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Observability in the context of bearings-only tracking (BOT)
is still the subject of important literature. Different from previous
approaches, where continuous-time analysis was considered, our
approach relies on discrete-time analysis. It is then shown that
this allows us to use directly and efficiently the simple formalisms
of linear algebra. Using the direct approach, observability analysis
is essentially reduced to basic considerations about subspace
dimensions. Even if this approach is conceptually quite direct, it
becomes more and more complex as the source-encounter scenario
complexity increases. For complex scenarios, the dual approach
may present some advantages essentially due to the direct use
of multilinear algebra. New results about BOT observability for
maneuvering sources are thus obtained. Observability analysis is
then extended to unknown instants of source velocity changes.
Even if observability analysis provides thorough insights about

the algebraic structure of the BOT problem, the optimization of
the observer maneuvers is essentially a control problem. Basic
algebraic considerations prove that a relevant cost functional for
this control problem is the determinant of the Fisher information
matrix (FIM). So, a large part of this work is devoted to the
analysis of this cost functional. Using multilinear algebra, general
approximations of this functional are given. They present the great
interest to involve only directly estimable parameters, the source
bearing-rates. Using these approximations, a general framework
for optimizing the observer trajectory is derived which allow us to
approximate the optimal sequence of controls. It is worth stressing
that our approach does not require the knowledge of the source
trajectory parameters and is still valid for a maneuvering source.

Manuscript received May 10, 1995; revised December 27, 1995.

IEEE Log No. T-AES/33/1/01086.

Authors’ addresses: J. P. Le Cadre, IRISA/CNRS, Campus
de Beaulieu, 35042, Rennes, France; C. Jauffret,
ISITV, Gessy Avenue G. Pompidou, BP 56, 83 162 LaValette du Var,
France.

0018-9251/97/$10.00 c° 1997 IEEE

I. INTRODUCTION

Passive bearings-only tracking (BOT) techniques
are used in a variety of applications [1—8]. In the
ocean environment, two-dimensional target motion
analysis (TMA) has represented an important research
area [1].
In the sonar context, the BOT problem is to

estimate the trajectory of an acoustic source (target).
A reasonable hypothesis consists in modelling this
trajectory by a collection of consecutive legs. Thus, on
each leg, the source travels with a constant velocity
vector. The geometric configuration is depicted in
Fig. 1, where both ownship and target are presumed
to lie in the same (x¡ y) plane. This configuration is
assumed throughout the rest of this work.
An important aspect of the problem is the

existence of unique tracking solutions. From a
system-theoretic viewpoint, this involves the notion
of observability. Since observability plays a critical
role in the design and subsequent performance of any
tracking system, the class of observer accelerations and
maneuvers which render the state observable needs to
be characterized.
The first attempt at deriving criteria for BOT

observability in a rigorous way appears to be the works
of Lindgren and Gong (1978) [2] and Nardone and
Aidala (1981) [9]. These results have been extended
to three-dimensional BOT by Hammel and Aidala
(1985) [10]. Observer maneuvers which ensure system
observability have been characterized by Payne (1989)
but always for a nonmaneuvering source [11]. An
extension to an Nth-order dynamics target first appears
in the works of Jauffret and Pillon (1988) [12, 13],
Fogel and Gavish (1988) [14], and Becker [15].
Ordinarily, the presence of measurement

nonlinearities would dictate an analysis utilizing
difficult nonlinear techniques as those developed by
Hermann and Krener [16]. However, as previously
pointed out [9—15], the application of these relatively
complicated procedures may be avoided by rewriting
and embedding the BOT problem in an equivalent
linear form. This simple idea is the key for solving the
observability problem for BOT and has been widely
utilized by previous contributors [9—15]. Moreover
note that–further its simplicity–the linear approach
provides us with global observability criteria [9—17].
Using pseudomeasurements [1], the observability

