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Abstract 

This paper deals with the optimization of the receiver tra- 
jectory for target motion analysis. The observations are 
made of estimated bearings. The problem consists in deter- 
mining the sequence of controls (e.g.: the receiver headings) 
which maximizes a cost functional. This cost functional is 
generally a functional of the FIM matrix (Fisher Information 
Matrix). 

1 Introduction 

A fundamental problem for BOT tracking is the fol- 
lowing : if the system is observable what is the accuracy 
of the state estimate and how to optimize the inputs of 
the system? In this system approach, the observer ma- 
neuvers are the system inputs. This is a very difficult 
problem of control since, in the first hand, the system 
is only partially observed, and in the second, the cost 
functional is non-additive. This means that the effects 
of the inputs are not separable. 
A classic approach consists then in considering the 
Fisher Information Matrix (FIM) and more precisely 
its determinant. The choice of the determinant func- 
tional is reasonable. However, as we shall see later, the 
det functional does not have the (additive) monoton- 
icty property, so that the classical tools like the dy- 
namic programming priciple or the Pontryagin Maxi- 
mum principle are irrelevant. 
This explains, for a large part, the relative complex- 
ity of this problem. We shall show that using ele- 
mentary multilinear algebra accurate approximations 
of det( FIM) may be obtained. More specifically, we 
shall prove that det( FIM) may be approximated by a 
functional involving only the successive source bearing- 
rates, thus yielding the general form of the optimal 
inputs (observer maneuvers). In particular it will be 
shown that, under the long-range and bounded con- 
trols hypotheses, the sequence of optimal controls lies 
in the general class of bang-bang controls. These re- 
sults demonstrate the interest of maneuver diversity. 

2 Problem formulation 

The source, located at the coordinates (T,,, rYs) moves 
with a constant velocity vector v (wZs, wys) and is thus 
defined to have the state vector [1,2]: 

The observer state is similarly defined as : 

A 
X r e c  = [ ~ z  r e c ,  ~y recy  wx r e c ,  uy recl* , 

so that, in terms of the relative state vector X defined 
by : 

A 
x = x s  - x , , c  = [T , ,Ty ,~zyVy ] * ,  

the discrete-time equation of the system (i.e. the equa- 
tion of the relative motion) takes the following form : 

where : 

In the above formula t k  is the time at the k-th sample 
while the vector u k  = ( O , o ,  u z ( k ) ,  uy(k))* accounts for 
the effects of observer accelerations (or controls). ). 
The measurements are the estimated angles 0, (bear- 
ings) from the observer to the source, so that the ob- 
servation equation stands as follows : 

6,  o k  f wk 

with : 

and w k  is the measurement noise. 

(3) 
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Given the history of measured bearings 6 = A n  (6i}i=l 

the likelihood function is : 
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O(X) defined by eqs (2,3) 
and 

C = diag (uq . 
(4) 

The calculation of the gradient vector is easily derived 
from (4), yielding : 

where {Oi}y=l represent the source bearing at the in- 
stant i and {ra} the source-observer distance. In (5), 
the reference time is the instant 0. Obviously, another 
reference time may be chosen but it is quite remark- 
able that the determinant of the FIM does not depend 
on the reference time. 
Consider the case of a non maneuvering source (con- 
stant velocity vector), then the calculation of the FIM 
is a routine exercice yielding, under the Gaussian as- 
sumption: 

FIM = ( ~ ) ' c - '  8O(X) (r) d@(X) . (6)  

Thus, we deal with the following problem : 
Denoting G k  the gradient vector of the log-likelihood 
functional (5), i.e. : 

(COS(&), -sin(&), k COS(&), -k sin(&))* , 1 
Gk = - 

Dkrk  

the problem is t o  determine the sequence of controls 
(211,. . , u n }  (denoted U) such that : 

U + argmax(det GkG; (7) 
( k 1 1  ) 

The difficulty and the originality of the above problem 
stem from the two following facts. First, the source 
motion is unknown which means that the state vector 
X is unknown. 

