication, the following can be written:

T

AP =" P o, (or(ar))BE (ar) dey, . (36)

k=1
To obtain dminP,4(¢), we have to choose @ so that to make dP as negative as
[

possible. The positivity constraint relative to ¢ requires that the following condition
holds true:

Condition 2 Vk € K(dv), pr(ar) >0 .
Then, defining;:
A
X{ = {z € E/py(z) > 0}, (37)
the following approximation is deduced:

dminPyy(p) = > min{py ,(¢k (z))B{ (x)} Ay
keJ(dv)

+ > max{p (i) (=)} de .

keK (dv) “EE

(38)

Broad lines of the algorithm

Let At be a scalar variation (it will be approximated as an infinitesimal). We define
Av®€ by Avg© = e At and Ay = 0 for k # k. The algorithm runs in the following
way:

1. Compute A~ and ¢g; initialize v, ¢, ¢ ;
2. Choose At (cf. remark 1);

3. Foreach k € {1,...,T} and € € {—1, +1} define dv = Av"™ and compute, when
condition (C 1) holds true, the variation d minP,,4(p) given by formula (38);
)

select the optimal dv ;
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Optimization of Search Efforts under Generalized Linear Constraints 15

4. Update v and ¢;

5. For each x € {1,...,T} successively, apply the de Guenin’s algorithm to the
time-period « in order to optimize ¢, alone;

6. Return to 2 until convergence.

Remark 1 The choice of At is in the user’s hand. Taking At =0 means conver-
gence step with ¢ fized (it is the Brown’s algorithm phase). Taking At > 0 signifies
gradient descent on v (optimizing ¢). Even if the user has to select it conveniently,
this does not induce practical difficulties since the algorithm is quite stable.

4.1.2 A differential approach

Differential behavior of minP,4(p)
©

Assume ¢ be an optimal solution for the vector of resource ¢, and assume again
that ¢ + dp be an optimal solution for ¢ + d¢ (dp and d¢ are infinitesimal).
The two following equations hold:

VkE{l,,T}, L@k(w)dngbka (39)
and
Vkef{l,...,T}, /E(%(m) + doy(x)) do = gy + deby - (40)
Thus, we have:
Vke{l1,...,T}, /d(pk(m)dac:dqﬁk. (41)
E

In addition, the following optimality condition on ¢ stems from theorem 1 :

VE€{1,....T}, or(z) > 0= p o (0x(2))B{ () =k , (42)
which can be rewritten, using notation (37):

Vk€{1,....T}, o € X{ = pj o (x(2)) B¢ (z) = 1k, - (43)

PIn " 1278



16 Frédéric Dambreville , Jean-Pierre Le Cadre

These equations will be instrumental for the final calculation of d min P, 4(¢p).
%

Now, from the definition (7), d min P, 4(¢) stands as follows:
»

dmin Pri(p) = Pra(p + dp) — Prylp) =

T

/@ (11

=1

T

(pj,mj (%‘(xj) + dyp; (wj)) dxj) -11 (Pj,mj (%'(xj)) dxj)

=1

A first order expansion relatively to dy;(z;) gives the more linear form:

dmln Pnd Z / oy p],:Ej ((Pj (wj))de) (45)
J

(Pk 2, (Pr(Tk) + dopr(zk)) — Prz, (k(28))) ds

which can be rewritten as:

dminPr(y 2 / B? (@) (prao(iou(2) + dipi(2) — pia(pi(e))) do . (46)

Since minimization of a sum reverts to minimizing each member of this sum, our
initial problem reduces to optimizing, for each index «, the variation dy, so as to
minimize the following 1-dimensional integrals :

/E B2 (2)pr.a (00 () + i () da - (47)

The above expression is minimized under the constraint (40) and it occurs even
when each ¢}, is maintained constant. Assuming all ¢ constant means that 3¢ is
constant too. Then the optimization of dp,, which is equivalent to the optimization
of i + dyy in (47), reduces to a 1-period search problem of de Guenin. This problem
is clearly solved by means of the de Guenin optimality conditions :

(i + dipr) () > 0 == Py 1 (s (2) + dip(2))BE (2) = €x (48)

which can be rewritten, using notation (37) and defining ¢, = 7, + dn,:

z € X = pi 1 (pn(e) + dow(2))BE () = 0. + dn - (49)

We then must consider two cases.
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Optimization of Search Efforts under Generalized Linear Constraints 17

First case: ¢, >0
Using notation W,9 2 Xt 0 X and V¥ 2 Xty X7 subtraction of (43) from
(49) gives:

Va € Wy, BE(2)py o (px(2))dps(z) = dns

(50)
Vz € E\Yy, doe(z) =0.

