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Abstract: A significant amount of study has been 
devoted to the observability analysis for passive 
target motion analysis. A unified presentation of 
observability and estimability is provided. Using 
a common formalism, explicit results are thus 
obtained. 

1 Introduction 

This study concerns target motion analysis (TMA) 
when the system state is not directly observed. A classi- 
cal example is that of passive TMA where measure- 
ments are only made of estimated bearings. Such 
systems are employed in passive sonar, infrared track- 
ing or electronic warfare. 

The primary aim of this paper is to show that, in the 
TMA context, strong similarities exist between the 
(classical) observability concepts and the estimability. 
A classical observability criterion is a nonlinear differ- 
ential equation which can be obtained by 'brute force' 
calculations (or symbolic computation). We refer to [ 1- 
41 for a general presentation of the problem. For the 
sake of clarity we shall apply the notation used in [I]. 

We shall prove that this criterion may be explicitly 
obtained by means of elementary multilinear algebra 
thus revealing its basic nature and interest. As a by- 
product of this result, we shall see that a local estima- 
bility criterion may be deduced. In contrast with the 
analysis of the observability, the problem here consists 
in determining the system design (controls, multiple 
receivers etc.) which maximises the related cost func- 
tion. The associated optimisation problems are consid- 
ered within a common framework for various 
applications: planar TMA, multiple observers, manoeu- 
vring source, utilisation of various measurements 
(TDOA, Doppler) and (local) optimisation of the 
receiver manoeuvres. The connections between estima- 
tion and control then become evident. 

2 

The equations of motion for a constant velocity target 
may be expressed in the form [I]: 

Problem formulation and main result 

r ( t )  = r(0) + tv(O) - ( t  - T)a,(T)d-r  (1) Jo' 
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where the reference time is 0, r and v are, respectively, 
the relative target range and velocity vectors, and a, 
describes own-ship accelerations. 

If we are concerned with observability, only noise- 
free data measurements will be considered. For bear- 
ings-only (planar problem) TMA, such measurements 
consist of line-of-sight angles which satisfy the follow- 
ing relation: 

P ( t )  = tan-%-, ( t ) l7"y( t ) l  (2) 
Note that eqn. 2 takes the following form eqn. 1: 

M,*X = ~ ( t )  
where, using matrix (vector) transposition (denoted 
by *I? 

M,* = (cospi ,  - s inp t , tcosPt , - t s inPt )  

dt) = I t  i t  - 7) [a , , (7 )  C O S P t  - a o y ( 4  sinPtId7 
t o  

( 3 )  
Since the problem consists in determining the (initial) 
state vector X for the measurements Dt the following 
observability criterion has been considered. 

Let A(t) be the (4 x 4) matrix defined as 

4 ( t )  = (Mt ,M~1) ,M~2) ,M~3) )  
where M,(") denotes the ith time derivative of the vector 
M,. Then, a classical analysis [I-31 of the observability 
of the system, defined by eqns. 1 and 2, consists in 
examining the rank of the matrix A(t) for a given t .  
More precisely, we say that the TMA system is observ- 
able if the matrix A(t) is full rank [ I ,  51 for at least one 
value of t .  Note that this observability criterion appears 
only as a local one at a first glance. Even if more 
sophisticated approaches are considered, we shall see 
that this simple approach can yield interesting results. 

As we shall now see, a 'measure' of the system esti- 
mability can be easily derived from this observability 
criterion. For that purpose consider eqn. 2, and assume 
that the measurements are noisy (additive Gaussian 
white noise with variance o"), then under this hypothe- 
sis and assuming that the relative range Y (approxi- 
mately) is constant (note: The aim of prop. 2 (below) is 
precisely to show that this assumption is, in fact, not 
restrictive), the Fisher information matrix (FIM) rela- 
tive to the estimation of the X vector takes the follow- 
ing classical form [5]; 

FIM(t, t + k )  = ( ~ r ) - ~ M ( t ,  t + k )M*( t ,  t + k )  
where 

M ( t , t + k ) =  (Mt,Mt+i,...,Mt+k), k > 3  (4) 
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The determinant of the FIM is a convenient ‘measure’ 
for the estimability of the problem. We refer, for 
instance, to the numerous papers devoted to D-optimal 
design [6 ,  71. Using eqn. 4, the calculation of 
det(FIM(t, t + 3)) is direct, yielding: 

det(FIM(t, t + 3)) = (m-*[det(M(t, t $- 3))]’2 
A local approximation of this determinant may be 

calculated by considering an expansion of the vectors 
M,,,. For instance, let us consider the following third 
order expansion of Mf+l :  