problem is recast in a linear framework. More
precisely, the measurements are modeled by a linear
time-varying system. Note that now the changes may
affect both the measurement and the system equations.
While the observability analysis of a constant dynamic
system is rather simple, the analysis of a time-varying
system is much more cumbersome. Actually, the system
may be modeled by a piecewise constant linear system
(PWCS). Interesting insights into the observability of
a PWCS can be found in the work of Goshen-Meskin
and Bar-Itzhack [18].
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Rather curiously, the observability analysis for BOT
has been performed until now in a continuous time
framework. A main objective of this work consists
in demonstrating that a discrete-time analysis may
be seriously simpler and, simultaneously, provides
new and thorough geometric insights. Actually,
the discrete-time analysis allows us to utilize all
the tools of linear and multilinear algebra [18,
19]. The geometric interpretation of observability
appears then both enlightening and powerful. For
example, it is possible to analyze observability for
the general case of target-observer encounter, say
the case of a maneuvering (multilegs) source with
unknown maneuver instants. Observability analysis for
maneuvering sources is particularly important since
interesting sources are essentially the maneuvering
ones. Using the PWCS approach new results for BOT
observability are demonstrated in Sections IV and V.
Please note that extensions to multiple sources or
observers become even quite straightforward. First,
we consider a direct approach (Section IV). The
analysis of the algebraic structure then leads us to
consider a dual approach (Section V) for which the
dual spaces and the Cayley-Hamilton Theorem are
basic ingredients.
Observability analysis is then extended to the

unknown instants of source velocity changes. Our
approach consists of jointly using the methods
developed for jump linear systems and the linear
formalism previously developed (Section VI).
As noted by various authors, observability analysis

may be rather frustrating (especially for statistical
performance analysis) since it is an algebraic problem
which has only a simple answer: yes or no. The
concept of “more or less observable” is actually an
estimability concept even if it occurs very frequently in
the observability literature. So, a precise definition of
estimability is given and its implications for the BOT
problem are considered (see Section IX). In a first
time, our analysis is restricted to PWCS describing
maneuvering sources. For deterministic parameters
(PWCS in particular), a natural tool for studying the
statistical performance is the Fisher information matrix
(FIM). Properties of FIM functionals are considered
in Section VIII.
Under a long range hypothesis, it is shown that

maximizing det(FIM) amounts to maximizing the
sphericity criterion (see Section VIII). Therefore
det(FIM) plays a fundamental role and is a relevant
cost functional. So, a large part of this work is devoted
to the study of the properties of this functional. Using
multilinear algebra, new approximations are obtained
(Section VII). In particular, we prove that det(FIM)
can be tightly approximated by a functional involving
only the consecutive source bearing-rates. Since these
parameters (bearing-rates) may be directly estimated
from the data, these results lead to a feasible approach
for determining the optimal sequence of controls

(observer maneuvers). It is proved that, under the long
range hypothesis, the sequence of optimal control lies
in the class of bang-bang controls.
Estimability and stochastic observability concepts

have been introduced by various researchers working
in the area of system theory (Markov models). We
consider the applications of such concepts for the
BOT problem for a Markovian modeling of the source
trajectory. Estimability conditions are derived (Section
VIII). Even if these conditions are almost always
satisfied, it is thus possible to derive an estimability
functional quite analogous to the FIM functional but,
this time, for random parameters.
The paper is organized as follows. The general

BOT model is briefly presented in Section II, followed
by the discrete-time analysis of BOT observability
in Sections III and IV. A dual approach is then
considered in Section V. The analysis of observability
is extended to unknown instants of source velocity
changes in Section VI. Sections VII and VIII deal
with the statistical performance analysis. Detailed
calculations are provided in Appendix A, B, C. Finally,
stochastic observability is considered in Section IX.
The following standard notations are used

throughout this work.