Since we consider integration on the frontier Y,¥ \ W/, the values / vr(z) dz
YEAWE
and / (pr(z) + dpg(z)) dz are second order infinitesimals (an easy proof left
VW

to the ;eader). The following equality then holds:

/X,f ﬂf(x)iznmi:fpﬁ(g;)) = /X}g dok(z)dr = /Edson(:v) dz = dg,. (51)

so that:
= dd, :
’ / /X e pmm ) 52)
and, finally :
(72} - _ <ﬁ
Vo € WE, dola) = § B .ol //X @ pmm p oo 6

Then, the x** component of d minP,,4(y) is derived as follows:
)

/E B2(2) (Pr.a(0n () + dipn(2)) — Pral(oa(@))) diz =

E
- / ﬁf(x)p;,z( «(@))dipx () da
b ¢4
Pl (¢
= At S do,. .
/xg P 2( //xw B (z)pit . wn( ) ¢

(54)

Second case: ¢, =0
Numerous problems stem from the nullity of ¢,. First, we could remark that ¢, = 0,
so that equation (43) makes no sense although it is exact. Another difficulty is that
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we must restrict to non negative variations of ¢, and ¢,. The variation of ¢,
associated with the variation d¢, of ¢, will be denoted dyp, rather than dp, (in
this case it is not sure that the variations of ¢, and ¢, are of the same order of
magnitude). Moreover, d7, will denote the variation of 7. It is then easy to show
that dp, and dn, are same order infinitesimals. These variations will be related to
the maximum value 70 = max (B¢ (x)p);, »(0)). We have the following coming from

de Guenin’s equation:

0
B2 (z) < % — Spu(z) = 0. (55)

We deduce that G7(z)p; ,(0) = n? with an infinitesimal approximation, when
8¢x(x) > 0. A simple expression of the x* component of d minP,,4(¢) is then:
»

/ B2 () (9 (0 () + 850w (2)) — Praiox()) dt = / B2 ()1, 2 (0)Sipe () de
E E

B (2)pls,2(0)0¢pw (z) dz

> n,¢+5ma
Lz (0)

M0 pn(2) dz

> TIK+5W5
,z(0)

= 772/ 590/@(1') dr = ﬁgd% .
E

_/ﬂm(m)
_/ﬂ()

(56)
Calculation of dminP,4(¢p)
@
Let us define the vector V with T' components by:
( P2 (0k(2))
st Phaloe@) ©
Vi = ok kT when ¢y > 0,
e 7
x¢ By (x)pk,m(‘Pk (z))
L Vk=7712 when ¢, = 0.
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Thus, dmin P, 4(¢p) may be rewritten as:
[

dminPoi(e) =3 [ @) (ralor(o) + don(o) — praloe(a))) do
’ K VB (58)

=Vide .

Now, let us consider v € IR? and ¢ = ¢g + A v. Suppose moreover that the resource
positivity constraints are satisfied for . Let dv be a vectorial infinitesimal variation
of v so that resource positivity constraints for v + dv still hold. The infinitesimal
variation for ¢ is thus d¢ = A"dv, and we deduce:

dminP,4(p) = VI Adv . (59)
©

Computing the optimal variation Av

Practically, our goal is to compute an optimal variation Av of v for optimizing the
variation of the probability of non detection. The choice of Av is limited by a maxi-
mal value (say At) of the norm of A¢ = A"Av. We will treat Av as an infinitesimal,
so as to use result (59). This leads us to consider the following optimization problem:

Property 2 The optimal variation Av of v € ker B (subject to ||Ad|| < At) is the
result of the following optimization:

Minimize V'A Av,

subject to
ADAv+¢>0, (60)
|[A7Av|| < At.
When || || = || ||oo, that is ||¢|| = sup |¢x|, the problem is linear and can be straight-
k

forwardly solved by means of the Simplex algorithm.

