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Abstract

Visual servoing needs image data as input to realize
robotics tasks such as positioning, docking or mobile
target pursuit. This often requires to track the 2D
projection of the object of interest in the image se-
quence. To increase the versatility of visual servoing,
objects cannot be assumed to carry landmarks. We
have developed an original method for 2D tracking of
complex objects which can be approximately modeled
by a polyhedral shape. The proposed method fulfills
real-time constraints as well as reliability and robust-
ness requirements. Real experiments and results on
a positioning task with respect to different objects are
presented.
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1 Introduction

The visual servoing approach, which consists in
controlling movements of a robot from the estima-
tion of image features, is attractive for industrial use
in changing or hostile environments such as a nuclear
power plant. In order to follow this approach, the ex-
tracted image information must be robust, accurate,
and computed in real-time. Current techniques ex-
ploited in industrial environment run on marked and
simple objects. Our goal is to design a method to ex-
tract relevant image features without such constraints.

Several authors have proposed ways to solve tracking
of features in image sequences with monocular vision
[1, 7, 8, 10, 14] or stereo vision [3]. We have developed
an original method for 2D tracking of complex objects
which can be approximately modeled by a polyhedral
shape. The efficiency of this method is demonstrated
through a visual servoing homing task which consists
in positioning a camera mounted on the end effector
of a six d.o.f cartesian robot with respect to objects.

The paper is organized as follows. In Section 2, we
briefly recall the visual servoing approach, and we
specify the considered task. Section 3 will describe the
initialization step of the tracking algorithm. In Sec-
tion 4, we present the tracking algorithm which relies
on 2D global parametric motion model and 2D de-
formable template. Experimental results are reported
in Section 5. Section 6 contains concluding remarks.

2 Specification of the homing task

2.1 Image-based visual servoing

The image-based visual servoing approach consists
in specifying a task as the regulation in the image
of a set of visual features [6, 9]. An other approach
consists in using a model of 2D image motion [16]. Let
us denote p the visual features involved for the task.
The task function is defined by:

e=L"" (p(t) - p") (1)

where:
- p(t) is the current value of the considered image fea-
tures e.g. coordinates of the particular object points;



- p* is the desired value of p;

- ET" s the pseudo inverse of a model or an ap-
proximation of the interaction matrix LZ defined by
p= Lch, T, being the camera velocity.

The goal is to minimize ||e||. In order that e exponen-
tially decreases, the desired evolution of e takes the
form:

T. = —Xe (2)

where A tunes the speed of convergence.
2.2 Positioning with respect to an object
We have considered a generic homing task that po-
sitions an eye-in-hand system with respect to a given
object. For this application, we take as p the coor-
dinates of an appropriate set of points on the object
silhouette: p = {(z;,y;),5 =1,...,k}, k > 4. Consid-
ering the perspective projection model, a point in the
image plane with coordinates (z;,y;) corresponds to a
3D point (X;,Y}, Z;) in the camera coordinate system
with Zj = Xj/Zj and Y; = Y}/ZJ
The related interaction matrix is given by:

—1/Z; 0 w;/Z; xy; —1-a] y;
LT = 0 —1/Z;y;/Z; 1 +y; —zjy; —x;

3)
The model LT of the interaction matrix chosen as
Lgip*, where Z%,j = 1,...,k is obtained by a pose
computation, as explained in Section 3.

3 Semi-automatic initialization

To initialize the tracking algorithm, we have to de-
termine a number of control points on the contour of
the object projection in the first image of the sequence.
These points will then form a polygonal shape which
is assumed to correctly model the object appearance
in the image. To identify this 2D polygonal shape, we
estimate the camera pose from the first image of the
sequence. To this end, we exploit a CAD polyhedral
3D model of the object. We have to find the 3D rota-
tion and the 3D translation which map the object co-
ordinate system with the camera coordinate system.
The 3D CAD model is then projected onto the im-
age by perspective projection in order to match the
silhouette of the object projection in the first image.
We use the intrinsic camera parameters given by the
maker. A number of methods to compute Perspective
from N Points have been proposed [5, 12, 13]. We re-
sort to the method designed by Dementhon and Davis
[4]. This method calculates the rigid transformation
in an iterative way from the knowledge of the coordi-
nates of at least four non coplanar points, in the object

coordinate system, and of their corresponding projec-
tions in the image. Its principle consists in approxi-
mating perspective projection by scaled orthographic
projection, and then iteratively modifying the scaled
orthographic projection to converge to the perspective
projection. The initialization step is semi-automatic,
since the correspondence of at least four non-coplanar
points (typically 4 or 5) of the 3D model with im-
age points is achieved in an interactive manual way.
Since the faces of the 3D CAD model are oriented by
construction, we can determine the visible parts af-
ter projection of the 3D model. In order to refine the
projected contour obtained after pose calculation, we
apply the tracking algorithm presented in Section 4
on the same first image. The points used in p are a
subset of points characterizing the projected contour
of the object (typically, the corners). An example of
initialization step is presented in Figure 1, for one of
the real objects we have dealt with.