Second, the effects of the various controls are not sepa- 
rable. In this context, the dynamic programming prin- 
ciple should be very attractive. Unfortunately, it nec- 
essarily requires that the cost functional f (from R,, 
the vector space of n-dimensional hermitian matrix to 
R) satisfies the following motonicity property, denoted 
MDP (Matrix Dynamic :Programming Property) and de- 
fined below : 

Definition 1 

e - f is smooth (e2) 
e - let A and B in 31, 

be two matrices: and assume that : 

then whatever the matrix C in 'U,, we have : 
f(B) > f (4 

f (B+C)  > f ( A + C )  

So, a fundamental question consists in determining the 
functionals f having the MDP property. An answer is 
provided with the following result [3]. 

Property 1: Let f satisfying the MDP property 
then : 

f ( A )  = 9 (tr(AR)) 
where g is  any monotonic increasing function and R is 
a fixed matrix. 

3 A direct analysis of the FIM determinant : 

For the sake of simplicity, the following assumptions 
are made along this section. First, the distance will be 
assumed to be constant. Further, we consider that the 
diagonal noise matrix: C is proportional to the identity 
(i.e. C = u21d ). Elven if the first hypothesis seems 
rather restrictive, we shall see later that the effects of 
range and bearing-rate variations are uncoupled, allow- 
ing us to analyze thlem separately. Furthermore, the 
effects of range variations are concentrated in a multi- 
plicative term, factor of the determinant. 
We shall thus consider a simplified model of the source 
motion : 

1 

ei+j = ei + j e + U k  , 
k=i+ l  

where 4 is the bearing-rate (for a given reference time), 
and U is the bearingrate change corresponding to an 
observer maneuver (control). For the sequel, the con- 
trols will be the observer bearing-rate changes u k .  

The fundamental interest of this approach lies in the 
fact that no a priori knowledge of the source trajectory 
is assumed. 
We shall denote Fko,4 the FIM corresponding to an ar- 
bitrary reference time k~ and 4 consecutive measure- 
ments, 6ko,"' ,&o+3. Then the FIM Fko,4 takes the 

31 27 

Authorized licensed use limited to: UR Rennes. Downloaded on July 17, 2009 at 11:04 from IEEE Xplore.  Restrictions apply.



following form (4 measurements ') : 

Fko,4 = ( 0 r ) - 2 G k o , 4  9 & , 4  7 

where : 

and G k  is the gradient vector of the observation 6 k  
w.r.t. X o ,  i.e. : 

G k  = ( cos6~ , - s in6~ ,kcos6~ , - -ks in8~)*  . (9) 

Assuming G k o , 4  invertible, we have : 

det ( F k 0 , 4 )  = (m)-'(det G k 0 , 4 ) ~  

Of course, our attention is not limited to four measure- 
ments per legs. So, the previous calculations will now 
be extended to any number of measurements. Let E 
be the number of measurements and consider now the 
(4 x 4) FIM F k , e  (I 2 4) defined as in (9) by3 : 

where : 

Using classical properties of multilinear algebra, 
nameIy the Cauchy-Binet formula, det (a,,!) is given 
by the following formula : 

where : 

and : 

We stress that the above formula plays a central role 
in the analysis of the FIM determinant. 

The case of constant bearing-rate : 
In (11) Ci3 stands for the ij -th column of the matrix G. 
Considering for instance, a first order expansion of the 
bearings 8 k o + i  (i.e. 8ko+z  = 0 k 0  +id), the calculation of 
det ( F k o , e )  is reduced to the calculation of the determi- 
nants det (G.5). Now each of these determinants is the 
determinant of a 4 x 4 matrix. Its calculation is greatly 
eased by using the following basic result. 

1 

'more generally ~k,,,[ = ( m - ) - 2 ~ k o , ~ ~ ~ o , l  

3Note that the source-observer distance is again assumed to 
be constant. 

Property 2: Let E the first vector of the canon- 
ical basis of ] R 4 ,  (E = ( l ,O,O,O)*) ,  then  the following 
equality holds : 

det G.5 = det (RPE, RFE,  RFE, RPE) . (12) 

Proof :Consider the determinant det GE (see eq. 11) 
where as previously, E = {il,i2,i3,i4} and i~ < iz < 
i3  < i4. 

det GE = det (Gi, , . . . , Gil)  
= det (Rf' G k o ,  R F G k , ,  R f 3 G k o ,  R ? G k o )  

where : 

R o o  A ( cos4 sine ) R I ~  ( Ro & )  a n d , R o =  -sin8 cose ' 

In the same spirit, the vector G k o  may be written as  : 

where : 

Now the following properties are instrumental : 

e the matrices R,-, and TO are rotation matrices, 
hence they commute 

e det(R1) = det(Ro)' = 1 . 