Broad lines of the algorithm
Let At be a scalar variation. The algorithm runs in the following way:

1. Compute A~ and ¢g; initialize v, ¢, ¢ ;
2. Choose At (cf. remark 1);

3. Compute Av by optimizing (60);
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4. Update v and ¢;

5. For each x € {1,...,T} successively, apply the de Guenin’s algorithm to the
time-period « in order to optimize ¢, alone;

6. Return to 2 until convergence.

4.1.3 A la Brown implementation

Practically, a problem we have to face with this algorithm stems from the fact
that the computation of the function 3¢ requires a huge amount of computation
time. Calculating this function needs integration on the (7' — 1)-dimensional space
ET-1 for each element of E. If we consider as a time unit u integration on E, the
computation time of B¢ is of an u” order. Finally, the computation of steps 2 and
5 requires about 27u’. Practically, the parameter u is rather large which means
that this (direct) approach is clearly infeasible.

In order to overcome this difficulty, the idea of Brown will be again instru-
mental. More precisely, we shall see that the Markovian property of « can
drastically reduce the computation requirements. Let us now detail this approach.
For z € E, let us define U?(z) and D¥(z) in the following recursive way:

Uf(z) =1and D7(z) =1,
Uf,(x) = /E k1 (1, 2)Pi (06 () UL () ly

DY \(x) = /E tkr 4 9)pk (4 (4)) DE () dy

Computing U7 knowing U?_; or computing D knowing Dy, requires a time of
the order of u2. Altogether, computing all U¥ and D¥ require 2Tu?. Assuming U¥
and DY available, then we compute 8% as a simple product:

BL(z) = Uf(z)D{(z) . (62)

A refinement allows to spar even more computation time. Usually, since ¢ is
changed, we have to compute U¥ and DY again. But we can remark that, when
only ¢, is changed, U7 and D stay unchanged for k < x and [ > &.

Finally, our algorithm then takes the following form:
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1. Compute A~ ¢g; initialize v, ¢, ; compute U¥;
2. Compute D?;
3. Choose At (cf. remark 1);

4. Find Av optimizing d min P, 4(p);
)

5. Update v and ¢;
6. For k going from 1 to 7', compute:

e Compute UZ;

e Compute ¢, by the de Guenin’s algorithm;
7. Go back to 2 until convergence.

The time for computing a complete iteration is of the order of 2T'u?. The algorithm
then computes the optimal Av and runs the de Guenin’s algorithm one time for
each time-period of search. Remark that if we suppress stages 3, 4 and 5 out of the
program, or if we force At = 0, we go back roughly to the F.A.B. algorithm.

5 Extension to mixed resources

5.1 Examples
5.1.1 Mixing resources with different features

Let us consider a search for a target on a space E involving three types of resource;
e.g. non renewable resources (denoted a), 2-period renewable resources (denoted b)
and 3-period renewable resources (denoted c). Assume that the search duration is
T (periods). We call N,, Ny, and N, the amounts of available resource for each type
a, b, and c. In the same way 2, ©° and ¢° represent the function of (local) search
effort for the types a, b, and ¢. The renew hypothesis on a, b and ¢ leads to consider
the three following types of constraints:

A (/Ecpﬁ(ac) dm) =*, where A = Ayr=(1...1) and 9 = (N,), (63)

1<k<T
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110...0 N,
Ab(/ ‘Pz(ﬂﬁ)dﬂi) =y’ , where A’ = Ap = and P = | : |,
" 1Skt 0...011 N,
(64)
1110...0 N,
A° </ o () d:c) =1, where A° = Aps = and ¢ = | :
3 1Skt 0...0111 N,
(65)
Let us define:
A 0 0 e
Aabe _ 0 Ab 0 and g = |yt | | (66)
0 0 A° P°

constraints (63), (64) and (65) then take the following (concatenated) form:

/ o (z) da
E 1<k<T

Aabc /E(pz (LL‘) dz _ ,(pabc ) (67)

/ o () da
E 1<k<T

Moreover, assuming the independence of elementary non-detection functions, the
probability of non detection stands as follows:

a , b — — =i a a b b c c =
Pra(e® @', ¢7) = | (@) [ (ha, (6 000, (0} (20 0, () ) [T
BT k=1 k=1

(68)
where p®, p? and p° are functions specific to a, b and c.
To optimize the search, we have then to minimize P,4(¢%, ¢°, ¢°) under the con-
straint (67) and the positivity of ¢?, ¢°, ¢°.

