
THE MATRIX DYNAMIC PROGRAMMING PROPERTY

AND ITS IMPLICATIONS∗

J. P. LE CADRE† AND O. TRÉMOIS‡
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Abstract. The dynamic programming (DP) technique rests on a very simple idea, the principle
of optimality due to Bellman. This principle is instrumental in solving numerous problems of optimal
control. The control law minimizes a cost functional and is determined by using the optimality
principle. However, applicability of the optimality principle requires that the cost functional satisfies
the property called “matrix dynamic programming (MDP) property.” A simple definition of this
property will be provided and functionals having it will be considered.
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1. Introduction. The DP technique rests on a very simple idea, the princi-
ple of optimality due to Bellman [1]. This principle simply asserts that if π∗ =
{µ∗

0, µ
∗
1, . . . , µ

∗
n} is an optimal control law then [1] the truncated control law

{

µ∗
i , µ

∗
i+1,

. . . , µ∗
n} is optimal for the ith truncated control problem.

This principle is instrumental in solving numerous problems of optimal control of
a dynamic system over a finite number of stages (finite horizon). We refer to [1, 2]
for a thorough and motivated presentation of the DP technique.

The control law (or the strategy [2]) must minimize a cost functional. However,
to our knowledge, the authors always assume that the cost functional is additive over
time.

The problem we deal with consists of optimizing the trajectory of a passive re-
ceiver. For practical purposes, we must minimize a functional depending on the state
values and the control law. The functional is a functional of the Fisher information
matrix (FIM) since, roughly speaking, the FIM is a general measure of the estimability
problem [3, 4, 5]. A general presentation of our problem is given in [6, 7, 8].

Various choices of the FIM functional have been considered in the literature [9],
even if both theoretical and practical considerations advocate for the use of the deter-
minant [8, 10, 11]. At this point, it is necessary to stress that the determinant is not
linear so the cost functional additivity no longer holds. Actually, applicability of the
principle of optimality to the matrix case requires that the cost functional satisfies to
the matrix dynamic programming (MDP) property. A simple definition of the MDP
property will be provided, and we shall examine the functionals having it.

Then, it is shown that they are reduced to the functionals of the form f(A) =
g (tr(AM)) (cf. Proposition 2.2). Consequently, these functionals are “almost” linear
(obviously a linear functional yields an additive cost), which may be rather restrictive.

At this point, it is worth recalling the special structure of the FIMs. Actually, if
we restrict our attention to a very specific estimation problem (namely, target motion

∗ Received by the editors June 26, 1995; accepted for publication (in revised form) by G. Cybenko
September 6, 1996. This work has been supported by DCN /Ing/Sud (Direction des Constructions
Navales), France.

http://www.siam.org/journals/simax/18-4/28833
† IRISA/CNRS, Campus de Beaulieu, 35042 Rennes cedex, France (lecadre@irisa.fr).
‡ Thomson-Marconi Sonar, Route de Sainte-Anne du Portzic, Brest, France (olivier.o.t.tremois@

tms.thomson.fr).

818



THE MATRIX DYNAMIC PROGRAMMING PROPERTY 819

analysis (TMA)), which deals with the estimation of the kinematic parameters defining
a source trajectory, then the FIM matrices exhibit a very special structure [12] which
is very succinctly presented in the appendix. We shall then consider the applicability
of the optimality principle to this class of matrices for the det functional. Some results
are thus obtained, but they cannot be extended to the generic case.

Throughout the text, the following notations will be used:
• a capital letter denotes a matrix,
• a capital calligraphic letter denotes a subspace,
• the symbol (*) means transposition conjugation,
• the symbols det and tr stand, resp., for the determinant and the trace,
• Hn is the space of n-dimensional Hermitian matrices,
• Pn (resp., P+

n ) is the subset of positive semidefinite (resp., positive definite)
matrices,

• I is the identity matrix,
• A � B means that the matrix A−B is semidefinite positive.