1) A bold letter denotes a vector while a capital
letter denotes a matrix.
2) A capital script letter generally denotes a

subspace.
3) The symbol (*) means transposition.
4) The variables rx and ry represent x and y

relative coordinates.
5) Relative x and y velocities are denoted by vx

and vy.
6) The time variable is t or k.
7) The number of sensors is p.
8) A diagonal matrix is denoted by diag.

9) The symbol
i
= means approximation at the

order i.
10) The determinant is represented by det.
11) The symbol tr stands for the trace.
12) Im and ker are the image and the kernel of a

mapping (or its associated matrix).
13) AÂ B means that the matrix A¡B is positive

definite.
14) Idn is the n-dimensional identity matrix.
15) The symbol cov stands for the covariance

matrix.
16) BOT is bearings-only tracking, RUN is

rectilinear uniform motion, and TMA is target motion
analysis.

II. BOT MODEL

The general notations are identical to those of [1].
The physical parameters are depicted in Fig. 1. The
source, located at the coordinates (rxs,rys) moves with
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Fig. 1. Typical TMA scenarios.

a constant velocity vector v(vxs,vys) and is thus defined
to have the state vector:

Xs
¢
=[rxs,rys,vxs,vys]

¤: (1)

The observer state is similarly defined as

Xobs
¢
=[rxobs,ryobs,vxobs,vyobs]

¤

so that, in terms of the relative state vector X defined
by

X=Xs¡Xobs
¢
=[rx,ry,vx,vy]

¤

the discrete-time equation of the system (i.e., the
equation of the relative motion) takes the following
form:

Xk+1 = FXk +Uk

where

F =©(k,k+1) =
μ
Id ®Id

0 Id

¶
,

Id
¢
=
μ
1 0

0 1

¶
and

®
¢
= tk+1¡ tk = cst: (2)

In the above formula tk is the time at the kth
sample while the vector Uk = (0,0,ux(k),uy(k))

¤

accounts for the effects of observer accelerations
(or control). Equation (2) assumes that between tk
and tk+1 the source motion is rectilinear and uniform
(RUN). This hypothesis is used throughout the
remainder of this work. Also, in this work, the vector
X denotes the relative state vector.
As usual in TMA [1], the available measurements

are the estimated angles μ̂1 (bearings) from the
observer to the source, so that the observation
equation stands as follows:

μ̂k = μk +wk

with

μk = tan
¡1
Ã
rx(k)
ry(k)

!
(3)

and wk is the measurement noise.

Equivalently the measurement equation may be
written as

0´ zk =HkXk
with

Hk = (cosμk,¡sinμk,0,0): (4)

This simplistic remark is nevertheless a basic trick
to investigate BOT system observability. The BOT
model can thus be described by the following linear
and time-varying state-space model:(

Xk+1 = FXk +Uk

zk =HkXk:
(5)

Note that this system is time varying due to Hk.
This induces an apparent difficulty for observability
analysis.

III. SYSTEM OBSERVABILITY, THE SIMPLEST
PROBLEM

We now briefly consider the simplest problem
of observability analysis. Although this section does
not provide anything but classical results, the general
framework is introduced allowing us to analyze more
and more complex scenarios in subsequent sections.
In this section, both source and observer motion

are assumed to have RUN. Using (5) the system
outputs zk are directly calculated, yielding¯̄̄̄

¯̄̄̄
¯̄̄̄
¯

z0 =H0X0

z1 =H1FX0

...
...

zk =HkF
kX0:

(6)

Now:

Fk =

Ã
Id k®Id

0 Id

!
so that, the observability matrix O is

O =

0BBBBBBB@

H0

H1F

...

HkF
k

1CCCCCCCA

=

0BBBBBBB@

cosμ0 ¡sinμ0 0 0

cosμ1 ¡sinμ1 ®cosμ1 ¡®sinμ1
...

...
...

