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Abstract:

We present a statistical method to detect regions whose apparent motion in the image is not

conforming to the dominant motion of the background resulting from the camera movement.

Alternatively, the same scheme can be used to track a particular region of interest of the scene.

The apparent motion induced by the camera motion is represented by a 2D parametric motion

model, and compensated for using the values of the motion model parameters estimated by a

multiresolution robust statistical technique. Then, regions whose motion cannot be described

by this global model estimated over the entire image, are extracted. The detection of these non

conforming regions is achieved through a statistical regularization approach based on multiscale

Markov random �eld (MRF) models. We have paid a particular attention to the de�nition of

the energy function involved and to the observations taken into account. To gain robustness,

information is integrated over time. This method has been validated by experiments carried

out on many real image sequences.
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1 Introduction

The design of e�cient image compression techniques is essential to the developement of the

future video sequence transmission networks, especially when very low bit rate compression is

required [17]. Image sequence coding using motion compensation is a common tool to extract

and subsequently remove the huge temporal correlation (and thus redundancy) that exists in

image sequences. For instance, in the well known block-matching algorithms, a constant dis-

placement model is estimated from frame to frame within each block of an image partitionning.

However, despite many improvements, like for instance the use of an adaptative tiling, or the

use of hierarchical motion models [20], the visual quality of the reconstructed images provided

by these algorithms rapidly decreases at the receiver whenever the available bit rate becomes

very low or the motion becomes complex. Nevertheless, in numerous applications like in re-

mote surveillance video systems, all parts of the processed images are not of equal importance.

Thus, a spatially constant reconstruction quality level is not required. This is due either to the

speci�city of the task de�nition, or to psychovisual considerations [10].

In this contex, motion segmentation can play two important roles. First, it can be used to

analyse the dynamic content of the scene and to extract the di�erent regions visually important

for the task at hand. The choice of motion as a cue for image segmentation allows us to

restrain the number of extracted regions, as opposed to an approach based on spatial image

segmentation. Secondly, motion segmentation naturally leads to motion compensation, since

it usually involves the estimation of motion models, and is therefore appropriate for coding

purposes. The block e�ect observed with the more traditional schemes is much reduced with

such a region-based approach.

In this paper, we will concentrate on the special case of binary segmentation, that is, the

partitionning of the image into regions whose motion is, or is not, well compensated for using

a globally estimated motion model. When the estimated motion represents the background

apparent motion, it corresponds to the detection and location of independently moving objects

when the camera is moving also. This is a basic task that can be useful as an initial step in

many applications, like in [24]. Alternatively, when the estimated motion model represents the

motion of a given region of interest (ROI), our algorithm behaves like a tracking method. In

both cases, it achieves the goal of focusing on region(s) of interest of the scene, where most of

the allowed bit rate should be allocated, [19]. Indeed, either the background or the ROI can

be registered using the estimated motion model, which saves bit rate.

In the case of a static camera, di�erent e�cient solutions for the detection of moving objects

have been developed ([1, 5, 6, 16]). For instance, in [1, 6], statistical tests, as well as a regular-

ization step based on Markov Random Field models, are used. However, in all the works cited

above, the solution is devoted to the rather simple situation of a static camera. It may even

be reduced to intensity temporal change detection, like in [1]. Therefore, they cannot be used
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when we are dealing with a truly mobile camera. In the latter case, every pixel may undergo

apparent motion, and the resulting apparent motion �eld -the optical �ow- can be complex.

Then, detection of moving objects requires that we are able to make the distinction between

apparent motion that is only due to the movement of the camera, and apparent motion that

arises from the relative movement of an independently moving object. Among the studies that

have concentrated on the detection of moving objects in the scene with a moving observer, we

can �nd two broad classes of solutions.

The �rst one uses (a priori or sometimes estimated) information on the 3D camera motion,

in order to derive constraints on the 2D image �ow �eld of the projection of static objects,

induced by the movement of the camera [18, 25, 26]. Regions where these constraints are

violated are then identi�ed as projections of moving objects. In [18], Nelson demonstrates a

direct qualitative method running in real time and based on the motion epipolar constraint.

Thompson and Pong [26] use a wider variety of principles, that can be applied in the case of a

general motion, but leave open how they can be used in practice. In [25], a robust estimator is

used to detect deviation from rigid motion associated to the camera movement. One drawback

of these methods is that they are usually e�cient when the 2D image displacements due to

camera and motions of objects are important, which is for instance not the case around the

focus of expansion, or when camera motion is small. Some of the techniques described in [26]

work only if the camera is moving, requiring an additional �rst step for the determination of

camera state. Besides, most of these methods do not deliver a partition (segmentation) of the

images, but a pixel-based sparse decision map. Sparse motion estimates (based on token) used

in [26, 25] are not appropriate for motion compensation too. These methods, usually requiring

3D motion parameter estimation that are not straightforwardly available, are therefore not

quite adapted in most of the coding applications of interest.

In contrast, the second class of methods can be applied to the coding application we consider.