The paper is organized as follows. The MDP property is introduced in section
2. General results are then obtained. The validity of the optimality principle for the
determinant of structured matrices is considered in section 3.

2. The MDP property and its implications. We shall say that the func-
tional f defined from Hn (the vector space of n-dimensional Hermitian matrix) to R

satisfies the MDP property if the following conditions are fulfilled.
Definition 2.1.

• f is smooth
(

C2
)

,

• let A and B in Hn be two matrices and assume that f(B) > f(A); then whatever

the matrix C in Hn, we have f(B + C) > f(A + C).
An interpretation of this definition in terms of dynamic programming is the fol-

lowing type of inequality [6, 7]:1

minf







∑

j∈S

[Ci,j(d) + Fπ∗

1
(k + 1, j)]pi,j(d)







≤ f







∑

j∈S

[Ci,j(d) + Fπ1
(k + 1, j)]pi,j(d)







,

which must be valid for the strategy π∗
1 , optimal up to k + 1.

The question we deal with consists of determining the functionals f having the
MDP property. An answer to this question is provided with the following result.

Proposition 2.2. Let f satisfy the MDP property ; then

f(A) = g (tr(AR)) ,

where g is any monotone-increasing function and R is a fixed matrix.

Proof. Since it has been assumed that f is smooth, we can consider the first-order
expansion2 of f around A

f (A + ρ C)
1
= f(A) + ρ tr[∇∗f(A) C] + 0(ρ)(1)

(ρ scalar).

1
F denotes an FIM matrix.

2 The symbol
1
= denotes a first-order expansion.
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In the above formula, ∇f(A) denotes the gradient vector of f in A. Actually,
the notation tr[∇∗f(A) C] replaces the true expression [13, 16] of the differential of
f,DfA(C) and corresponds to (see comments)

DfA(C) = tr[∇∗f(A) C].(2)

Assume now that the gradient vectors ∇f(A) are not colinear altogether. Then
there exist two matrices A and B s.t. ∇f(A) 6= ∇f(B). Denoting F⊥ as the subspace
orthogonal to F (for the classical scalar matrix product [14]), we thus have

(P1) (∇f(A))
⊥
6= (∇f(B))

⊥
.(3)

At this point, stress that the matrices A and B satisfying (P1) may be chosen as
close (for the Frobenius norm [15]) as we want.

As a consequence of (P1) there exists a matrix C such that

tr[∇∗f(A) C] 6= 0 and tr[∇∗f(B) C] = 0.

If tr[∇∗f(A) C] < 0, then tr[∇∗f(A) (−C)] > 0, so we can assume that

tr[∇∗f(A) C] > 0 and tr[∇∗f(B) C] = 0.(4)

Now consider the function g(ρ)

g(ρ)
∆
= f (B + ρ C) − f (A + ρ C)

and its first-order expansion around 0, i.e.,

g(ρ) = f(B) − f(A) − ρ tr[∇∗f(A) C] + 0(ρ).(5)

Since the functional f is continuous on Hn, we may choose (A,B) such that

f(B) − f(A) =
ρ

2
tr[∇∗f(A) C],

and, consequently,

f(B + ρ C) − f(A + ρ C) = −
ρ

2
tr[∇∗f(A) C] + 0(ρ)

(tr[∇∗f(A) C] > 0) .
(6)

The above equality implies that f does not satisfy the MDP property.
Therefore, if f has the MDP property then all its gradients are colinear and

proportional to a unique vector. Denote this vector by G; we thus have

∇f(A) = λ(A)G ∀A ∈ Hn

(λ(A) scalar ) .
(7)

Now if we recall the intermediate value theorem and the differentiation chain rule
[16]

∇g [h(A)] = g′ (h(A))∇h(A)

(g : R −→ R, h : Hn −→ R) ,

we conclude that f is the composition of a scalar function g and a linear form h. Such
a linear form h may always be written h(A) = tr(AR), where R is a fixed matrix.