...

cosμk ¡sinμk k®cosμk ¡k®sinμk

1CCCCCCCA
:

(7)
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A basic trick consists of factorizing the matrix O
by using the definition of sines and cosines, i.e.,

O =¢r

0BBBBB@
ry(0) ¡rx(0) 0 0

ry(1) ¡rx(1) ®ry(1) ¡®rx(1)
...

...
...

...

ry(k) ¡rx(k) k®ry(k) ¡k®rx(k)

1CCCCCA
with

¢r
¢
=diag(r¡1(0),r¡1(1), : : : ,r¡1(k))

r(k)
¢
=(r2x (k)+ r

2
y (k))

1=2:

(8)

Obviously, this factorization is valid only if all
the r(j) are non-zero which means that the source
and observer positions are not identical. For obvious
reasons, this assumption is not restrictive in our
context.
Let us denote O0 the “modified” observability

matrix defined by

O0 =

0BBBBBBBB@

rx(0) ry(0) 0 0

rx(1) ry(1) ®rx(1) ®ry(1)

...
...

...
...

rx(k)|{z}
Rx

ry(k)|{z}
Ry

k®rx(k)| {z }
Vx

k®ry(k)| {z }
Vy

1CCCCCCCCA
: (9)

Then ¢r being an invertible matrix, we have

rankO = rankO0: (10)

So, in order to study system observability, it is
equivalent to analyze the matrix O0 defined by (9).
This idea constitutes the cornerstone for the “direct”
approach of observability and is intensively used in the
next section.
Using (2), the vectors Rx,Ry,Vx,Vy can be

expressed as linear combinations of the three vectors
1,Z,Z2, i.e., ¯̄̄̄

¯̄̄̄
¯̄̄
Rx = rx(0)1+®vxZ

Vx = ®rx(1)Z+®
2vxZ

2

Ry = ry(0)1+®vyZ

Vy = ®ry(1)Z+®
2vyZ

2

with ¯̄̄̄
¯̄̄̄
¯̄̄
1
¢
=(1,1, : : : ,1)¤

Z
¢
=(0,1,2, : : : ,k)¤

Z2
¢
=(0,0,2, : : : ,k(k¡ 1))¤:

(11)

It is then quite obvious from (11) that rank(O0)
and thus rank(O) are bounded by 3 since the range

(or image [20]) of O0 is spanned by the three vectors
f1,Z,Z2g, which are themselves linearly independent
(k ¸ 3). There is a rank degeneracy for O in the
following case (rankO = 2):

rx(0)vy = ry(0)vx: (12)

This condition is itself equivalent to a zero
bearing-rate assumption. Denote N the null-subspace
(or the kernel [20]) of O. Then, except for the zero
bearing-rate case, this is a 1-dimensional subspace
(4 = dim ImO+dimN ). Using (11) and solving the
associated linear system, we obtain directly:

N = sp(X0): (13)

Note that (13) expresses nothing else than the
Thales Theorem [21]. Even if the above results are
quite classical [9—15], a new approach has been
introduced which allows us to consider much more
complicated problems.
For instance, this approach may be utilized to

analyze observability for multiple arrays [22]. We
consider now a specific application of this formalism,
which we call the direct approach.

IV. OBSERVABILITY ANALYSIS, THE DIRECT
APPROACH

Using the previous formalism (see Section III),
we consider various source-observer encounters and
analyze the corresponding observability problems.
Actually, we find that the main limitations come
from the expanded expressions of O0 which become
rather cumbersome as the complexity of the scenario
increases. So, a dual approach is developed in the next
section.

A. Maneuvering Observer and Rectilinear Uniform
Motion of the Source

Note that (14) is the “classical” case for
observability analysis [9—15]. Since there is no source
maneuver, the transition matrix remains unchanged
throughout the scenario. Therefore, for a two-legs
observer trajectory, the observability matrix is

O =

0BBBBBBBBBBBBBBBBB@

H0

H1F

...

HkF
k

Hk+1F
k+1

...