(a) 3D CAD model of the nut

(b) Crosses represent the points selected to
calculate the pose of the object

(c) Projected model superimposed on the image

(d) Projected model superimposed on the same image
after the refinement step using the tracking
algorithm.

Figure 1: An example of initialization step



4 2D tracking of polyhedral object

As described in the previous section, the 2D pro-
jection of the object to be tracked is characterized by
points on the object contour supplied by the initial-
ization step.

We consider that the 2D global transformation be-
tween two successive projections of the object in the
image plane can be represented by a 2D affine dis-
placement model augmented with local deformations.
The aim is to estimate the parameters of the 2D global
transformation.

4.1 Transformation model

Let Xt =[X{,...,X!]" a vector composed by the
image coordinates X} of points along the contour of
the object projection at time ¢, and I'x: the contour
associated with the vector X*t. Let us denote ‘X* the
optimal shape of the object projection estimated at
time ¢, and fX* a filtered version of X* (to be defined
in subsection 4.2).

The optimal shape !X+ at time ¢ + 1, will be given
by :
lXt-‘rl :lXt+1(@,5) — lI!@(th) 446 (4)

where

- Ug is a 2D affine transformation given by :

.Z'/ a; a2 x Tm
= 5
-l wlE] e
with 1 = (a1,a2,0a3,04,7,,T,), X = (z,y)T
and X' = (z',9)T = ¥o(X).

-0 = (d1,..-,0n), with §; = (ds,,0,,) denotes the
local deformation introduced at point X;. It will
be modeled by a centered Gauss-Markov process
with variance o; and correlation factor €;;.

4.2 Tracking algorithm

The tracking algorithm is articulated into five steps
as outlined in fig.2. The first two steps are concerned
with the estimation © of the global affine parameters
O. The third step computes the optimal shape ! Xt+!
by minimizing an energy function Eg with © = 6.In
the fourth step, the model shape denoted ™X*, under-
going only the global affine deformation, is computed.
Finally, the fifth step delivers the final shape 7X*+1,
It is given by :

Xt1(04,0) = Ve, (X)) + G §

where ©; is the 2D affine deformation obtained at step
4, and G is a validation factor of local deformation.

Vo

STEP 1: FIRST ESTIMATE OF AFFINE
MODEL ©
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]

STEP2: ESTIMATION OF GLOBAL TRANSFORMATION (REFINE ©)

]

STEP 3: ESTIMATION OF OPTIMAL SHAPE (LOCAL DEFORMATIONS &
FOR © FIXED)

]

STEP 4: FINAL ESTIMATION OF © » ©f AND UPDATING OF THE REFERENCE

MODEL SHAPE

]
STEP5: VALIDATION OF THE FINAL FILTERED OBJECT SHAPE

Figure 2: Outline of the tracking algorithm

4.3 Estimation of the model parameters
To estimate the optimal shape XX*! i.e. (0,4), we
adopt a Bayesian criterion, which turns out to lead to
a minimization problem. More precisely, the problem
is to estimate (©,d) by minimizing an energy function
Eo. For more details, the reader is referred to [11,
15]. This implies that (d;)i=1,...,n are supposed to be
of low magnitude. This assumption is verified in our
application of visual servoing.
A first step supplies an initial estimate of © using as
input normal displacements evaluated along the object
shape contour with the ECM algorithm [2, 15]. Then,
this estimation will be refined as explained below.
Eg is decomposed in two terms Eq and E, :

Bo (X', ) = By(X™+, ) + B(X*+) (6)

E; expresses the adequacy between the variables to be
estimated and the observations d*+! = {d{*'}. This is
the “data-driven” energy term. The observations df*!
are given by :

di"'l = —min(||VI;(t + 1|, Grmaz) (7)

where VI, denotes the spatial gradient of the intensity
function at point s along the contour, and Gry,q, is
a threshold which permits to saturate the too high
intensity gradient values. E, represents the a priori
information on the local deformations 4. This is the
regularization term.

The optimal shape of the object projection will be
given by X*+1(0, §) where

(0,6) = arg (%ligl){Ed(lX LA + B (XM} (8)
Let us define energy terms E; and E,.
E,; is given by :
Ed(lXt+1, dt+1) — Z d§+1 (9)

sE€El Iy t+1



where ['ix:+1 represents the contour of the 2D shape
I t+1

Concerning E,, two deformation processes are in fact
introduced. As previously mentioned, we consider the
local deformation field § with variance o and correla-
tion factor €;;. We also take into account the “ref-
erence” shape ™X! which is provided at time t by
the transformation of the initial 2D object projection
model, resulting only from the combination of succes-
sive estimated 2D global affine transformations. Then,
™5 is given by ™; = W (™X?) —' X! with variance
Mg2 and correlation factor ™e;;. The interest of the
deformation field ™§ is to avoid undesirable deforma-
tion of the shape over time.