Reciprocally, it is a trivial matter to show that f(A) = g (tr(AR)) with a g

monotone increasing function that satisfies the MDP property. The proof is thus
complete.
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Comments.

1. Consider for instance f(A) = log detA; then [14]

DfA(C) = tr
(

A−1C
)

= tr[∇∗f(A) C]

(A invertible),
and we see immediately that f does not have the MDP property.

2. The same remark is valid for functionals as simple as f(A) = tr
(

A−1
)

.
But actually we only need the following condition on f .
Definition 2.3. The functional f has the MDP1 property if the following con-

ditions are satisfied.

For all positive definite matrices A and B and positive semidefinite matrix C, the

following property holds:

f(B) > f(A) ⇒ f(B + C) > f(A + C)(8)

(

f : C2
)

.

Note that MDP1 is a refinement of the MDP property and may, possibly, be less
demanding than MDP. At this point, it is worth mentioning the following lower bound
of det(A + B). We refer, for instance, to [17, pp. 229–230, 18] for a proof.

Lemma 2.4. Let A,B be Hermitian n×n matrices, and suppose that A is positive

definite and that B is nonnegative definite. Then

det(A + B) ≥ det(A) +
det(A)

nλmax
tr(B).(9)

Here λmax denotes the maximum eigenvalue of A.

However, the following counterexample shows that MDP1 is not satisfied by the
“ det ” functional.

Counterexample.

Aε =

(

1 + ε 0
0 5

)

, B =

(

3 2
2 3

)

,

det(B) = 5,det (Aε) = 5(1 + ε), Aε and B ≻ 0 ( ε suff. small),

C =

(

1 1
1 1

)

and thus

det (Aε + C) = 11 + 6ε and det(B + C) = 7.

It is quite obvious that this (elementary) counterexample is not restricted to a rank
deficient C matrix since C may be slightly perturbed without changing the sign of
det(B + C) − det(A + C). Therefore for ε sufficiently small (and negative) we have

det(B) > det (Aε) and det (Aε + C) > det(B + C).

Similarly, we can show that MDP1 is not satisfied by the functional f(A) =
tr
(

A−1
)

but is trivially satisfied by any functional f(A) = g (tr(AR)) (g: monotone
increasing). We thus consider the following problem.
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What are the functionals satisfying the MDP1? We may reasonably suspect that
they are reduced to those satisfying the MDP. However, the proof of Proposition 2.2
cannot be trivially extended since the subset of semidefinite matrices is not a subspace.
Actually, if C is in P+

n then −C is not in P+
n and the reasoning leading to (4) is not

valid. The difficulty comes from the fact that P+
n is a convex subset of Hn and not a

subspace.

3. Structured determinants and the MDP property. Our attention will
now be restricted to structured matrices. Various structures will be considered cor-
responding to various scenarios (see [6]) of target motion analysis. The statistical
motivations of such special matrix structures are beyond the scope of this paper, but
the true problems are thus conveniently described [12, 7].

Since the general MDP property is not satisfied by the determinant, we shall con-
sider special cases associated with particular matrix structures and specific definitions
of the “addition.” It will then be shown that the DP property may be extended, but
the validity of these extensions is limited.

3.0.1. One-leg scenario. In this case, the elementary FIM F (A,C) takes the
following form:

F (A,C) =

(

A iA

iA i2A

)

+

(

C jC

jC j2C

)

=

(

A + C iA + jC

iA + jC i2A + j2C

)

with

A,C ∈ P+
n , i, j ∈ N.

Then, the following result holds.
Proposition 3.1.

det (F (A,C)) = (j − i)
2n

detA detC.