The matrices RI and TI then also commute and using 
this property det GE becomes : 

det GE = det (TFRFElTpRyE,TpRf3E,T?R?E)15) 
= det(Tp)  det (Ri;'E, RFE, R F E , R y E )  , 
- - det (E,Ry-ilE,R";3-i'E,R~-ilE) . 

Furthermore, the following property has thus been 
proved in passing : det GE is independent of IC0 and 8 k o .  

This remarkable property is due to the basic properties 
of the determinant and the structures of the matrices 
RI and TI. 
O D 0  

The above determinant itself (i.e. : detGE = 
det(E, @E, RjE,  RFE) ) can now be easily calculated 
by means of exterior algebra , yielding the following 
simple and general result : 

3128 
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Property 3: detGE = j ( k  - i) sin((k - 
j ) z )  sin(iz) + i(k - j )  sin(jz) sin((i - k ) x )  , 

Proof : The calculation of det G E  is greatly eased by 
using exterior algebra. The canonical basis of ]R is de- 
noted {El,. . . , E4). For the coherence of notations, the 
vector E is identified with El. Then, the components 
of the exterior products El A RfE1, in the ”reduced” 
basis {El A E2 , El A E3 , E1 A E4) of h2(1R4) are 
straightforwardly calculated and given below : 

4 

(YO = -sin( iz) c El A E2 , 

70 = -i sin( ix) t El A E4 . 

Similarly, the components of @E1 A @El, in the ”re- 
duced” basis {E3 A E4 , E2 A E4 , E2 A E3) are : 

60 = i COS(~Z)  t E1 A E3 , (16) 

a1 = j k  sin( ( j  - k)x ) t ES A E4 , 
p1 = ( k  - j )  sin(jz) sin(kz) t- E2 A E4 , 
71 = j sin((k - j ) z )  - (k - j )  sin(jx) t E2 A E3 . 

The determinant det QE is deduced from the above cal- 
culations, by considering the sum of the coeficients 
of the vector El A E2 A E3 A E4 which spans the 1- 
dimensional space h4(]R4), i.e. : 

(17) 

det GE = Q O W  - POPI + ~ 0 ~ 1  , (18) 
= j ( k  - i) sin((k - j ) ~ )  sin(ix) , 

+i (k - j )  sin(jz) sin((i - k)z)  . 

U00 

Using Prop.3 and the Cauchy-Binet formula, a general 
formulation of det(F1M) stands as follows : 

det(F1M) = ( j ( k  - i) sin((k - j)z) sin(iz) , 
E 

+i(k - j )  sin(jz) sin((i - k)x)) ’. 

Practically, the following approximations are easily de- 
duced from the above property . 

Result 1 : 

and therefore : 

i) x4 , 

From Result 1, the following approximation is 
deduced4 : 

&(g) 8 . 

Using the previous formalism, an extension to  higher 
order expansions of 8 k o + i  is quite straightforward but 
not truly enlightening. 

Remarks : 
If a 3-rd order expansion of &,+. is considered in place 

of the 1-st order one then the value of det(F1M) is exactly 
zero. This corroborates the fact that the TMA problem is 
not observable when the observer does not maneuver. 
0 However, the BOT problem is observable if multiple mea- 
surements are available ((at each time). In this case, bounds 
derived from (20) are accurate. 
*In fact, a small variation model for the bearing-rate, i.e. : 
&+I = & + ~k ( q b  w.g.n.) yields a value of the type (20), 
eq. 20 roughly appears ;as an upper bound of det(F1M) . 

It has thus been shown that det(Fko,l) is proportional 

to (%) . As practically, is very small, this 
means that det(Fk,,i) remains very small as far as no 
observer maneuver occurs. So, we shall now investigate 
the effects of a bearing-rate change. 