3 i2 i3 
Mt+% = Mt + iMil) + -Mi2) + -Mi3) (5) 2 6 

Note that the above expansion must be considered as 
an expansion of M,,,, relative to the arbitrary small 
sampling time z, (i.e. the time separating two consecu- 
tive measurements). For the sake of brevity, z, is omit- 
ted (z, = 1). 

Using exterior algebra and the above expansion. the 
following basic result is obtained: 
Property 1 
Consider a third order expansion of the vectors M,,,, 
then 

det(M(t,t + 3 ) )  2 det(Mt,Mi1),Mi2),Mi3)) 

Proof: First, we briefly recall the definition of the exte- 
rior powers of a vector space. (For a complete presen- 
tation, we refer, for example to [8, 91.) Let V be an n- 
dimensional vector space over R, then A2V consisits of 
all formal sums Zp, (U, A VI), where the ‘wedge prod- 
uct’ U A V is bilinear and alternate. This definition is 
straightforwardly extended to higher exterior powers 
[8]. For any basis {V,,  ..., V,} of V, the set ofp-vectors 
{Vl1 A ... A V,, il < ... < ip 5 n}  forms a basis of the n!/ 
(n  - p)!p!-dimensional vector space MV. In particular, 
A4R4 is one-dimensional, and throughout the paper we 
make intensive use of the isomorphism A4R4 = A2R4 A 

A2R4. The exterior algebra formalism thus appears to 
be an economical way to conduct determinant calcula- 
tions. 

Denoting M A N the elements of the exterior product 
A2R4, we have: 

det(M(t, t + 3 ) )  = (Mt  A Mt+l) A (Mt+2 A Mt+3) 
(6) 

It remains to calculate the two vectors M, A Mf+l and 
Mt+2 A Mt+3 of the exterior power [8] A2R4. Invoking 
the basic properties of exterior algebra, we obtain 
straightforwardly [8, 91: 

1 
2 

+-Mt A M$3) 

Mt A Mt+l = Mt A Mi1) + -Mt A Mi2) 

1 
6 

Mt+2 A Mt+3 = 3Mi1) A Mi2) + 3Mi2) A Mi3) 

+5M$’) A Mi3) (7 )  
Note that the terms involving M, in Mt+2 A Mt+3 are 

not considered since their contribution in det(M(t, t + 
3)) is null. Then from eqn. 7, we deduce det(M(t, t + 
3) ) :  

det(M(t, t + 3 ) )  = 3Mt A MI1) A Mi2) A Mi3) 

so that, finally: 

det(M(t,t+ 3 ) )  = det(Mt,Mi1),Mi2),Mi3)) 

This result is surprisingly simple. The observability 
criterion of Nardone and Aidala has thus received 
another interpretation. Furthermore, we shall prove 
(see the main result) that this determinant is independ- 
ent of t and pt. Practically, this means that its calcula- 
tion is quite direct. 

In terms of observability, this result proves that if 
det(d(t)) is non-null then M(f,t+3) is invertible since its 
determinant is non-null which means that the problem 
is observable. The observability criterion of Nardone 
and Aidala is, therefore, quite justified. 

Considering a third order expansion of the relative 
range r,, we shall prove that the calculation of 
det(FIM,,+,) is unchanged. The hypothesis of (approxi- 
mately) constant relative range can thus be removed. 
Property 2 
Consider a third order expansion of the vectors M,+i 
and of the relative range Y ~ + ~ ,  then 

det(FIMt,t+3) z(m-t)-8[det(Mt, MI1), Mi2), Mi3))]’ 

= det(A(t)) (8) 

Proof: The FIM takes the following general form: 

FIM = (Gt,. . . , Gt+3)(Gt,. . . , Gt+3)* 

where: 

(In fact, G,+, = l/mr+,M,+,, but the coefficient o is omit- 
ted for the sake of brevity.) 