5.1.2 Resources with different operating modes

Assume that we dispose of a single type of resource with matrix and vector con-
straints A and 1, but that those resources can run in several different ways. We will
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call those different ways the operating modes. Such problem is still simply modeled
as previously. For an example, assume that our search resource can operate in two
different modes a and b. We call ¢* and p® the functions for mode a and ¢° and
p? the functions for mode b. Then, describing the sharing of the resources between
mode a and mode b, the following relation holds:

A( [ot@aos [ dwa) =P (69)

The resources are thus period-shared following the constraint (4,1) and, as this
period-sharing is done, the resource’s operating mode has to be chosen by splitting
between mode a and mode b during the period. In addition, the probability of non
detection is rewritten:

k=T
Poalp’, o) = [ a@ [ (s (eh(o0)ph, (b)) Hd:vk (70)
B k=1
Let us define:
A% = (AA). (71)

The condition (69) becomes:

/ o (z) dz

g L<ksT | =4 (72)
[ et dm‘

E 1<k<T

To optimize the search, we have then to minimize P,,4(?, ¢°) under the constraint
(72) and the positivity of ¢, ¢°.

Aab

5.2 General formulation

In fact, all these problems can be immersed in a common formalism. A target mov-
ing in space E is to be searched. The search being dispatched in T periods, we
denote (%) the density probability of the target trajectory. The resources used
for the search are of r different types, associated with the non detection functions
(P”)1<p<r- We denote ¢ = (¢)i1<k<rii<p<r the corresponding (local) effort func-
tions. Assuming the hypothesis of independence of searches, the following value of
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the non detection probability is obtained:

T
P,u(¢) = / o@) [ | | TLta, (ch@n)) | dan | - (73)

As seen previously, we have to consider the following constraint:

A (/Erpz(x) dz

where A is a matrix and ¥ is a vector such that AX = ¥ admits a solution.

=V, (74)

1§k§T> 1<p<r

Our aim is then to optimize ¢ in order to minimize P,4(¢), defined by e-
quation (73), under the constraints (74) and positivity of ¢. The general algorithm
for solving this optimization problem is presented in Appendix A.

6 Inequality constraints

6.1 Inequalities are best

So far, only equality constraints have been considered (see e.g. section 3). In fact,
the equality constraints (15) are somewhat restrictive; especially in cases where it
may be profitable to keep some resource unused so that to use them more efficiently
in later period. For this reason, it could be of interest to optimize under inequality
constraints. The problem setting is changed this way:

k=T

k=T
Minimize Ppq(p) = / a(@) [ pewor(zn)) ] dor
k=1 k=1

ET

subject to A (/ vk (z) dac) <.
E 1<k<T
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By considering the following (split) formulation:

k=T
Minimize P,q(p) = /T H Pz, (0r (Tk)) H dzy ,
E k=1

subject to A¢p <y (76)

and ( [ oo d””)lgkg — 4,

the problem stands in our general optimization framework (see nest section).

6.2 Algorithm

In fact, we will translate the inequality constraints into equality ones by means of
slack variables. More precisely, let us denote © the row number of the (constraint)
matrix A, then inequality constraints A¢ < 1 revert to consider equality constraints
( Ap + ¢P = 9) by adding © slack variables ¢, ..., ¢% (satisfying also to the posi-
tivity constraints ¢} > 0) to each row of A¢ = 1. Denoting I © the ©-dimensional
identity matrix, the preceding optimization problem then becomes (details in ap-
pendix B):

Inequality constraints — Equality constraints
¢

Ap < —  (Ale ( =9

( ) P (77)
¢>0 — (¢)>O
P, ¢p P,
k=T
Pra(p) = /ET H Phyay (k (k) H dzj, and

(78)

( / v (z) dm) = ¢ stay unchanged
E 1<k<T

Roughly the algorithm is unchanged, except the A matrix which is replaced by
(A Ig). Nevertheless matrix (A Ig) is used since A. However we stress that, since
©P has no physical meaning (slack variables), the components of V associated with
the variables ¢P are zeroed (calculation of an optimal Av).
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7 Results

The space search FE is a square of 30 x 30 cells. Target’s trajectories are simulated
within the following general scheme: a start position, a motion componant and a
possibly final position.