Hk+jF
k+j

1CCCCCCCCCCCCCCCCCA

Ã observer maneuver: (14)
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As previously, the modified observability matrix O0
defined as in (9) is a (k+ j)£ 4 matrix defined by

O0 = (Rx,Ry,Vx,Vy)
with8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

Rx = rx(0)
μ 1
10

¶
+®vx,1

μZ1
k10

¶
+®vx,2

μ 0
Z01

¶

Ry = ry(0)
μ 1
10

¶
+®vy,1

μZ1
k10

¶
+®vy,2

μ 0
Z01

¶

Vx = ®rx(1)
μ
Z1
Z02

¶
+®2vx,1

μ
Z21
kZ02

¶
+®2vx,2

μ
0

Z22

¶

Vy = ®ry(1)
μ
Z1
Z02

¶
+®2vy,1

μ
Z21
kZ02

¶
+®2vy,2

μ
0

Z22

¶
and

Z1 = (0,1, : : : ,k)
¤

Z21 = (0,2, : : : ,k(k¡ 1))¤

Z22 = ((k+1),(k+2)2, : : : , (k+ j)j)
¤

10 = (1,1, : : : ,1)¤

Z01 = (1,2, : : : ,j)
¤

Z02 = (k+1,k+2, : : : ,k+ j)
¤

vx,2 = vx,1 +ux; vy,2 = vy,1 + uy

(15)

where ux and uy are the observer accelerations
(controls) at time (k+1).
From the preceding equalities, we obtain

straightforwardly:

Rx=
μμ

1

10

¶
,
μ
Z1
k10

¶
,
μ
0

Z01

¶¶0B@rx(0)vx,1

vx,2

1CA

Vx=
μμ

Z1
Z02

¶
,
μ
Z21
kZ02

¶
,
μ
0

Z22

¶¶0B@rx(1)vx,1

vx,2

1CA
(16)

idem for Ry and Vy.
For the sake of simplicity, we shall now assume that

® is equal to 1. From (16), the following equalities are
deduced:

Rx=
μμ 1

10

¶
,
μZ1
Z02

¶¶μ
rx(0)

vx,1

¶
+ ux

μ 0
Z01

¶

Vx=
μμZ1

Z02

¶
,
μZ1
Z02

¶
+
μ Z21
kZ02

¶
+
μ 0
Z22

¶¶

£
μ
rx(0)

vx,1

¶
+ ux

μ 0
Z22

¶
:

(17)

Denoting fV1,V2,V3g, the vectors defined as below:

V1=
μ 1
10

¶
, V2 =

μZ1
Z02

¶

V3=
μ
Z1
Z02

¶
+
μ
Z21
kZ02

¶
+
μ
0

Z22

¶
we deduce:

(Rx,Ry ,Vx,Vy)

= (V1,V2,V2,V3)

(10)z }| {0BBB@
rx(0) ry(0) 0 0

vx,1 vy,1 0 0

0 0 rx(0) ry(0)

0 0 vx,1 vy,1

1CCCA
| {z }

(1)

+

μμ
0

Z01

¶
,

μ
0

Z01

¶
,

μ
0

Z22

¶
,

μ
0

Z22

¶¶
diag(ux,uy ,ux,uy):| {z }

(2)

(18)

Let us examine the two terms of the left member
of the previous vectorial equality. Under the non-zero
bearing-rate hypothesis (i.e. rx(0)vy,1¡ ry(0)vx,1 6= 0),
the vectorial subspace (denoted E1) spanned by the
term (1) is of rank 3. This is a direct consequence of
the invertibility of the matrix (10). Similarly, when the
control vector U is non null, the rank of the vectorial
subset (denoted E2) spanned by the term (2) is equal
to 2.
Considering the positions of zeros inμ 0

Z22

¶
and

μ 0
Z01

¶
,

it is straightforwardly shown that the intersection of E1
and E2 is reduced to the null vector. Assume now that
the rank of (Rx,Ry,Vx,Vy) is deficient (i.e. inferior to
4), this means that there is a non-null vector (L) in its
kernel. From (18), we deduce that the intersection of
E1 and E2 is non-null.
This is a contradiction, so the rank of O is equal to

4, yielding the following property.