We can then invoke property I ,  thus obtaining 

det(F1M) = [det(Gt,. . . , Gi3))12 
The calculation of the derivative vector GP) (i = 1, 2, 
3)) is straightforward, yielding: 

1 
r r 

G(l)  = -M(I) - !!M 

G(2) = -M(2) 1 - 29M(l) + ($ - $) M 
r r 

(For the sake of simplicity the time index t is omitted 
in the above formula.) Now, the following equalities 
are direct consequences of exterior algebra properties: 

1 
r2 

G A G(’) = -M A M(’) 

G(2) A G(3) = -M(2) A M(3) + other terms 1 
r2 

(10) 
The ‘other terms’ is only formed of exterior products of 
either the Vector M or M(’) with another vector (Me), I 
= 0, 1, 2). Since G A G(’) = (l/r2)M A M(’), the con- 
tribution of the ‘other terms’ in the calculation of 
det(F1M) is null. Property 2 is thus proved. We stress 
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that this property is essentially due to the fact that the 
term llr appears as a multiplicative factor. As we shall 
see in Section 3.4, this is not valid for Doppler meas- 
urements. 

The calculation of the approximation of 
det(FIM,,+J, where k 2 4 is also surprisingly simple. 
Using exterior algebra and more precisely the Binet- 
Cauchy formula, (assuming that 0 and r are constant 
for the duration of the analysis, i.e. { t ,  ..., t + k ) )  [IO], 
we obtain 

det(FIMt,t+k) 

= (OTt) -S  [det(Mt+,, , . . . , Mt+24)]2 
O < Z l < Z 2 < 2 3 < 2 4 < k  

with 

det(Mt+z17 . 7 Mt+Z4) = q%,,Z2,a,,z4)(det 4 t ) )  
so that 

det ( F I M t , t + k )  

,Z2 ,23 ,2* )  ( d e t ( A ( W 2  

(11) 
Q < Z I  <%2<%3<’k4<k I = ( 0 7 p  

= s (de t (A( t ) ) ) ’  
In eqn. 11, P(I1,  r2,  13, 14) is a polynomial in i,, z2, i3, i4 of 
degree homogeneously equal to 12. 

The problem we deal with is to obtain an explicit for- 
mula of det A(t). For that purpose the following result 
is instrumental: 
Property 3 
det A(t) is independent of the value of pi, furthermore 
we can consider that the reference time is zero. 

Using the Kronecker product (O), define the matrix R, 
as follows: 

Proof: 

where 

Then, the following equality is straightforwardly veri- 
fied: 

Mt =RtE1, El = (1 ,0,0,0)* 
hence, 

MI1) = Rjl)E1, . . . , Mi3)  = Ri3)E1 (13) 
Furthermore, the following equalities are straightfor- 

wardly deduced from eqn. 12: 
Rt = C, @ Rt 
Ril) = at” (Ct @ Rill) + D @ Rt 
Rf) = /3p (Ct 
R$3) = p, ( 3 )  (CA 8 R p )  - 2pj2)Rt  + . ’ . 

-&)Rt + ( P p  4- 1) ( D m y )  

where 

The above expression may be somewhat simplified by 
means of the following remark: 

Using the multilinearity property of the determinant 
we deduce, from eqns. 8, 13 and 14, that det A(t) is a 
sum of elementary expressions of the type 

det [Rt El, (Ct @Rt J )  El, ( D  @ Rt J )  El, (Ct @ Rt J )  El] 
etc. (16) 

The following classical property of the tensor product 
is then instrumental [9]: 

(HiFi) @ (H2F2) (Hi @ Hz)(Fi @ F2) (17) 
where H and F are endomorphisms of the state space. 

Applying this general property to expr. 16, yields: 
Rt = Ct @ Rt 

= (IdCt) @ (&Id) 
= (Id 8 Rt)(Ct @Id) (18) 

where Id is the identity matrix. Similarly, 
Ct @ RtJ = (IdCt) @ (RtJ)  

= ( I d  c3 Rt)(Ct @ J )  . . . (19) 
Thus, each of the terms (expr. 16) admits the following 
factorisation (det(A 0 B) = (det A)2 (det B)2, A and B 2 
x 2 matrices): 
Expr 16 5 (det 