In these methods, one of the following assumptions usually holds. Either the camera is only

rotating, or the depth variation in the scene is small compared to the distance between camera

and objects, or the visible surfaces of the static world are approximately located in the same 3D

plane. In these cases, we can assume that the 2D apparent motion (due to camera motion) of

the static background can be modeled by a 2D parametric motion model and can be considered

as the dominant motion. Such a motion model is estimated from frame to frame, and then

used in a warping procedure to compute a compensated sequence in which the background is

supposed to appear as static. Thus, non-static regions in this sequence can be considered as

moving objects. If the assumptions are not ful�lled, they may also comprise objects located

at a signi�cantly di�erent depth compared to the background. Projections of moving objects

can then be obtained by simply thresholding some local error or statistical function at each

pixel [27], which usually leads to noisy detection maps for most real sequences. In [13], the
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average of a few successive images registered (or compensated for) using the computed dominant

motion is used as a reference map. However, this �integration step� assumes that the regions,

whose motion corresponds to the computed dominant motion, are perfectly registered over the

integration duration. If not, this temporal integration blurs the reference map. Furthermore,

the subsequent motion estimations which use the reference map as �rst image, can be greatly

a�ected. Interestingly, however, this method can be applied for the tracking of the objects

themselves. Once an object is detected, the warping is applied using the estimated object

motion model. This time, the static part in the compensated sequence corresponds to the

object projection whereas the moving areas reveal the background as well as other moving

objects.

In this paper, we propose a motion detection algorithm belonging to the second class. It can

tolerate very noisy data as well as imprecise registration (since the 2D motion model used is

only an approximation of the dominant motion). This algorithm uses interframe observations

rather than observations related to a reference frame, since the maintenance of such a frame is

usually a di�cult task. To avoid false alarms, due for instance to acquisition noise, or to local

unexpected intensity variations, and to increase the detection rate in low-contrasted regions,

the algorithm relies on a spatio-temporal statistical regularization approach based on multiscale

MRF models.

Section 2 introduces the 2D motion models which are considered, and brie�y describes the

robust multiresolution method used for the estimation of these models. In Section 3, forming

the main part of this paper, we describe the original method developed for the detection -or

tracking- of the moving objects in the image sequence. Section 4 deals with some important

computational issues. Several results that validate our approach are reported in Section 5, and

Section 6 contains concluding remarks.

2 Motion model and motion estimation

To detect moving objects between two images, we have �rst to estimate a motion model that

describes the image motion of the background, i.e. the apparent motion due to camera move-

ment. Since at the beginning of the sequence we have no information about the location of

the moving objects, the estimation process will involve data taken over the whole image, and

then must be robust to the presence of moving objects. Moreover, in order to consider the

dominant motion model resulting from this estimation step as being the 2D motion due to

camera movement, we must assume that the projections of the static components of the scene

occupy the main part of the image (with the additional condition that they supply su�cient

image spatial gradient information).
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2.1 The parametric motion model

Usually, the choice of a motion model depends on considerations related to the kind of 3D

motion undergone by the camera and objects, the type of transformation su�cient to account

for the projection of the scene into the image plane, and the analytic description of the viewed

surfaces. For instance, if the depth variation over the background is small with respect to the

distance to the camera, then a planar surface constitutes a good approximation.

A �rst approach would be to use a full 3D model (3D motion and depth) in the analysis process.

However, this leads to solve the general -but highly complex- problem of 3D reconstruction in

the presence of moving objects. Let us note that such an attempt is described in [2], involving

a global 2D motion model and additional local depth parameters without any prior camera

calibration.

We prefer to use 2D parametric motion models ~w� to represent the projection of the 3D

motion �eld of the static background, where ~w� denotes the modeled velocity vector �eld and �

the set of model parameters. Such models are globally valid when either the camera translation

magnitude is small with respect to the depth of the objects, or when there is not too much

depth variation in the scene. Though less general than the full 3D case, the choice of 2D models

leads to an e�cient motion computation. In all the experiments we have carried out so far,

the 2D a�ne motion model proved to be a good compromise between its relevance as a motion

descriptor and the e�ciency of its estimation. It is de�ned at pixel p = (x; y) by:

~w�(p) =

0
@ a1 + a2x+ a3y

a4 + a5x+ a6y

1
A (1)

where � = (ai); i = 1::6, is the parameter vector to be estimated. However, when the back-

ground is approximately located in a plane whose slant is important, a particular quadratic

motion model should be used [14, 15].

2.2 Motion estimation

To estimate the dominant motion model between two successive frames It and It+1, we have

developed a gradient-based multiresolution robust estimation method described in [22]. To

ensure the goal of robustness, we minimize an M-estimator criterion with a hard-redescending

function [12]. The constraint is given by the usual assumption of brightness constancy of a

projected surface element over its 2D trajectory [11]. As in the considered experiments, the

displacements between two frames can be very large, we use a discrete formulation of this

constraint. Thus, the estimated parameter vector is de�ned as:

b� = argmin
�

E(�) = argmin
�

X
p2R(t)

� (DFD�(p)) (2)
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with DFD�(p) = It+1(p + ~w�(p))� It(p) . (3)

�(x) is a function which is bounded for high values of x (more precisely, we use Tukey's biweight

function). If we want to detect moving objects, the estimation support R(t) consists of the

whole image. However, in the case when we are tracking a region of interest, the support R(t)

is formed by the area corresponding to the prediction of the ROI location at time t, given the

ROI location at time t � 1 and the estimated motion model at time t � 1. The minimization

takes advantage of a multiresolution framework and an incremental scheme based on the Gauss-

Newton method.

More precisely, at each incremental step k (at a given resolution level, or from a resolution

level to a �ner one), we have: � = b�k +��k. Then, a linearization of DFD�(p) around b�k is

performed, leading to a residual quantity r��k
(p) linear with respect to ��k:

r��k
(p) = ~rIt(p + ~wb�k

(p)): ~w��k
(p) + It+1(p + ~wb�k

(p))� It(p) (4)

where ~rIt(p) denotes the spatial gradient of the intensity function at location p and at time

t. Finally, we substitute for the minimization of E(�k) the minimization of an approximate

expression Ea, which is given by Ea(��k) =
P
�(r��k

(p)). This error function is minimized

using an Iterative-Reweighted-Least-Squares procedure, with 0 as an initial value for ��k. For

more details about the method and its performances, the reader is referred to [22].