The target starting position is represented by an uniform density in the 10 x 10
square, centered around the point (5,5), i.e

s(z) = 135 if (5,5) <z < (14,14)
s(z) = 0 else.

The density of the (possibly) final target location is uniform in the 10 x 10 square
(center: (16,16) and is denoted f:

f(z) = 155 if (16,16) < z < (25,25)
f(z) =0 else.

At each time-period the (Markovian) target motion is an uniform diffusion (toward
down and right) represented by the function m:

=m(3,3) = & et m(2,3) =m(3,2) = &,

m(3.0) = m(1,3) = m(3,1 1

For example, the density (a(Z)) of a target trajectory (e.g. for 4 time-period sce-
nario) could take the following form:

a(Z) = Z x s(xz1)m(ze — z1)m(z3 — z2)m(zs — x3) f(24) .

It represents a down-right diffusion movement diverging at the beginning from the
starting square and finally converging back to the final square. The value Z repre-
sents a normalization term.

The test results are divided into three sections. In the first one, we shall examine the
effects of the form of non detection functions p (only uniform functions over z will
be considered). In the second one, examples with mixed resources or multiple modes
will be presented (p; non uniform). Finally, inequality constraints are examined in
the last one.
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7.1 Effects of the detection function p

Throughout this section we shall consider a unique modeling of the target motion
and a 4 time-period search. The target distribution function is:

(%) = s(z1)m(ze — z1)m(z3 — z2)m(z4 — z3) (79)

Only one type of resource is used. The non detection functions of these resources
are uniform, that is:

VEVz € B, ppg =, (80)

where 7 is a common non detection function. We shall compare results obtained by
an exponential (non-detection) function (i.e. 7(¢) =exp(wy); w =1) on the first
hand and a non exponential one (i.e. w(¢) = 1/(¢ + 1)?) on the second. Exponential
functions are widely used even if restricting assumptions are underlined (detection
without loss).

7.1.1 Exponential function

Under this assumption, the whole effort can be entirely affected to a unique time-
period without any loss. The essential of search effort is then brutally put on the
periods where the target density is the more concentrated. This behavior is illus-
trated by the following example. Here, resources are not renewable (A = Ayg and
1 = Png see section 3.1.1), and the total effort is N = 20. The splitting of search
efforts between the consecutive periods is illustrated by Table 1, while the spatio-
temporal evolution of the distribution of search efforts is visualized by sequence of
one-period figures (Figure 2). We can see that the significant search resources

| A |N|[¢1|p2|hs|¢a|Figure]
|Ang[20]20[0]0]0] 2 |

Table 1: Exponential function

(dark areas) are strongly concentrated on the areas with the higher probability of
presence of the target, that is on the first period for this diffusive target. No search
is done on the three last periods. This result is obtained for any other values of V.

7.1.2 Non exponential function

In such case, the whole effort cannot be entirely affected at the same time-period
without significant loss. We present three results. The first one using A = Ayg and
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Figure 2: Non renewable resources; A = Ayr, N = 20; exponential function.

1 = Yygr, where N = 200. The two other ones using A = Agr and ¥ = ¥, with
N = 100, respectively N = 10.

| A [N | ¢1|¢2]|d3]¢a|Prale)|Figure]
ANg|200(112| 502513 | 7,7% 3
Ag |100] 73 | 27|73 (27| 9,1% 4
Ap |10 [8.7(1.38.711,3 71% | 5

Table 2: Non exponential function

Figure 3: Non renewable resources; A = Ayr, N = 200; Non exponential function.

Figure 4: Renewable resources; A = Ar, N = 100; Non exponential function.