(20 )  
Since det R, is equal to 1 we deduce from expr. 16 

and eqn. 20 that det A(t) itself is independent of p,. 
The last step is proved by invoking the same prop- 

erty of tensor products. More precisely, the following 
factorisations are obtained: 

det[(Ct @ Idz)El ,  (Ct @ J)E1, 
( D  @ Id2)Ei, (Ct 8 J)Ei] 

Ct 8 J = (Ct @ Id) (Id @ J )  
D @ Id  1 (CtD) @ Id = (Ct @ Id)(D 8 Id) (21) 

from which the following equality holds: 
Expr.16 = det(Ct @ Id) det[El ,  ( I d @  J)E1, 

( D  @ I d a ) & ,  ( I d  @ J)Ei] (22) 
Since the above reasoning holds for any expression 

of the type in expr. 16, property 3 is thus proved. 

3 Applications 

We shall consider various applications of the general 
results obtained in the previous Section. 

3.7 Classical planar problem and some 
extensions 
We shall first restrict our attention to the classical 
TMA problem: the source and the observer are moving 
on the same plane. The measurement is the bearing /3. 

Assuming a rectilinear and uniform motion of the 
source, det A(t) may be calculated by differentiating 
(with respect to time) the vector M, for Bt = 0 and a 
reference time equal to 0, yielding: 

Taking t = 0 and pt = 0 (see the main result) in the 
expressions of {M,, Mi’), ., M,(3)}, we thus obtain 
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Thus, nullity of det(F1M) is precisely the observability 
criterion of Nardone and Aidala [l]. Note that despite 
its apparent complexity, the associated differential 
equation admits a simple solution [l]. We stress also 
that we are generally interested in maximising (and not 
minimising) an estimability criterion. The Nardone and 
Aidala criterion is much more than an observability 
criterion with simply a binary response, it provides also 
a (local) estimability criterion. The problem IN then to 
determine the controls so as to maximise this criterion. 
Practically, this is possible since the bearing-rates may 
be directly estimated from the data. These points will 
be developed below. 

At this point, it is worth recalling the expressions of 
the various terms of the Nardone and Aidala criterion. 
Thus, in the absence of observer manoeuvre, eleinen- 
tary calculations yield: 

where: 
.i. r.v 

g = - = ~ r r - 2 ’  
r A v = det(r ,v) 

Inserting these expressions of 8, p2), f13) in eqn. 25, we 
immediately verify that the observability criterion is 
null in the absence of observer manoeuvre. Moreover, 
these relations may be presented in a more systematic 
perspective. More precisely, using eqn. 26 and calculat- 
ing g, we obtain 

g =.= 8 2  - g2 

/3(4) = -24bg3 + 24p3g,. . . 

so that 
p(3) -2p (2 )g  - 2 p ( p 2  - g 2 )  6 b g 2  - 2p3 

(27) 
From eqn. 27, we see that can be expressed i i s  an 
homogeneous polynomial in p and g, of degree n. First, 
this justifies the third order expansion of G, since we 
note (cf. eqn. 23) that the hi her order derivatives (in 
/3) of the components of.M[:oi is f12) or Pg, that of 

Lo,ol is p3) or h/3g2 + ~ ( / 3 ) ~ ,  etc. ... The basic role of /3 
and g for the estimability analysis is thus evident. Fur- 
thermore, if higher order expansions of the vectors M(l) 

are considered, then the dominant term of the associ- 
ated expansion is still eqn. 25. So, as we shall1 see 
below, the definition and the interest of modified polar 
coordinates (MPC) is not at all fortuitous. 

Actually, previous studies have shown that the Carte- 
sian coordinate extended Kalman filter exhibits unsta- 
ble behaviour in the TMA context. In contrast, 

M(3) 
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formulating the TMA estimation problem in MPC 
leads to extended Kalman filter which is both stable 
and asymptotically unbiased [12, 131. It is then worth 
considering this problem from a nonlinear point of 
view [14, 151. The system equations are 

t 
vt = vo + 1 a,(T)dT 

rt = vt, vt = a,,t 
n 

ht = Pt = tan-’ (-) 
Considering the state equation x = At, x, a) (see 

eqn. 28), the observation space 0 is the linear space of 
functions containing h and all repeated Lie derivatives 
[ll],  L,L, ... L,h where Xi is a vector field spanned 