Proof. An elementary proof relies on the following factorization:

F =

(

A I

iA jI

) (

I iI

C jC

)

,

hence

detF = det

(

A I

iA jI

)

det

(

I iI

C jC

)

.(10)

Now using the classical lemma about the determinant of a partitioned matrix
[15, 19] we obtain directly

det

(

A I

iA jI

)

= detAdet
(

jI − iAA−1
)

= detAdet ((j − i)I)

and similarly

det

(

I iI

C jC

)

= detC det ((j − i)I) .(11)
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Using the proof of Proposition 3.2 (see below), Proposition 3.1 may be extended
to the case A ∈ P+

n , C ∈ Pn.
A direct consequence of Proposition 3.1 is

detB > detA > 0 ⇒ detF (B,C) > detF (A,C) (C � 0).(12)

Actually, as we shall see later, the simplicity of Res1 is a consequence of the rank
deficiency of the following matrix:

(

A iA

iA i2A

)

=

(

1 i

i i2

)

⊗A

(⊗ : Kronecker product [15]).
Thus, the MDP property is verified for this particular matrix structure. However,

for practical applications, Proposition 3.1 should be extended to the following two
problems.

3.0.2. Problem 1. In fact, statistical considerations may lead us to consider a
slightly more general structure

(

A αA

αA βA

)

.

This matrix is no longer rank deficient (in general) so that previous calculations are
not valid. However, the following result holds.

Proposition 3.2.

det

[(

A αA

αA βA

)

+

(

C jC

jC j2C

)]

= detAdet
[(

β − α2
)

A +
(

β − 2jα + j2
)

C
]

.

Proof. That A is positive definite admits a decomposition in triangular factors
(A = TT ∗) so that

(

A + C αA + jC

αA + jC βA + j2C

)

=

(

T 0
0 T

)(

I + S αI + jS

αI + jS βI + j2S

)(

T ∗ 0
0 T ∗

)

with

S
∆
= T−1CT−1∗.(13)

Now

det

(

I + S αI + jS

αI + jS βI + j2S

)

= det
[

(I + S)
(

βI + j2S
)

− (αI + jS)
2
]

(where we have used the fact that (I + S) and (αI + jS) commute)

= det
((

β − α2
)

I +
(

β − 2jα + j2
)

S
)

,(14)

which ends the proof.
If β = α2, then we have

detF (A,C) = detAdet
[

(α− j)
2
C
]

and therefore

detB > detA ⇒ detF (B,C) > detF (A,C) (C � 0).(15)

If β 6= α2, then the previous implication does not hold and the MDP property is
not valid.
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3.0.3. Problem 2. Another important problem arises when we try to extend
the previous calculations to more than two matrices, i.e., to calculate the following
structured determinant:

det

(

A + C1 + C2 A + jC1 + kC2

A + jC1 + kC2 A + j2C1 + k2C2

)

.(16)

The previous simple results (Proposition 3.1 or 3.2) cannot be extended to this
structure. It seems impossible to obtain a simple expression of this determinant even
when using more sophisticated algebra [20]. This constitutes a major problem. A last
example considers a very special addition law where the dimension of the matrices is
increasing. As previously noted, this special structure may be justified by statistical
considerations [6, 7, 8] associated with multileg scenarios.

3.1. Multileg scenarios. Considering this type of scenario leads to increasing
the dimensionality of the state vector and thus to considering the following elementary
structure of the matrix F :

F(A,C) =

(

A 0
0 0

)

+

(

C iC

iC i2C

)

,

A ∈ P+
n , C ∈ P+

n , i ∈ N.

We then obtain the following result.
Proposition 3.3.

detF(A,C) = (i)
2n

detAdetC.

Proof.

det (F(A,C)) = det
[

i2C − i2C(A + C)
−1

C
]

det(A + C)

= i2n(detC)
2
det

[

C−1(A + C) − I
]

= i2n detC detA.(17)

In view of Proposition 3.3, the following property holds:

detB > detA ⇒ detF(B,C) > detF(A,C).(18)

4. Conclusion. Applicability of the principle of optimality to matrix cost func-
tionals requires that the MDP property be satisfied. A simple definition of this prop-
erty has been given, and we have determined the functionals that have it. Since the
det functional does not satisfy the MDP property, various special structures have been
considered.