Table 2 illustrates, for the three scenarios, the splitting of search effort at each

time-period (¢1, ¢2, ¢3, ¢4). Moreover the optimal probability P4 is given, since
the results are here comparable. The significant resources are still concentrated on
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C

Figure 5: Renewable resources; A = Ar, N = 10; Non exponential function.

the areas with the higher probability of presence of the target. But the period-
splitting is smoother, although the effort still tends to be concentrated on the first
time-periods. The splitting is more rough (low resources make loss decreasing) when
the total resources are small (second and third example: ¢; and ¢3 increase from
73% of resources to 87%). Nevertheless, we notice a surrounding strategy for the
distribution of the search effort on the first periods (figures 3, 4 and especially 5).

7.2 Mixing of resources or modes

From now on, all the non detection functions will be exponential. In this section,
we present examples with mixed search resources. Moreover, the non detection
functions will be depending on the space location and on the type p of search resource
(but independent of k), so that pj ,(¢) = exp(ws). For each example, the search
duration is 7 periods. The target distribution corresponds to a diffusion from the
start position:

a(@) = s(z1) [[ m(zrer — zx) - (81)

k=1

7.2.1 Multiple resources

A simple example of mixed resources (such as in section 5.1.1) is presented. T-
wo different resources are used. The first resource (p = 1) is a non renewable one
with constraint matrix A = Ayg and total resource N = 100. The second resource
(p =2) is a 3 periods-renewable resource with constraint matrix A = Ag3 (see sec-
tion 5.1.1) and total resource N = 50. The exponential parameter of first resource,
say w’, is decreasing from the right-down bottom of the search space E. The varia-
tion of w} is more detailed in the 8" (from left) picture of figure 6. The exponential
parameter of second resource, say w2, is decreasing from the left-down bottom of
the search space F and is detailed in the 8 picture of figure 7.

The optimal splitting of the two resources is presented in table 3. Figure 6 represents
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[ A [N [p[¢7] ¢5] 45| #5]#5] 45| #7|Figure]
ANg|100/1|82(2.8/0.2{ 000 (15 6
Apgrs| 501(2|50| 0| 0 |{50{ 0|0 |50 7

Table 3: Mixed resources.

Figure 6: Type 1; non renewable resources; A = Ayg, N = 100.

Figure 7: Type 2; renewable resources; A = Ags, N = 50.

the spatial sharing of the first resource for each seven periods (see the first seven
pictures). Figure 7 represents the spatial sharing of the second resource. The sec-
ond resource splitting is 50, 0, 0, 50, 0,0, 50. This result appears quite natural since it
gives the higher amount of resource. Moreover, the target spread tends to focus the
search on the first period, as the gradient of w? reinforce the search on the central
part of the diffusion. The behavior of the first resource is more surprising. The most
important detections occur at the first periods (82 and 2.8 for period 1 and 2), but
there is again detection (15 for period 7) at the end. There is two explanation of this
fact. First, a conflict occurs between the target spread and the gradient of w!l. The
first one tends to enforce the detection at the beginning of the movement, while the
second enhances the detection when target approaches to the down-right bottom.
Second, and that is a crucial point, the second resource spreads the splitting of the
first one, since it reinforces detection occurring at the beginning, the middle and the
final periods. It is also remarkable that the search areas of the different resources
are well distinct and complementary. Their locations depend on the gradient of wf
(down-right for the first type and down-left for the second). Finally, we still recog-
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nize surrounding strategy on the first periods, although it is shared between the two
resources.

7.2.2 Multiple modes

In the following example we shall consider non renewable resources of the same type
(A= Angr and N = 100), which can act under two different detection modes. In
first mode (p = 1) the exponential parameter decreases from the down-right bottom
(last picture of figure 8), while in the second one (p = 2) the exponential parameter
decreases from the down-left bottom (last picture of figure 9).

\p\ &7 [ 5] 45 44| 5] 66] 47 [Figure]
T ool L. 0 [0[0]o[0[0]109] 8
VR Z2]79.2[9.20.7] 0 [0 [0 0 | 9

Table 4: Multi-mode resource.

Figure 8: Non renewable resource; A = Aygr, N = 100; mode 1.

Figure 9: Non renewable resource; A = Aygr, N = 100; mode 2.

The optimal splitting of the two modes is presented in table 4. Remark that the
sum of all variables ¢/ is equal to N =100. Search resources are mostly used at
the beginning of the target spread, and, since there w! < w?, essentially involve
the second mode of detection (¢? = 79.2 and ¢2 = 9.2). But the target moves to
the down-right bottom, where the first mode is more powerful. That permits some
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detection at the end of the movement, using first mode (¢* = 10.9). Figure 8 and
figure 9 represent the spatial sharing of search resource between mode 1 and mode
2. Some surrounding strategy is seen again.