Restricting our attention to the case where no 
receiver manoeuvre occurs and denoting fi ,  ..., f4 the 
system functions, the Lie derivative of the observation 
h along the vector field spanned byfis  [ l l ]  

by f. 

d h  
L f h  = fi- 

dX, 
2= 1 

where, in this case, (time index is omitted): 

f l  = U,, f 2  =?I,, f 3  = f4 = 0 (29) 
By a direct calculation, we then prove that the Lie 

derivatives of p are [I 11 (no observer manoeuvre), equal 
to the simple time derivatives of /3 (Lflp = F)). Using 
eqn. 27, the following set inclusion is thus deduced: 

sp(DLOfk,. . . , DL:h,. . .) C ~ p ( D p ,  D,+,Ds) (30) 
In eqn. 30 the symbol D denotes the differential [Ill. 

Once again, this result proves that this TMA prob- 
lem is not observable without observer manoeuvre. It 
also enlightens the basic role of the modified polar 
coordinates (P, /3, g and l i r )  in TMA. 

Consider now the case of a source with a constant 
acceleration [16]. The state vector X is then six-dimen- 
sional (X = (x, v, a)*). Consequently, the M, vector is 
also six-dimensional and similarly to eqn. 24, det A(t) 
= det(M,r+J (r=o,Ft=o) , SO that 

det(FIMt,t+k) = ck[-64b9 + 288b5(p(2))2 

+ 540b(p(2))4 -t 192b6p(3) 

- 720b2(p(2))2p(3) + 4 0 p ( 3 ) ~  

+ 240)3p(2) p(4) - 6op(2)p(3) p(4) 

+ 15p(p(4))2 - 24p4p(5) 
+ 18(p(2))2p(5) - 12pp(3)p(5)]2 

The vector M, is only slightly modified, but we note 
that the above result is considerably more complicated 
than eqn. 25. Further, we note that det(F1M) is a poly- 
nomial in /3, g of degree homogeneously equal to 9. 
Once again, compare with eqn. 25 where the degree 
was 4. Denoting a the acceleration vector, relations 
eqn. 26 are replaced by the following: 

. a*r a A r  1 
r2 r2 

p(3) = 6 b g 2  - ab3 - 20- - 4gr3 +-aAv 

etc. (31) 
95 
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We note that all the additional terms involve the accel- 
eration vector. Quite analogously to the classical planar 
case,. we define the extended modified polar coordinates 
{/3, /3, g, a A d r 2 ,  a A vlr2, U r } .  The fifth coordinate is a 
function of the trajectory curvature v A alv3. 

Finally, practical considerations plead for including 
small variations of the source or observer trajectories in 
the motion model. Actually, this is the general case. 
Then, an interesting modelling consists in considering 
independent increments of /3, that is, 

Using exterior algebra, we easily obtain 
Pt+% = Pt + wz) wz w.g.n N(0, r2 )  

det(At) = 4sin(b + W I )  sin@ + w3 - w2) 

- s in(2 j  + w3 - w1) s in(2 j  + wa) 
We are now in position to calculate the mean value of 
det(F1M) (denoted E[det(FIMf,t+k)]). More precisely, 
the expectations of the det(A,) are calculated by means 
of the characteristic functions of cos (wi), yielding 

1 6 ~ 3  
E[det(FIMt,t+3)] M T8 exp ( T ~ )  

( 3 2 )  
This result may be extended to the general case, the 
only change being the exponential. term which becomes 
exp(-mk9). We thus see that ( / 3 / ~ ) ~  is a convenient 
upper bound of det(F1M). The effect of small varia- 
tions is also evident ( (exp (- 3212)) multiplicative 
term). 

3.2 A local optimisation of the observer 
manoeuvres 
Consider the previous planar problem and let us denote 
v the modulus of the velocity and U its heading, the 
equations of the relative motion are 

i., = v ,  =vsinu-vv , , , ;  r, = r s i n p  
i., = vy = ‘U cos U - v,,y; Ty = r cos p (33 )  

yielding 
. 1  

/3 = -[U sin(u - P )  + cv] 
r 

1: = vcos(u - p) - cw’ 

cw sin(P) - us,, cos(P) 