This estimation algorithm allows us to get a robust and accurate estimation of the dominant

motion model (i.e., background apparent motion) between two images, which is of key interest

for the subsequent steps. Nevertheless, as it will be shown in the next section, due to the fact

that the motion model is only an approximation of the true motion, the outliers areas issued

from this robust estimation process using a simple thresholding step, cannot correctly account

for areas corresponding to moving objects. Too many false alarms and missing detections are

obtained.

3 Motion detection algorithm

3.1 Outline of the approach

Once we have estimated the dominant motion model b�t between images at t and t + 1, the

problem that arises can be stated as follows: �nd the set of all image points p whose true 2D

motion vector ~wtrue(p) does not conform to the modeled �ow vector ~wb�t
(p). As explained in

the introductory section, this set may include more elements than the projections of the moving

objects depending on the kind of motion model used with respect to the scene content and to

the camera movement. Therefore, instead of calling these points �mobile�, which is a scene-
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related term, we will call them �non-conforming� points or �not compensated� point, which is

more appropriate to our 2D image motion representation.

The question is now how to de�ne a non-conforming point. One simple but meaningful

method consists in performing some thresholding on the motion estimation error:8<
:

if k~werr(p)k > � then p is stated as a non-conforming point

with ~werr(p) = ~wtrue(p)� ~wb�t
(p)

(5)

However, we would like to avoid the estimation of the 2D dense motion �eld, which is a com-

plex and error-prone problem. An attractive alternative way is to rely only on locally measured

quantities that supply valuable information accounting for the motion compensation accuracy

obtained using the estimated motion model. However, as such local measurements can be too

noisy or insu�cient to reach a correct decision, leading to false alarms or reducing the detection

rate, we state the detection problem as a labeling problem, and perform a statistical regular-

ization. Moreover, thanks to this regularization scheme, information on motion compensation

errors at reliable points (e.g., corners) will be propagated to points where ambiguities might ex-

ist (e.g., straight edge line) or points with no information (uniform areas), as will be explained

below.

In the next subsection, we de�ne the local measurements or observations we use. We describe

the statistical regularisation framework and the related energy function designed for performing

motion detection. Two versions will be presented: in subsection 3.3 a two-frame method and

in subsection 3.4, a method exploiting several successive images.

3.2 Choice of the local measurements

One simple usual way to evaluate the adequacy of the estimated dominant motion model

consists in warping one image to the other using this model. More precisely, let us de�ne ~It

and ~It+1 as follows:
~It(p) = It(p) and ~It+1(p) = It+1(p + ~wb�t

(p))

Values of It+1(p+ ~wb�t
(p)) are obtained through a bilinear interpolation since p+ ~wb�t

(p) usually

does not fall on the image grid. Thus, the motion �eld between images ~It and ~It+1 is exactly

~werr. If we assimilate the temporal derivative @ ~I
@t

with the �nite di�erence ~It+1 � ~It, the well-

known brightness constraint equation [11] gives us:

FDt(p) = ~It+1(p)� ~It(p) ' �~r~It(p): ~werr(p) (6)

Let us point out why the frame di�erence FDt is in fact not an appropriate local measurement

for motion detection. An adequate measure should be de�ned in such a way as being high in

non-conforming regions and low in well compensated ones, with a rather continuous behaviour

in-between. It is easy to realize, when considering relation (6), that using the frame di�erence:
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1. the response is low in uniform intensity areas, whatever the type of region it is;

2. the measure is generally large1 along highly contrasted edges, whenever there exists even

a small compensation error;

This indicates that the response of this measure is mainly driven by the spatial intensity

gradient rather than by the presence of small or large residual motion.

It is therefore necessary to consider another local measurement more directly related to the

underlying motion compensation error. In that vein, let us consider the normal �ow of the

residual error displacement at a given point p:

vn(p) =
FDt(p)

k~r~It(p)k
(7)

Two main shortcomings remain with this local measure. First, it is still unreliable in uniform

regions. Secondly, if the residual displacement ~werr(p) is perpendicular to the spatial intensity

gradient direction, then, this measure is equal to zero (aperture problem), even though there is

a motion. However, these two di�culties can be alleviated as explained hereafter.

In [4], it is shown through the analysis of the results of di�erent kinds of optic �ow estimation

algorithms, that k~r~I(p)k is indeed a proper measure of the reliability of the estimation of the

normal �ow vn. Thus, instead of performing a simple local averaging of the normal �ow, we

use the following weighted averaging, which is also proposed in [14]:

Mesb�t
(p) =

P
q2F(p)

�
k~r~I(q)k2 � vn(q)

�
Max(

P
q2F(p) k~r~I(q)k2; n�G2

m)

=

P
q2F(p)

�
k~r~I(q)k � jFDt(q)j

�

Max(
P

q2F(p) k~r~I(q)k2; n�G2
m)

(8)

where F(p) is a small neighborhood (typically 3 � 3) around p which contains n points, and

Gm is a constant which accounts for noise in the uniform areas. An interesting property of this

local measure is the following. Let us suppose that the pixel p and its neighborhood undergoes

the same displacement of magnitude � and direction ~u. By studying how the measure varies

with respect to the direction ~u, we can derive two bounds l(p) and L(p) such that, whatever

the direction ~u might be, the following inequality holds:

0 � l(p) � Mesb�t
(p) � L(p) (9)