5. Appendix. The aim of this appendix is to provide a very succinct presenta-
tion of the calculation of the FIM matrices in the TMA context. For more details,
we refer to [8, 12]. First consider a rectilinear and uniform motion of the source. The
source, located at the coordinates (rxs, rys), moves with a constant velocity vector
v (vxs, vys) and is thus defined to have the state vector

Xs
∆
= [rxs, rys, vxs, vys]

∗
.(19)
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The receiver state is similarly defined as

Xrec
∆
= [rx rec, ry rec, vx rec, vy rec]

∗

so that, in terms of the relative state vector X defined by

X = Xs − Xrec
∆
= [rx, ry, vx, vy]

∗
,

the discrete time equation of the system (i.e., the equation of the relative motion)
takes the following form:

Xk+1 = FXk + Uk,

where

F = Φ (k, k + 1) =

(

Id αId

0 Id

)

, Id
∆
=

(

1 0
0 1

)

,

and

α
∆
= tk+1 − tk = cst .(20)

The measurement noise wk is usually modelled by an independently and identically
distributed (i.i.d.) zero-mean, Gaussian process.

The partial derivative matrix of the bearing vector Θ(X) with respect to the state
components is easily calculated [12] yielding

∂Θ(X)

∂X
=







cos θ1
r1

− sin θ1
r1

cos θ1
r1

− sin θ1
r1

...
cos θn
rn

− sin θn
rn

n cos θ1
rn

−n sin θn
rn






,

where {θi} represents the source bearing (angle) at the instant i, and {ri} is the
source-receiver distance.

Consider the case of a nonmaneuvering source (constant-velocity vector); then
the calculation of the FIM is a routine exercise yielding [12]

FIM =

(

∂Θ(X)

∂X

)∗

Σ−1

(

∂Θ(X)

∂X

)

(21)

∆
=

(
∑n

i=1 Ωi

∑n

i=1 iΩi
∑n

i=1 iΩi

∑n

i=1 i
2Ωi

)

.

A realistic assumption consists of modelling the source trajectory by a sequence of
elementary rectilinear uniform motions (named “legs”). The previous calculation of
the FIM may be extended to this modelling, and the FIM then takes the following
form [7, 6] (l legs):

FIM =

l
∑

m=1

mj
∑

k=(m−1)+j

[dm−1,l+1(k)dm−1,l+1(k)
∗
] ⊗ Ωk,

where d is a vector describing the index leg, consisting of 0 and 1, and Ωk is a 2 × 2
elementary FIM.
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thesis, université de Rennes I, Rennes, France, 1995.

[8] J. P. Le Cadre and C. Jauffret, Discrete-time observability and estimability analysis for

bearings-only target motion analysis, IEEE Trans. Aerospace Electron. Systems, 33 (1997),
pp. 178–201.

[9] D. Ucinski, J. Korbicz, and M. Zaremba, On optimization of sensor motions in parameter

identification of two-dimensional distributed systems, in Proc. European Control Confer-
ence 93, Grenoble, France, 1993, pp. 1359–1364.

[10] P. T. Liu, An optimum approach in target tracking with bearing measurements, J. Optim.
Theory Appl., 56 (1988), pp. 205–214.

[11] S. E. Hammel and V. J. Aidala, Observability requirements for three-dimensional tracking via

angle measurements, IEEE Trans. Aerospace Electron. Systems, 21 (1985), pp. 200–207.
[12] S. C. Nardone, A. G. Lindgren, and K. F. Gong, Fundamental properties and performance

of conventional bearings-only target motion analysis, IEEE Trans. Automat. Control, 29
(1984), pp. 775–787.

[13] D. S. G. Pollock, Tensor products and matrix differential calculus, Linear Algebra Appl., 67
(1985), pp. 169–193.

[14] W. H. Greub, Linear Algebra, 4th ed., Springer-Verlag, New York, 1976.
[15] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, London, 1985.
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