In eqn. 34, cv, cv’ represent ‘cross velocity’ terms. Since 
our objective is to determine the optimal, heading U 
which maximises the cost functional C = (4(/3), + 2/3p3) 
- 3(p’2))2)2, we must calculate @(,I, f13). Assuming that v 
is constant and using the preceding results, we obtain: 

with: 

cv’ = -U s,y ..s(P) - Us,, sin(@) (34) 

98 9 g2 - 2-cv + -cv’ + -cv’ - - C U I  (35) 
r r r r 

where 

Inserting the above expressions of f12) and f13) in C (C 
2 det(FIM)), C becomes a function of the control U and 

96 

its derivatives D and U @ ) .  The other terms of C (llr 
excepted) can be estimated from the observations, since 
they only involve /3, /3, g. The problem is then to deter- 
mine the heading U and its derivatives which maximise 
C. Clearly, this can be treated by means of optimal con- 
trol. However, the derivation of an explicit solution 
seems hopeless so we refer to [17] for a numerical anal- 
ysis. 

The problem may be considerably simplified if we 
assume that the receiver velocity is far superior to the 
source one, so that v,,,, v ~ , ~  may be neglected, the esti- 
mability criterion C = 1148: + 2/3,/3,(3) - 3(/3t(2))2]2 then 
takes the following form: 

In all the cases, we stress that this approach is 
restricted to a local optimisation of the observer 
manoeuvres. 

3.3 Multiple observers 
In the absence of observer manoeuvre, the TMA prob- 
lem is not observable. But, if we consider multiple 
observers (each one in rectilinear and uniform motion), 
the TMA problem becomes observable [18]. Consider, 
for instance, the case of two observers: the scalar 
observation y( t )  is replaced by a vectorial one y ( t )  = 
(y l ( t ) ,  y2(t))* but the statistical nature of the problem is 
unchanged. In particular, denote .MI and M2 the M 
matrices associated with observer 1 and 2, then prop- 
erty 3 still holds, so that 

det(FIMt,t+k) = c(k) det(M1MT + M B M ; )  (36)  

(37) 
The matrix MI and Mz are not detailed but have the 

standard form (cf. eqn. 4). Opposite to the previous 
case, an explicit calculation of det(FIM,,,,,) is not an 
easy task. However, the Binet-Cauchy formula gives us 
the dominant terms of det(F1M). More precisely, 
denoting col(M,) the columns (vectors) of Mi ,  we have 

det(FIMt,t+k) =  MI A M2) A (NI A N2)j2 (38) 
where Mi E col ( M I ) ,  Nj E col (M,) and the terms of 
the form: [MI A M2 A M, A NI] are sufficiently small to 
be neglected. 

The calculation of det(M,, M,, NI,  N2) is easily 
achieved by means of exterior algebra. More precisely, 
the components (denoted resp. ao, Po, yo) of M, A M2, 
in the ‘reduced’ basis {E, A E,, E, A E3, El A E4} of 
A2(R4) are given below with E,, ..., E4 canonical basis 
of R4. 
a0 = sin((i - j).) t El A E2 

70 = - j  sin(jz) cos(Zz) +i sin(iz) cos(jz)  t E1 /\E4 

where: 
MI = (cos( ix) ,  - sin(iz), i cos( iz) ,  -2 sin(iz))* 
M2 = (cos( jx ) ,  - s in ( j z ) , j  cos(jx),  - j  sin(jz))* 

Po ( j  - i) COS(~Z)  C O S ( ~ X )  t E1 A E3 

2 = P1 (39) 
Similarly, the components (denoted al, PI, yJ of NI 

A N2, in the ‘reduced’ basis {E3 A E,, E, A E, , E, A 

E3) stand as follows: 
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a1 = kl sin((1 - k)y) t E3 A E4 
/31 = (1 - k )  sin(& + ky) sin(a + Zy) t E2 A EL[ 
y1 = -1 cos(a + ly) sin(a + ky) 

+ k cos(a + ky) sin(& + Zy) t E:! A E3 

where: 

N1 = (cos(a + ky), - sin(a + ky),  kcos(a + k y ) ,  

Nz = (cos(a + Zy), - sin(a: + Zy), Zcos(a f ly), 

In eqns. 39 and 40, x and y are the bearing-rates (bl, 
P2) on the two platforms. It is frequently assumed that 
they are equal. The parameter a is the angle between 
the two vectors joining the platforms and the source. 
We then have 

det(Ml,Mz,Ni,N:!)  = aoai - POPI + Y O T  (41) 