1Another problem arises around highly contrasted edges, though less important. Even if the residual motion

~werr(p) is null, interpolation errors might give rise to a strong FDt value, wrongly indicating the presence of a

non-conforming point.
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In [15], we have determined two pairs of bounds. Assuming that the brightness constraint

equation (6) is valid2, the �rst one is given by:

8<
:

L(p) = �

l(p) = � � � � �0min

with � =

P
q2F(p) k~r~I(q)k2

Max(n �G2
m;
P

q2F(p) k~r~I(q)k2)
and �0min =

�min

�max + �min

(10)

where �min and �max are respectively the smallest and highest eigenvalues of the following

matrix (with r~I(q) = (~Ix(q); ~Iy(q)):

M =

0
BB@

P
q2F(p)

~Ix(q)
2 P

q2F(p)
~Ix(q)~Iy(q)

P
q2F(p)

~Ix(q)~Iy(q)
P

q2F(p)
~Iy(q)

2

1
CCA (11)

To obtain tighter bounds (especially for the upper bound), we have modeled the local iso-

intensity contour passing through the pixel p as the union of two segments joining at p3. Using

this model, we have been able to obtain a second set of bounds that are actually reached for

speci�c values of the displacement direction ~u:

8>><
>>:

l(p) = ��
q
�0min(1� �0min)

L(p) = �
q
1� �0min

(12)

In [15], experiments have been carried out with simulated displacements between two images.

They show that the inequality (9) is indeed well veri�ed using the second set of bounds, and

rather immune to a large amount of noise by setting Gm to a su�ciently high value. We will

use this set of bounds in the experiment.

Let us note that l and L depend on the local distribution of the directions of the local

spatial intensity gradients, which re�ects the local intensity structure in the image and allow

us to take into account the aperture problem. If a linear iso-intensity contour is sliding along

itself, the measure (8) will be nearly zero, though there is really motion. However, in that case,

the bound l is also equal to zero. We can conclude that a low measurement value will indicate

a conforming site with no doubt only if it is lower than the bound l.

If we want to detect residual motion ~werr of magnitude greater than a preset value �,

the local measurements given by (8) can be classi�ed in three classes (see Fig 1). First, an

observation lower than l(p) proves with certitude that the underlying residual displacement

magnitude k~werrk is lower than �. Second, when the local observation is greater than L,

2In order relation (6) to be valid for the given displacement �, the image intensity must be su�ciently smooth.

If we use a Gaussian �lter of variance �2 for instance, � must depend on the actual (preset) value �.
3Note that, because of the de�nition of the measure in terms of normal �ow, what matters is only the local

distribution of the directions of the local spatial intensity gradient. Our model assumes that this distribution

has locally two main modes (which can be identical).
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we can infer that the residual displacement magnitude is greater than �. Finally, when the

observation value falls between the two bounds, it is not possible to conclude. In such a case,

we would like to use some spatial and temporal context to correctly classify the corresponding

pixel. This can be done using the statistical regularization scheme that we now describe.

3.3 Two-frame statistical detection scheme

Let S denote the set of sites s (here, pixels p) and C the set of cliques of two elements associated

to a second-order neighbourhood system �. In this section, we shall write any quantity related

to site s with a subscript s. We formulate the motion detection issue as the estimation of

a binary label �eld (also called detection map) d = fds; s 2 Sg which is the most likely to

have produced the �eld of observations at time t, ot = fots; s 2 Sg. The two considered label

values are de�ned as �conforming� and �non-conforming�. The observations are composed of

the local measurements de�ned previously: ots = Mesb�t
(s). To solve this problem, we adopt

the Maximum A Posteriori (MAP) criterion, i.e., we maximize the a-posteriori distribution

of the labels given the observations. If we use Markov Random Field (MRF) to model the

sets of observed and hidden variables, and due to the equivalence between MRF and Gibbs

distribution (p(x) = 1
Z
e�U(x)), [9], this is equivalent to minimizing an energy function U(d; o),

which in turn can be written as the sum of the so-called local potential functions. We consider

an energy function of the form:

U(d; o) = U1(d) + U2(d; o
t) (13)

� U1 is the regularization term which accounts for the expected spatial properties (homogeneity)

of the label �eld. It is de�ned as the sum of local potentials:

U1(d) =
X

fs;ug2C

V1(ds; du) with (14)

V1(ds; du) =

8>><
>>:
��m if du = ds = �non-conforming�

0 if du = ds = �conforming�

�d if du 6= ds

(15)

�d is the cost to pay to get neighbours with di�erent labels. �m (0 < �m � �d) is a potential

value which favors the spatial grouping of �non-conforming� labeled points. We have introduced

the term �m in order to counter-balance the fact that in uniform areas, the observations (and

the second energy term U2) globally tend to favor the �conforming� label, as will be seen below.

Therefore, �m will help in ��lling� with the right label the -usually almost uniform- inside of

the non compensated regions.

� U2(d; o
t) is the data-driven energy term expressing the adequacy between observations and
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labels. We have chosen to construct this energy term as follows:

U2(d; o
t) =

X
s2S

V2(o
t
s; ds) (16)

This means that we make the potential V2 at a given site s only depend on the value of the

label ds and of the observation ots at this site. However, since o
t
s is computed using information

de�ned on the window F , it should also depend on the labels in this window. Also, observations

at neighbouring sites are likely to be slightly correlated. Nevertheless, as such a dependence

and correlation is hard to model in practice, we have retained the above formula for simplicity.