8 

The case of bearing-rate change 
We shall now quantify the effects of observer maneu- 
vers. First, the following property is an extension of 
the previous one to this case. 
Consider that the temporal evolutions of the source 
bearings on two successive legs are described by the 
two following linear models : 

1 
t9ko+i = 8 k 0  + i& on the lPSt leg 

- 1 8,t; + j& on the 2-nd leg. (21) 
@kb+j  - 

Then the following property holds (see 121) and extends 
the previous result (I’rop.3): 

Property 4: Consider the case of two consecu- 
tive bearing-rates x a,nd y, then we have : 

det (E1,RZ1E1,R.321RIE1,~2k’R1E1) = 

-i (k’ - j ’ )  sin(i z + j ’  y) sin(k’ y) . 
(i + j ‘ ) (k’)  sin(i x) sin((k’ - j ‘ )  y) , (22) 

31 29 
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In (22), the matrices R1 and Ra are the bearing-rate 
matrices (cf. 13) associated with the bearing-rates x 
and y. From (22), the following approximations are 
easily deduced : 

gained by optimized observer maneuvers may be rather 
impressive. Further, note that this gain is proportional 
to (Ax)-4. The above calculation is easily extended 
to the case of a maneuvering source. The dimension 
of the state vector is then equal to  6 ,  while the gain 
of a bearing-rate change is, this time, proportional to 

Actually, it seems that the optimum corresponds to a 

det (El, RIE1, R i R f E l ,  R$’RiE1) z 
(23) (Ax)-8 

i ( j ’ ) (k’  - j’)(k’)y (z - y + gx2y)  . 
”long” first leg in order to maximize the observer base- 
line, followed by a ”short” second leg. The proof of Prop. 4 is completely similar to that of 

Prop. 3. So, we omit it. 

The previous results are more formally summarized by 
the following property. The above property allows us to approximate det Fk, ,e  

in the case of a maneuvering observer and thus to in- 
vestigate the effects of the observer maneuvers. In 
particular, the role of the bearing-rate changes then 
clearly appears. Indeed, since the parameters 81 and 

Property 5: Let x1,x2, . . . , x,, the consecutive 
bearing-rates, then : 

argxl , , . . , z~  maxdet(F1M) = omax, - omax, omax, .  . 

(27) 

(. 82 are usually small (both are proportional to l / r 2  ), 
we shall examine an expansion of det ( G E )  w.r.t. 81 
and 82 around the point (0,O). Then, we obtain the & = f l .  
following types 
42) of det ( G E )  : 

of fourth-order expansions (in 6, and we refer to [31 for a proof of prop. 5, 

Geometric interpretations of the properties of 
the FIM determinant 
Since we are especially interested in the effects of ob- 
server maneuvers, we shall investigate them by means 
of the previous results and differential calculus. Con- 
sider for instance the following determinant (E = El): 

(det G E ) ~  2: K(Y(x - Y))~ , 
or : K(X(X - y)12 . (24) 

with : 
A .  K > O ,  ~ ~ 8 1 ,  y k 8 z .  

This result is quite fundamental for TMA and will be 
clarified by a geometric interpretation. For the two 
bearing-rate case, the expansion of det Fko,e l ,ez  is : 

1 

where the polynomials {Pi(l?, , &)}:==, are detailed in 

From (25), we note that the maximum value of 
detFko,el,ez is proportional to !12b4 (!I E e 2  , 81 N 

In fact, denoting Fe(x) the FIM associated with a con- 
stant bearing-rate x and Fe/2,e/2(~, -.) the FIM asso- 
ciated with a two-leg observer trajectory (leg 1: !/2 
meas., bear. rate z; leg 2: !/2 meas., bear. rate -x), 
we have : 

[31. 

-82) .  

where Ax denotes the total bearing variation (i.e. 
Ax = l x ) .  For usual scenarios, Ax is small in regard to 

where: 
x = e l ,  y = e 2 .  