The expression of E, is thus defined as follows :

E,(xt1) =} (P(Hiz’“) n ||m5z'2||2) N

m
o3 o3

i

5 (p(ﬂaiez—&jnu||m<sz~m—;6j||2> 10)

(i,j)neighbour ij ij

where p is a quadratic truncated function.

Two points indexed by ¢ and j are said “neighbor” if
they are located at two successive positions along the
shape contour.

The criterion (8) cannot be directly solved. We resort
to an alternative iterative procedure. First, we esti-
mate © using :

6= argmin Eq(o (X1, dth) (11)

then, for © fixed, we estimate & using :
6 = arg min Eg (X, d"*) (12)

The optimization of E; is performed by a gradient
algorithm, whereas the optimization of E, is achieved
by simulated annealing.

5 Experimental results

The complete experimental implementation and
validation of the visual servoing task including ini-
tialization and tracking, have been carried out. We
have conducted experiments dealing with a position-
ing task. Several objects of interest have been consid-
ered. This task has been performed on an experimental
testbed involving a CCD camera mounted on the end
effector of a six d.o.f cartesian robot.

The experiment comprises the following steps:

- In an off-line step, the camera is first positioned at
the final desired position and a number of points

(at least 4) on the object image are selected to
specify the control law. The 2D model of the ob-
ject projection is initialized as explained in Sec-
tion 3.

- The camera is then positioned at the initial po-
sition. The 2D model of the object projection is
then also initialized as explained in Section 3.

- At every intermediate camera position between
the initial and the final ones, the contour of the
object projection in the image is updated by the
tracking algorithm presented in Section 4. Then,
the control law is activated to reach the next po-
sition.

A first real example involving a nut as object of in-
terest is now reported. The tracking algorithm runs
on an Ultra-Sparc-1 Sun workstation, equipped with
a Sunvideo image capture board, at the rate of 1Hz for
images of 256 x 256 pixels. This relative low process-
ing rate implies that the positioning task is specified in
position, i.e. Ar = T.At, where Ar is the camera dis-
placement. Otherwise, the control could be performed
on the velocity.

Figures 3 and 4 show the temporal evolution of the
components of (p — p*), in pixels, and of T, in cm/s
and dg/s. These curves show the stability and the con-
vergence of the control law. Indeed, the error on each
coordinate of the six points specifying the task and
the components of the control vector T, converge to
zero. Figures 5-a and 5-b respectively contain the im-
ages delivered by the camera at its initial position and
final reached one. Crosses overprinted in the image in-
dicate the target position of the points used to specify
the control law. Figure 5-b depicts the apparent tra-
jectory in the image of these points during the achieve-
ment of the task. The initial and the final polygonal
shape contours accounting for the tracking of the nut
projection in the image are also drawn.

We can point out on this example that the tracking
of the object contour in the image must tackle with
low intensity contrast, presence of cast shadows, mir-
ror specularities... Moreover, the object is not exactly
polyhedral, and the object edges cannot be physi-
cally precisely defined. Despite these difficulties, the
proposed method have proven its efficiency on dif-
ferent classes of objects such as box or nut. Experi-
ments in presence of partial occlusion (fig.6) or pos-
sible false matches (fig.7) have been performed with
success. However, the tracking method contains some
limitations. The method cannot take into account im-
portant changes of appearance of the projection of the
object in case of large displacements of the camera.
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Figure 3: Temporal evolution of (p — p*) for the nut
experiment,
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Figure 4: Temporal evolution of T, for the nut exper-
iment

(a) Crosses indicating the desired position and plot
of the polygonal model contour of the nut projection
after initialization - (b) Apparent trajectories of the
points used to specify the task, and plot of the contour
of the nut projection model at the convergence of the
task.

Figure 5: Example of positioning task realization for
the nut experiment

(a) Apparent trajectories of the points used to specify
the task - (b) Contour of the nut projection model at
the convergence of the task.

Figure 6: Example of positioning task with partial oc-
clusion

(a) Crosses indicating the desired position - (b)
Apparent trajectories of the points used to specify
the task - (c¢) Contour of the box projection model at
the convergence of the task.

Figure 7: Example of positioning task on a box with
possible false matches

6 Conclusions

We have presented an original method for tracking
complex objects in an image sequence. It allows us
to carry out visual servoing task of positioning with
respect to real objects (without any landmarks).
Initialization of the algorithm is based on pose
computation while exploiting the 3D CAD model of
the object of interest. The tracking is based on the



estimation, between two successive images, of a global
affine transformation augmented with local deforma-
tions. It is formulated within a Bayesian framework.
A real practical implementation has been realized.
Results on different examples of positioning task have
demonstrated the robustness and the reliability of the
proposed method. In order to increase the processing
rate, several improvements are under investigation.
For instance, the tracking stage could exploit the 3D
model of the object of interest. This could avoid to
estimate any local deformations, which represents the
main part of the computational load. The handling
of the appearance in the image of previously hidden
object parts will also be considered.
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