Since our goal is to detect points undergoing a residual motion greater than a prede�ned

value �, the role of the potential V2 is to convert in some way the inequalities (9) in an energy-

based formulation. This can be achieved by de�ning V2 as follows:

V2(ds; o
t
s) =

8>><
>>:

�c � F t
s � Als;kc(o

t
s) if ds = �conforming�

�nc � F t
s � (1� ALs;knc(o

t
s)) if ds = �non-conforming�

(17)

where:

� Atr;k(x) is a smoother version of a step edge, i.e., an increasing function from 0 to 1

such that the transition occurs at tr (we have Atr;k(tr) = 0:5). The smoothness of the

transition is controlled by k (we have
dAtr;k

dx (tr) = k). We have chosen the inverse tangent

function:

Atr;k(x) =
1

�
arctan(k�(x� tr)) + 0:5 : (18)

This function is preferable to a sigmoide, because it reaches the saturation levels (0 or 1)

less rapidly. Let us point out that, since the potential energy function V2is bounded, it

behaves similarly to a �robust estimator�. It avoids a strong erroneous observation to have

a su�cient in�uence to locally impose the wrong label even if all the neighbors disagree.

� �c and �nc are the maximal values that the potentials can take (�c ' �nc); kc and knc

regulate the transition around the bounds.

� F t
s = F (k~r~It(s)k) = max (AG;1(k~r~It(s)k);Atmax) is a damping factor. As already men-

tioned, a site with low image spatial gradient usually carries poor and unreliable informa-

tion about the presence of motion. By diminishing the values of the potential V2 for the

observations coming from uniform areas, we conversely increase the relative contribution

of the regularization term. For instance, if F t
s were 0, V2 would be zero whatever the

label is. Thus, the decision would be based only on the local context. To avoid such

an extreme case, the parameter Atmax �xes the maximal allowed damping factor. The

parameter G controls the separation between pixels supposed to carry information (i.e.

with k~rIt(s)k > G), and those which do not.
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Figure 2 illustrates the form of the potential V2, and highlights the role of the bounds ls and

Ls in two speci�c situations. In these plots, we can recognize the curve representing the potential

function V2 associated with the non-conforming label, because it exhibits low potential values

for high observations, and conversely. More precisely, as long as the observation is greater

than the upper bound Ls, the potential value is low since we are rather con�dent that the

residual velocity is larger than �. However, as ots becomes lower than Ls, the potential function

increases, indicating that the label might not be appropriate. For the curve representing the

potential function V2 associated with the conforming label, the behaviour is symmetrical and

involves the lower bound ls.

Fig. 2.a displays the potential function V2 for a site where the local distribution of the

directions of the spatial intensity gradients exhibits two strong modes corresponding to perpen-

dicular directions (for instance, if the site lies at a corner). In Fig. 2.b, there is only one single

mode (typically, the site s lies on a straight edge). In those plots, the uncertainty interval of

Fig. 1 qualitatively corresponds to the interval of observations values for which the gap be-

tween the potential values associated with the non-conforming label and the conforming one is

small, meaning that both labels could be convenient (or indi�erent !) to the given observation.

Thus, for observations falling in this interval, the regularization term, which brings contextual

information, will dominate and will strongly in�uence the choice of the label at that site. As

desired, this interval is bigger in the case of a linear structure since, as previously pointed out,

low observations do not then necessarily characterize the absence of motion.

3.4 Time-extended detection scheme

It is well known that the information that one can extract from two successive images can be

ambiguous, in the sense that they may �t several di�erent interpretations of the scene structure

and of the 3D motion. Those ambiguities can usually be removed by accumulating information

over time. This aspect can be incorporated in our scheme by merely adding supplementary

terms to the energy function de�ned in (13).

The role of the temporal aspect is twofold:

� �rst, it should ensure the coherence of the detection maps at successive instants;

� secondly, it should be used to �lter the extracted motion information, thus reducing

decision errors due to noisy measurements (acquisition noise, errors in computation of

the intensity gradients and of intensity interpolations, illumination variations,: : :).
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3.4.1 Using the past detection map

As the motion of objects in the scene is smooth, the projections of those objects in the image

plane at successive instants usually overlap4 each other. Therefore, it would be useful to exploit

this correlation, and use the previous detection maps in the labeling process at time t. A �rst

straightforward procedure is the following. For obvious computational reasons, the iterative

relaxation algorithm used to solve the minimization problem at hand is a deterministic one.

Then, it converges to a local minimum depending on the initialization. Since the detection

maps are supposed to vary smoothly, the map obtained at the preceding instant should be

relatively close to the optimal solution at time t, and can be used as the initial map in the

relaxation algorithm. However, more elaborate use of temporal integration can be considered.

In a second approach, the detection maps are considered as a temporal process. For instance,

recursive �ltering like Kalman algorithm [16] could be used. Alternatively, a subset of suc-

cessive detection maps could be considered as a whole as a spatio-temporal Markov random

�eld. However, in that case, the state space becomes huge. The minimiZation of the global

energy de�ned in such a space would be computationally expensive, even with a deterministic

algorithm, and can only be processed in a batch mode. We have chosen a simpler version of

this scheme. Detection maps are considered as a �rst order Markov chain, and the minimiza-

tion is performed over the current map only. This means that only the detection map at the

preceding instant is involved. In practice, it is merely considered as additional observations for

the labeling process at time t.

We therefore add a third energy term U3 to the energy function U given in (13). It plays a

conservative role, and is de�ned as follows:

U3(d
t; ~dt�1) =

X
s2S

V3(d
t
s;
~dt�1s ) with (19)

V3(d
t
s;
~dt�1s ) =

8<
:

0 if ~dt�1s = dts
+�dt if ~dt�1s 6= dts

(20)

where, to account for the estimated motion between frame It�1 and It, ~dt�1 is a transformed

version of dt�1 given by:
~dt�1 = regtt�1(d

t�1) (21)

where reg j
i (X) consists in transforming the map X at time i into a map at time j by combining

the motion models estimated from frame to frame between i and j.