Let us now calculate the partial derivative &x), we 
obtain: 

a f ( x )  = I det (E, Rf,,E,R{,,E, R::z-lS1,xE) , 
dY 

(29) 
where  SI,^ = (&Rl,y)(y=x), or, explicitely: 

with: >- -sinx - C O S ~  

cosx -sinx s0,x = 

Using the definitions of R I , ~  and  SI,^, and denoting J 
the two-dimensional 7r/2 rotation matrix, the following 
properties are then easily proved : 

Property 6: The following properties hold : 
- 

1 and ,therefore, the increase in the FIM determinant So,x = J R O , ~  , &&,a = - Ro,, = J2 Ro,x , 

k+k‘ Sthe type of the expansion only depends on the relative values 

6!2 measurements asociated with it, z = 1, 2 
Of i l ,  22 ,  $3, z4 
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From Prop. 6, we directly deduce : 

g(4 = 1 det (E, Ri,,E, R3;,,E, Sl , (k+lQ)  7 

$(x, x) = -12  det (E, Ri,,E, Ri,,E, R!:'E) , 
etc. 

(32) 

At this 
point, it is worth noting that the vector &,,,E = 
(- sin m x, cos m x, -m sin m x, m cos mx)* is approxi- 
mately orthogonal to the vectors {E, Ri,,E, R;,,E}. 
This is due to the fact that So,, is a 2D-rotation with 
an angle equal to x - ~ / 2 .  This fact is typical of a four- 
dimensional state vector and corresponds to a diversity 
in maneuvers. Thus, g ( x )  is proportional to x, while 

%(x, x) is proportional to 24. 

Using the previous calculations, the following approxi- 
mations are easily proved : 

g ( x ) ~ a ! z  a n d : s ( x , x ) m p x 4 ,  
so that : (33) 

From (33) it is clear that the increase of det(F,,,) is 
maximized when the terms (x(x - Y ) ) ~  are maximized. 
Since 0 is bounded, an optimal sequence of controls is 
necessarily a bang-bang one . 

Geometric considerations provide also another inter- 
pretation of Prop. 5.  More precisely, defining f (x, y )  = 

and 
det (E, R~,,E, R1,,Rl,,E, R~,,R?,,E), we see that 2 

(34) 

are simultaneously null iff : 

det (E, &,,E, &,&,,E, &&?,,E) , 
= det (E, &,,E, Rl,,Rl,,E, R1,2Rl,ySl,yE) . 

It is then easily seen that the maximum of f 2  is nec- 
essarily attained for an extreme point of the constraint 
set. 

This optimization problem may be connected with the 
Hadamard inequality . Indeed, let us recall a classical 
formulation of the Hadamard inequality: 

Max{v,):=lI det(V1, .. * ,  Vn)l 
under the constraints ((V1 I[ = €1,. . e ,  l[Vnll = en 

dim(V) = n. 
(35) 

A solution to the above problem is easily obtained by 
means of differential calculus (Lagrange multipliers) 
yielding: the vectors solving (35) are mutually orthog- 
onal vectors satisfying the constraints. However, the 
problem is greatly complicated, here, by the constraints 
associated with the vectors {Vi}i. 

3131 

Since the values of ( -19 ,~~ , e,,,) can be estimated 
by the observer (e.g. j rom the estimated bearings), it 
remains to determine the optimal number of switch- 
ings (from e,,, to -8,,,) as well as their locations. 
However, it seems rather impossible to  derive a general 
bound relative to the number of switching. 

3.1 The effects of range variations: 
Up to now, the effects of range variations have not been 
considered. However, the analysis is greatly simplified 
if we remark that the effects of range and bearing-rate 
variations are geometrically uncoupled. This follows 
easily by considering det(9E). Including the range, the 
elementary determinant det (BE) becomes : 

( 1  il 1 
det GE = det 1 -RI E , .  , --R?E) , 

\Til ri4 

so that : 

, RFE) 

(36) 
From the above equality, we note that the effects of 
range and bearing-rat,e variations are uncoupled. 

Conclusion 

Optimization of the observer maneuvers has been consid- 
ered along this paper. This problem is not relevant of classi- 
cal optimal control. Using basic tools of multilinear algebra, 
it has been proved that this functional may be accurately 
approximated by a functional involving only the successive 
source bearing-range rakes. In particular, it has been shown 
that under the long-range and bounded controls hypothe- 
ses, the sequence of optimal control lies in the general class 
of bang-bang controls7. 
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