- k sin(@ + ky))* 

- 1 sin(a + Zy))*, y = /3:! l(40) 

The following approximations are then deduced from 
eqns. 3840:  

1) -a >> z, then: eqn.(41) M ( I  - k ) ( i  - j ) ( s i n a ) 2  
2) a M Sz, then: eqn.(41) M (1 - k ) ( i  - j )  

x (6 + k + i ) ( b  + Z - i)(b + Z - j ) ( 6  + k - j ) x 4  
(42) 

So, in the first case (a  >> x), det(F1M) is proportional 
to m6 (sin while in the second one it is proportional 
to m16 x8. The interest of a large array baseline (a! >> 
x) is thus evident. 

A similar analysis can be made if the second set of 
measurements (i.e. {y2(t)})  is replaced by Doppler 
measurements. 

sensor 2 

d 
Fig. 1 Notations for sensor, source positions and trajectory 

3.4 TDOA and TMA 
We consider now a passive system where the observa- 
tions are time delay of arrival (TDOA) between tm70 or 
more sensors. To begin, consider the two sensor system 
represented in Fig. 1, with the notations of Section 2. 
The source trajectory is determined by its state vector 
X (see eqns. 2 and 3) .  Assuming the TDOA zAX, t). 
proportional to the range difference TAX, t) ,  we have 
(c, wave celerity): 

C7-d = ? - d ( x ,  t )  

where 
r d ( X ,  t )  = TI (X, t )  - 7-2 (X, t )  

(43) 
A 
= h ( X ,  t )  

Denoting z(t)  the observation (i.e. z(t)  = h(X,  t )  + 
w,(t)), direct calculations [19] yield the following 
expression for the FIM associated with this problem: 

1 "  
FIM = 7j IT V,h(X, t)VyL(X, t )  (44) 

- z  k = l  

The components of the gradient vector Vx h(X,  t )  have 
been calculated in [ 191, yielding: 

where: 

W )  i2 sin (; (Pl ( t )  + Pz (ill) (45) 

In eqn. 45, Pl(t) and P2(t) denote the bearings angles at 
time t with respect to an axis passing through the two 
sensors. We are now in position to apply the funda- 
mental results of Section 2. Note that the gradient vec- 
tor Vx h(X,  t )  is quite similar (see eqn. 9) to the BOT 
gradient vector G,, the differences being that P(t) is 
replaced by 1/2 (Pl(t) - P2(t)) in the first hand, and the 
term l/r, by b(t) in the second one. We can now apply 
properties 2 and 3, yielding: 

". a 1  where Pr = 2 (PdO + 82(t)). 
To analyse the theoretical performance of this TMA 

system, it is worth considering an expansion of the var- 
ious terms of det(F1M). Since the derivatives p'") are 
polynomials in P and g ,  we consider the corresponding 
polynomial approximations of /3("). More precisely, we 
use the following approximations: 

so that (with the assumption: E = * << 1) 
P 

j4 8 4  + 2 ~ ( 3 ) A j  (47b) 
Quite similarly, we have 

Pi2)  = - 2 0 1  + AB)(gi + Ag) 
M P(') - BAg - gAB 

( p ( 2 ) ) 2  M (P (2 ) )2  + 4pg[g@ + j a g ]  

whence 

/3(3) G ,B(3) + 3 ( g 2  - b2)Ab + 6gbAg 

/3j(3) M p p ( 3 )  - 4P3@ + 6gp2Ag (48) 
Collecting the above results, we obtain the following 
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approximation of det(F1M): 

det(FIMt,t+k 1 

To give a more geometric interpretation of the above 
formula, i t  is worth considering the following expres- 
sions of and g: 

i . 1  
T r2 

g = - = -(r*v) = if) cos0 

where 0 is the angle formed with the vectors r and v. 
Denoting d the intersensor distance and d the vector 

joining the two sensors, additional approximations (see 
the Appendix, Section 7.2) are as follows: 

Finally, the following result has been obtained: 

det ( F I M t , t + k )  

From eqn. 51, we note that the ratio dlr plays a major 
role. This means that the source must be ‘sufficiently’ 
close to the sensors. Another important factor is (sin2@ 
cos4@. This factor is maximum for B = d 3 ,  2x13, and 
null for 0 = 0, x12, z. So, the system will perform quite 
poorly when 0 or g = k ir  are (almost) null. On the 
contrary, the geometry corresponding to 8 = x13, 2x13 
is quite favourable. Practically, a good sensor configu- 
ration may consist of (at least) three sensors forming a 
regular triangle. Data fusion step then becomes a fun- 
damental step in the system design. 