4Assuming that the image temporal sampling is small enough with respect to the image motion and object

size.
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3.4.2 Filtering motion information over time

Increasing too much the relative contribution of the term U3 in the global energy U in order

to impose a stronger temporal constraint may result in undesirable behaviours. For instance,

in large uniform areas, a �chain reaction� can occur, that is, a given label is imposed and

transmitted from frame to frame despite the incoming of contradictory observations. One

way to overcome this problem consists in combining the bene�ts of a �reasonable� temporal

regularization term U3 with the use of past local motion measurements, the latter allowing

us to introduce a temporal smoothness in a more �exible manner. The direct �ltering of the

observations is not a good approach in our case, since we have no model for the time evolution

of this observation. Moreover, the analysis of subsection (3.2) resulting in the inequalities (9)

would not be valid anymore. We prefer to consider independently each observation with its

associated bounds. This leads to the following re�nement and improvement of the energy term

U2.

Let us denote ot�q the observation �eld between image t�q and t�q+1, and ~ot�q = regtt�q(o
t�q)

the motion-oriented projected version using the motion models estimated within the interval

[t � q; t]. Assuming that these temporal observations are independent, we can derive the ex-

pression of the energy term U 0
2 that we actually use instead of U2 :

U 0
2(d

t; ~ot�q; q 2 f0; : : : ; Tg) = 1� 


1� 
T+1

TX
q=0


q U2(d
t; ~ot�q) (22)

where 
 2 [0; 1[ is a damping factor, which expresses that, further in the past an observation

is, the less relevant to the determination of the detection map at time t it is. If 
 = 0, only

the current observation �eld is taken into account ; if 
 is close to 1, the T past observation

�elds are considered almost equivalently. From a computational point of view, it is important

to note that the determination of U 0
2 can be obtained in a recursive manner. In fact, only one

registration step (from t � 1 to t) is performed, and it is applied not to the observation �eld,

but to a smoothed potential map derived from the function V2 at the di�erent instants.

4 Computational issues

4.1 Minimization algorithm

The global minimization of the energy function is performed using the multiscale MRFmodeling

approach described in [23]. First, it allows us to derive in a consistent mathematical way the

expression of the energy function, parameters included, at every scale given the one at the �nest

scale, the observations being only considered at the same original resolution. Then, it consists

in starting the minimization process at the lowest scale L, where the solution is constrained
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to be constant within blocks of size 2L � 2L. At this scale, the very initial detection map is

obtained by maximizing the conditional likelihood, i.e. by locally minimizing the energy term

U 0
2. Then, the Highest Con�dence First [8] minimization procedure is used to compute the

solution at that scale.

Minimization is performed from scale to scale, using the projection onto scale l � 1 of the

detection map obtained at coarser scale l as an initial solution, until the �nest scale is reached.

At each scale l, the solution is constrained to be constant within blocks of size 2l � 2l. Thus,

at the �nest scale, i.e. l = 0, the �blocks� are of pixel size, meaning that there is no more

constraint on the solution. As illustrated in the experimental results, this minimization scheme

quite improves the results. Especially, it reinforces in some way the homogeneity constraint

without having to overweight the corresponding energy term U1. In [23], it is shown that

the multiscale approach gives results very similar to the stochastic relaxation, but is far much

faster. Indeed, the minimization itself is very fast: around 0:4s on a SPARC-10 workstation

for a 256 � 256 image. In comparison, the whole algorithm has a computational cost of 6 to

7 seconds for the same images. Approximately 2 seconds are spent in the image and gradient

pyramid building (for the motion estimation process), and 1:6 second in computation of the

observations, the bound and the potential V2. These processing could be greatly reduced with

specialized hardware, since they are local and uniform.

4.2 Parameter setting

Parameter setting is an important issue in any computer vision technique. Results should

not exhibit a high sensitivity to the choice of parameter values. For a given application, it is

usually possible and preferable to realize a learning step to appropriately set the parameter

values, either empirically, or stated as an estimation problem [7]. However, an a priori analysis

of the in�uence of the parameters should allow us to derive adequate values, prior to any

experimentation. We recall below the main properties of the parameters we have introduced.

1. Gm: This parameter depends mainly on the noise level in the image sequence that can

a�ect the computation of the observations in low intensity gradient areas. Thus, a too

low value for this parameter increases the false-alarm rate in a noisy sequence, which

may be very critical. In contrast, too high values for Gm only tend to diminish motion

information in -unnoisy- regions of medium intensity gradient, which is not critical since

high intensity contrast areas usually provide enough information. Values for Gm range

from 3 for nearly noise-free images (e.g., corresponding to TV broadcast image quality)

to 8 for images with a low signal-to-noise ratio.