7.3 Inequality constraints

The first examples presented here concern a diffusion movement, on 6 periods, with a
spread from the starting position followed by a convergence toward the final position.
The target distribution is:

5
a(F) = Z x s(z1) (H (i1 — zk)> f(s) (82)
k=1

Again, the non detection functions are uniform (py , = 7). Moreover, the functions
f and s are symmetric and the constraint matrices and vectors, we will use, preserve
this symmetry. As a consequence of these facts, the optimization problems we con-
sider here become themselves symmetric. Assuming that the optimal solution ¢ is
unique, the effort densities ¢, w9 and 3 are symmetric to g, 5 and @4 respective-
ly, for a given problem; so that ¢1 = ¢g, P2 = ¢5 and ¢3 = ¢4. This property will
be verified on the four examples described by table 5. The first example concerns
1-type resources, which renew after 3 periods (A = Ags) under equality constraints.
The total amount of resource is 50. The second example is the similar; but, this
time, inequality constraints are considered. The third and fourth examples involve
non renewable resources (A = Ayg), with same power as previously. Equality and
inequality cases are both tested. The total amount of resource (100) makes the
problems equivalent to the first and second ones.

| A |inequality| N | ¢1 [ do [ ¢35 [ b4 | ¢5 | ¢b6 |Pralp)|Figure]
Agps| mno |50 [21.1] 7.8 [21.1[21.1] 7.8 [21.1] 81% | 10
Ags| yes |50 (32.3[10.2] 7.5 [7.5[10.2/32.3] 79.9% | 11
Avgr| mo  |100[32.3[10.2[ 7.5 | 7.5 [10.2[32.3] 79.9% | 11
Anr| yes |100[32.3[10.2[ 7.5 | 7.5 [10.2[32.3] 79.9% | 11

Table 5: Inequality compared with equality (constraints).

The results of table 5 show that the best results are identically achieved by the
three last examples. This was foreseeable since the symmetry equalizes the freedom
of those three last problems. The splitting (decreasing and increasing again: 32.3,
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10.2, 7.5, 7.5, 10.2, 32.3) is coherent with the nature of the movement (a spread
followed by a convergence). We notice that 10.2 4+ 7.5 + 7.5 < 50. It is strictly for-
bidden by the equality constraint with Ag3. In the first example, sums of three
consecutive ¢y must be equal to 50. Such constraints force to a suboptimal solution,
where significant amount of resources (21.1) is put on the middle of the movement
(periods of maximal target diffusion). The figures 10 and 11 describe the spatial
sharing of the resources. We can see surrounding at the beginning period... as well
at the final period! Such final surrounding is somewhat upsetting, since surrounding
strategy at final period has no sense. The problem is although symmetric and the
results perfectly exact, but, when we introduce a time semantic (which is a non sym-
metric semantic), final surrounding has another meaning than surrounding strategy.
Surrounding strategy toward diffusive targets signifies “forbidding” firstly the es-
cape of peripheral trajectories and then detecting central “surviving” trajectories.
On the other hand, when converging movement occurs, central detection has to be
done at first, so as to wait the arrival of the far trajectories. A detection on the
surrounding is to be done later, so as to detect incoming survivors.

J

Figure 11: Renewable resource with inequality constraints; A = Agrs, N = 50.

The earlier example shows that equality constraints is almost as good as inequality
constraints (81% versus 79.9%). But that is true only when, as in the example, the
target spread is very weak. We consider now a final example with a (very) diffusive
target. The target distribution comes with start and final positions. Probability on
intermediate periods are uniform and all periods are independent:

(@) = 9007 x s(z1) f(z6) (83)
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[ A [inequality| N¢1[¢a]¢3]¢a] d5]d6[Prali) [Figure]
Aps no 50(45/0 | 5|45/ 0| 5| 75.7% | 12
Aprs yes 50(50{ 0|0 |0|0|50]60.7% | 13

Table 6: Inequality compared with equality: large target spread.