The case of Doppler measurements may be treated in 
the same way, even if it is intrinsically more intricate. 
The measurements are then differential Dopplers, i.e. f2 

- f i  = (Jolcj ( P 1  - L 2 )  where fo is the central source fre- 
quency. Using the differentiation chain rule, the FIM 
takes the following form: 

FIM oc (Mfl), . . . ,Mi4))(Mi1), . . . , M:”)* (52u) 
where 

Mt = btGt, M, (l) - - b, 1G t + btGil),etc. ( 5 2 b )  
The problem seems quite similar to the previous one. 
However, it is complicated by the form of Mi1). The 
following remark is then instrumental: all the terms det 
(G, G(l), G(2), G o ) ,  ..., det (Gc’), G(2), G(3), 60) are 
small relatively to det (G, G(l), G(’), G(3)). We then 
obtain 

det(M$’), . . . ) Mi4)) M det(G,, 

where 

Examining the above approximation, we note that the 
information contained in the differential Doppler meas- 
urements on the first hand and in the time delays on 
the second one, may be of the same order of magnitude 
and are generally complementary [19]. This fact may be 
quite useful in the design of fused estimators. 

4 Conclusion 

Using basic results of multilinear algebra, a new inter- 
pretation of observability criteria has been derived. The 
interest of this approach is quite beyond observability 
analysis since it appears to be a simple, Tiersatile and 
efficient tool for analysing estimability for various 
TMA problems. 

First, general results have been obtained, allowing us 
to simplify considerably the calculation of the FIM 
determinant. Furthermore, invariance properties are 
thus proved. Second, these basic results are applied to 
a variety of practical situations, rendering evident their 
intrinsic unity. 
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7 Appendixes 

7.7 
TMA 
The aim of this Appendix is to analyse observability 
for the passive TMA system considered in Section 3.4. 
Since the sensors are fixed, we consider a system with 
no input. This means that the Lie derivatives (eqn. 29) 
of the observation z are identical to the time derivatives 
(of z) .  Now, the following inclusion is easily provedl: 

Analysis of the observability for YDOA 

s ~ ( D L ~ ~ z ,  . . . ,  DL;Z ,  . .)  c s ~ ( D , + + , D ~ ~ , D ~ ~ )  
(E&) 

where 

T m  = (Tc,o + t v d 2  + @y,O + 
r ; ( t )  = (rS,o + d + + (T,,o + 
h ( t )  = (r,,o + tuz)uz + (ry,o +  tu,)^, 
h2(t) = (rc,o + d + tu,)u, + (T,,o + tu,)u, (54b) 

We then consider the matrix M, whose columns are 
CV*Xr,2(0, Vxr22(0> VxMt) ,  VXMO>, ( X  = rx,o, ry,o, vx, 
vy) ), and calculate its determinant, yielding 

det(Mt) = d2(r,,o +tu,)' 
Thus, the system is (locally) unobservable on the bisec- 
tor line of the segment joining the two sensors (rl = r2), 
and on the line joining the two sensors ((ry,,, + t vy)  = 0). 
Note that the dimension of the (locally) observable 
space is then equal to 2 or 3 .  These two lines excepted, 
the system is observable. 

7.2 TDOA approximations 
In this Appendix, we deal with the approximations 
given in eqn. 50. The first one is a straightforward con- 
sequence of the law of sines (in a triangle). More pre- 
cisely, we remark (see Fig. 1) that the angle formed 
with the two vectors rl  and r2 has a measure equal to 

sin ( i ( P 2  - P i ) )  - sin@ 

which proves the first part. For the second one, we deal 
with 

(/32 - PI), hence 

_ -  
d / 2  r 

now: rT2 M rF2(1 + a )  with: a = - 
r;d 

2 -  

(55) 
1 

r2 
so, that: Ab  M - 2 g p  + -(d A v) 
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