2. �c; �nc; kc; knc; G;Atmax; T; 
: The parameters that model the shape of the energy function

are de�ned once and kept unchanged (�c = 200; �nc = 206; kc = knc = 4). The parameter
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G concerns the de�nition of the damping factor F t
s introduced to reduce the strong bias

in favor of the conforming label encountered in large uniform areas. More precisely, for a

pixel s located in such an area, we usually have ots ' lts ' 0. Thus, as seen from Fig. 2.b,

the potential value U2 associated with the label �conforming� or �compensated� is lower

than the energy value associated with the label �non-conforming� or �not compensated�

by an amount of �0 = F t
s � �c=2. Let us point out that, usually, the large uniform areas

mainly belong to the static background (sky, road, walls, : : :). If the label �compensated�

is the one associated with this background (this is the case when we want to detect moving

objects), then the bias will help the labeling process, and G can be set to a small value

(0 to 1), depending on the image noise level. However, when we track a particular region

of the image, the estimated motion represents the region motion, and the background is

therefore associated with the label �non-compensated�. Then, the bias wrongfully favors

the label �compensated� in uniform areas. To alleviate this di�culty, we can set G to

a higher value (2 for instance), which leads to a smaller value for �0, and therefore a

smaller bias, in the uniform areas.

Atmax is determined in such a way that, in the absence of any spatial regularization,

the labeling decision can always override (with an appropriate observation) the label

selection induced by the energy term U3 taken alone. A necessary and su�cient condition

is: Atmax � 2�dt
�c

.

T and 
 rule the temporal integration of the observations. In our recursive implementation

of the energy computation, only the value of 2 (rarely used in practice) and 1 can be

given to T . 
 (as well as �dt) is related to the temporal change rate of the image content,

tied to the temporal sampling and to objects size and motion. Increasing 
 gives more

weight to the past. A value of 0:5 for 
 means that all the past observation is given the

same weight than the current observations. Thus, a high value (above 0:5) of 
 can be

used only if the overlapping between regions of same labels at two successive instants is

always expected to be high.

3. �m; �d; �dt; L: We usually take �dt = �d. Values of �m and �d parameterize the a priori

homogeneity of the detection map, and depend on the expected minimum size of the

moving objects. The multiscale minimization scheme reinforces this a priori. Thus, if

objects to be detected are really small, the regularization term �d should be low, and

we use a small number of scales. The method of so-called qualitative boxes [3] has been

used to delimit appropriate sets of values for �m and �d, [15]. More precisely, a set of

meaningful and relevant local con�gurations of observations and labels are chosen at and

around a given site. A qualitative behaviour is conveyed (o�-line) to the Markov �eld by

promoting the desirable label at this site for each considered con�guration. We express

for each con�guration that the probability to select a given label rather than the other one
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should be greater than a preset value. This is derived through the local evaluation of the

energy function for the di�erent considered situations. This results in a set of inequalities,

linear with respect to the parameters, that restricts the set of admissible values for the

regularization parameters to a �box�.

Finally, let us note that � is obviously the main parameter. In fact, it is not di�cult to

set it, since it de�nes the threshold under which residual motion (after compensation) will be

considered as not signi�cant. It is typically an application-driven parameter which can be set

according to the needs and requirements. Its meaning is explicitely taken into account by our

method, in the de�nition of U 0
2. It allows us to adapt the algorithm to di�erent situations, as

demonstrated by the results.

5 Experimental results

The algorithm has been successfully tested on many di�erent sequences. Here, we report

two examples that illustrate its behaviour in two di�erent situations. Parameter values used

in the di�erent experiments are given in Table 1. The motion model is the a�ne one in

each case. The examples shown below have also been processed with the two-frame detection

scheme, but using (and building) a reference frame as described in [14]. Results were always less

accurate. Sometimes, no coherent results could be obtained (as in the second example). Indeed,

if registration between images is not perfect over the temporal integration (3 to 4 images), even

the conforming regions in the reference frame will be blurred. Since in the scheme described

in [14], the motion is estimated between the current reference image and the next image, the

blurring will greatly impair the motion estimation. Therefore, the loop composed of the motion

estimation and the updating of the reference frame is unstable.

On the contrary, our algorithm only requires that the registration, between two images only,

is more precise than the expected motion magnitude that we want to detect. Thus, with our

scheme, we can tolerate large registration errors as far as the moving objects are moving more

rapidly.

5.1 First example: the �interview� sequence

Figure 3a shows the �rst image of the Interview sequence (by courtesy of the BBC), which is

often used to evaluate image coding algorithms. We have considered a spatially subsampled

(by 2) version. Images are of quite good quality. In this sequence, the camera is tracking the

woman who is standing up on the right of the scene, and whose left hand is initially hidden by

a bouquet. Besides, casted shadows of this woman are moving over the sofa.

The time-extended version of the algorithm is utilized, the same holds for the next example
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reported below. Figure 3b shows the 43th image of this sequence, compensated for by the 2D

motion models robustly estimated from frame to frame. As can be seen, the image is quite well

registered. Figure 3c-f contains the detection maps obtained with the time extended version of

the algorithm at di�erent instants. In particular, note that the bouquet is well delimited, and

that the non-conforming region comprises the whole woman (except at the beginning, where

the legs are still -almost- static).

5.2 Second example: the �roundabout� sequence

Figures 4a-b-c present three images from a real sequence (digitized at 5 frames per second).

The camera is mounted on the left side of a car approaching a roundabout. The dominant

motion in the image sequence is due to the camera movement. It is conveyed by the scene

background, that is, mainly the areas comprising the houses. Hence, regions corresponding

to moving objects in the scene, the car, and to static entities in the near foreground due to

signi�cant di�erence in depth, the marks on the road and the sign, are expected to be detected

as �non-conforming�. These two classes of objects could be further discriminated, but this

is beyond the scope of this paper. Let us point out that this sequence is really very noisy.

Moreover, the low sampling rate and the high frequency content of the image projections of the

tiles produced temporal aliasing, leading to an apparent motion in the roof area (this occured

at some other places too).