Optimal solutions are presented in table 6 and the associated figures (the asym-
metry of the first result is caused by the non unicity of the solution). The more
striking point of these results is the great difference between the two probabilities
(75.7% versus 60.7%). In term of detection probability, it gives 23.3% versus 39.3%.
Improvement is thus considerable.

Figure 12: Large target spread, without inequality constraints; A = Agr3z, N = 50.

Figure 13: Large target spread, with inequality constraints; A = Az, N = 50.

8 Conclusion

Our aim was to solve the problem of spatial and temporal sharing of (possibly) re-
newable resources. In order to develop feasible optimization methods, the formalism
and the algorithm of Brown-de Guenin has played again a central role, allowing us
to obtain a whole variety of algorithms, solving problems of increasing difficulty.
These algorithms are robust (convergence ensured) and fast since computation re-
quirements are of the same order than Brown’s one. Moreover, they seem sufficiently
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general to handle numerous problems of sensor and resource managements arising in
complex systems of detection (e.g. sonar, radar, infrared), involving various types of
sensors and operating modes. These points have been considered in a general setting.
For specific applications, more work has to be done; however our approach seems
sufficiently open and versatile to deal with a variety of practical search problems.
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A Algorithm for search involving mixed resources

Rewriting equation (74) as below:

( / () do ) — 3, (84)
B 1Sk<T/ 1 <p<r
AP =V, (85)
we can deduce again:
=9+ Av. (86)

We will denote Qz the components of vector ®.
The new algorithm will act as before; choosing simultaneously a variation d® = A dv
of ® optimizing dmggn P,4(¢) and running a de Guenin’s process for each function

¢}. FAB principle will still be used for computing integrals. It is nevertheless
necessary to update vector V for the optimal choice of dv . The presentation of
following results is voluntary concise (details are omitted).

A.1 Optimality conditions

Let x and p be two particular value of k& and p indexes. Defining;:
pFe k#k T
68 = | 11 hantete)) [ a@ 1] || TL#hatehton) | dae .

T —
1<p<r BT-t 1<k<T p=1

we obtain:

Pu(p) = /E B8, () D20, (02 () ety - (35)
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When the search efforts are fixed for all indexes (k, p) except for the index (k, o),
the problem is in the de Guenin’ optimization scheme i.e. :

Minimize: Pog(ip?) = / B8,(z) p2 (08 () e,
FE

(89)
subject to: / ©2(z)dz = @2 and 92 > 0.
E
This optimization yields the following conditions of de Guenin:
BEo(@) pE o' (eh(2)) = 0 if BEo() > ng/pE ;' (0) |
(90)
©2(z) =0 else .
A.2 Choice of Av
Subject to X,fp a {z € E/¢}(z) > 0}, vector V is now defined by:
( Pho (94(2))
sz, Pl )
= kp Thow Tk when ¢, > 0,
) P p e p (
L VZzn,g when ¢, =0.

Optimal Av is obtained again as a result of a simple optimization problem like (60).
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B Inequality constraints

As previously seen and adding slack variables, inequality constrained problems revert
to consider the following one (with equality constraints):

k=T

k=T
Minimize P, 4(p :/ a(f P,z \ P\ Zk dzy,
(¢) - (Z) kl;[l ¢ (Pr(zk)) ;g

subject to ( /E o () dx)likg _ ¢ and (A Io) ( (Z;, ) —y (92)

and(g;)ZO

The algorithm is the same as usually, but the fictitious periods ¢P are not directly
considered in the algorithm. In the Brown’s process only the functions ¢ are obtained
by means of the de Guenin algorithm (a function ¢? should have no sense). The other
difference comes from relaxing the parameterization of ¢, that is ¢ = ¢g + (A Ig) V.
The calculus of vector V and the optimal variation of Av are changed in consequence,
yielding;:

( / Pl 2 (ok(2)) "
x¢ Py o (or(z))

Vi = e when ¢ >0and 1 <k <T,

) /X,f B (@)p}, , (px(2)) (93)

Vi =1 when ¢, =0and 1 < k< T,

( Vi=0when T <k<T+0.
The optimal Av is obtained by solving the following optimization problem:
Minimize V?* (A Ig) Av,

subject to
(A Ig) Av + ( >0

| ( To) A Av|| < At .

bl

e
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