Figures 4d-e-f contain the corresponding detection label �elds bd , where �conforming� regions

are in black, and the original intensity information has been kept inside the regions labeled

as �non-conforming�. Let us note that �non-conforming� regions are quite correctly segmented,

and that there is no spurious detection within the �conforming� parts. On the other hand,

Fig. 5b proves that simply thresholding the observations gives a very noisy detection map. We

can observe a large amount of false alarms, and masks of moving regions are quite partially

recovered. However, the result is better than when thresholding the displaced frame di�erence

(Fig. 5a).

Fig. 5c and 5d both report the detection map obtained at time t62 using only observations

between two frames (T = 1) and without considering the energy term U3. Fig. 5d is still

obtained using the multiscale minimization procedure, while Fig. 5c is derived using a single

scale scheme. The multiscale algorithm obviously outperforms the other one. It can also be

pointed out that, although the two-frame detection scheme gives good results in that case,

the use of past observations helps in recovering the complete masks of the car and of the sign

(compare Fig. 4e and Fig. 5d). This was even more obvious in other parts of the sequence, as

well as in other sequences.
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6 Conclusion

We have described an algorithm which can be used both to detect parts of the scene whose

apparent motion is not conforming to the dominant background one in a sequence acquired

with a moving camera, and to track a region of interest. Obviously, it can also be used in

the case of a static camera, which is not the case of some schemes devoted to a moving sensor

situation [26].

Our algorithm decouples the detection problem in two natural components. First, the identi�ca-

tion of some global parameters (the motion model), regardless of the presence of non-consistent

data. This is reached due to the robustness property of the estimator we have designed. In

fact, since the model is global, we don't need all the data in the support region to be valid

points in order to estimate it. Thus, we don't mind if there are outliers, and which they are.

Second, the localization of regions whose motion is not compensated for by the estimated global

motion model in the �rst step. This second step uses only local motion measurements instead

of intensity change measurements, and is embedded in a multiscale MRF framework to avoid

false alarms and to increase the detection rate. A key feature is that the aperture problem

is explicitly and directly acknowledged in this framework, allowing us to di�erentiate between

informative sites and non-informative ones. Another important consequence of our approach

is that it explicitly deals with situations where inaccurate registration occurs, either due to a

�rough� estimation, or more often, to an imperfect adequacy of the 2D motion model used to

describe the background apparent motion induced by the camera movement. The use of an

extended period of time in the MRF framework makes the algorithm even more robust to such

kind of �noise�. Experiments carried out on many di�erent sequences have demonstrated the

robustness and the validity of our approach.

Extensions to the presented algorithm can be considered. First, the algorithm involves a

few parameters. This has allowed us to deal with very di�erent situations. As indicated, most

of these parameters can be set and kept unchanged for a given type of application, and no

�ne tuning of the other parameters was necessary to obtain good results in our experiments.

However, estimation of these parameters could be performed on line, leading to a more adaptive

algorithm. For instance, acquisition noise could be estimated and related to the corresponding

parameters (see section 4.2). Also, the main parameter �, which is a kind of upper bound on the

accuracy of the motion estimation and registration, is directly related to the standard deviation

of the residual normal �ow. Finally, statistical methods for the estimation of the parameters of

the Markov model have been proposed [7], but they remain computationally quite expensive.

The extension of the binary detection scheme to a more sophisticated step of segmentation is also

an important issue. For instance, the described algorithm could be applied in a recursive fashion,
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as described in [13]. More precisely, a dominant motion could be subsequently estimated in the

regions which have not yet been classi�ed as being well compensated for by already estimated

motion models. Then, the areas whose motion is conforming with this model can be found

according to our scheme and withdrawn from further processing. The algorithm is applied

again on the remaining data, and so on. We have oriented ourselves towards a more direct

scheme [21] where all motion models are considered equivalently, instead of one after the other.

Finally, the development of e�cient image sequence coding algorithms using such schemes is

of course an essential issue, and are under investigation. In [19], an hybrid coding scheme is

proposed to achieve selective compression based on inhomogeneous spatial reconstruction.
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Figure 1: Classi�cation of measurements.
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Figure 2: Potential V2 associated with �conforming� label (solid lines) and �non-conforming�

label (dashed lines) for two di�erent local structure con�gurations: a) �0min value is maximal

and is equal to 1=2 (typically, at a corner site), ls = 1=2; Ls =
p
2=2. b) �0min value is minimal

and is equal to 0 (typically, on a straigth edge), ls = 0; Ls = 1. Parameter values are � =

1; kc = knc = 4.

Parameter Gm � G Atmax T 
 �nc �d �dt L

Interview 3.0 0.5 1.0 0.3 1 0.4 2 30 27 5

Roundabout 10.0 1.0 1.0 0.4 2 0.4 2 36 36 5

Table 1: Values of the parameters used in the reported experiments for the image sequence

�Interview� (Fig. 3) and �Roundabout� (Fig. 4).
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a b

c d

e f

Figure 3: Sequence �interview� a) image at time t1; b) image at time t43, compensated by the

estimated dominant motions. c-d-e-f) Detection maps obtained at time: c) t1, d) t13, e) t25 and

f) t43.
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Figure 4: a) b) c) Roundabout sequence images at time: a) t58, b) t62, and c) t66. d) e) f)

Detection maps obtained at time: d) t58, e) t62, and f) t66.

25



a b

c d

Figure 5: a) Thresholded displaced frame di�erence (the threshold is set to 8). b) Thresholded

observation �eld o62 (threshold equal to 1.0). c) Detection maps at time t62 obtained using only

two frames and a single scale minimization scheme (�dt = 0; 
 = 0). d) Same as in c), but with

the multiscale minimization scheme (L = 5).
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