PROPERTY 1 Assume that the source motion is
rectilinear and uniform and that the ownship trajectory
has multiple legs. Then the source motion is observable
iff the ownship trajectory is not comprised of only zero
bearing-rate legs.

Furthermore, we have:

dim(sp(E1[E2)) = dim(sp(E1)+ sp(E2))

¡ dim(sp(E1\E2)) = 5: (19)
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Thus, we see that the effect of the observer maneuver
is (generally) to add a 2-dimensional space to the
observable space. This point will be clarified by using
the dual formalism (see Sect. 5). Further, we note that
rank degeneracy can occur iff:

det
μ
rx(0) vx,1

ry(0) vy,1

¶
= det

μ
vx,1 vx,2

vy,2 vy,2

¶
= 0:

The above condition (4.6) means that the observer
(ownship) trajectory is comprised of two consecutive
legs with zero bearing-rate or equivalently of two
“collision” legs.
As we shall see later, the previous reasoning may

be straightforwardly (but tediously) extended to the
general case.
Except for the zero bearing-rate case,

unobservability can be achieved only if ownship motion
is not a multileg one (i.e. it is a smooth trajectory)
and if the observer maneuvers at each time. A rather
paradoxical result!
Indeed the rank degeneracy of O amounts to the

existence of a (nonnull) 4-dimensional vector H in
kerO, which amounts to

h1 cosμt¡ h2 sinμt+ th3 cosμt¡ th4 sinμt = 0

, tan μt =
h1 + th3
h2 + th4

(cosμt 6= 0):

(20)

The scalars h1, : : : ,h4 are obtained by considering
the following function:

f(t) = det

Ã
rx(t) h1 + th3

ry(t) h2 + th4

!

and the following conditions:¯̄̄̄
¯̄̄̄
¯
1) f(0) = 0

2) f 0(0) = 0 (f(t) must be null on [t0, tf])

3) f 00(0) = 0
(21)

yielding

tan μt =
rx(0)+ tvx(0)
ry(0)+ tvy(0)

: (22)

Note that this is the criterion of Nardone and
Aidala obtained by solving the differential equation
(71). A condition relative to observer accelerations is
directly obtained after taking (21) into consideration
(see Payne [11]), i.e.,¯̄̄̄

¯rx(t)ry(t)
= ®(t)

¯̄̄̄
¯rx(0)+ tvx(0)ry(0)+ tvy(0)

: (23)

B. Maneuvering Source and Nonmaneuvering
Observer

This case study is quite enlightening even if the
system is unobservable because a general result is
easily obtained allowing us to guess the conditions
which will ensure observability.
Consider, first, a two-legs path of the source.

Opposite to the case of a nonmaneuvering source, two
transition matrices (F1 and F2) are now required. The
measurement equations take the following form:¯̄̄̄

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄

z0 =H0X0

z1 =H1F1X0

...

zk =HkF
k
1 X0

zk+1 =Hk+1F2F
k
1 X0Ã source maneuver

...

zk+j =Hk+jF
j
2 F

k
1 X0

with

H` = (cosμ`,¡sinμ`,0,0,0,0) 0· `· k+ j

F1 =

0BB@
Id ®Id 0

0 Id 0

0 0 Id

1CCA

F2 =

0BB@
Id 0 ®Id

0 Id 0

0 0 Id

1CCA
Id

¢
= Id2

X0 = (rx(0),ry(0),vx,1,vy,1,vx,2,vy,2):

(24)

This time, the dimension of the state vector X0
is equal to 6. The parameters (rx(0),ry(0)) represent
the initial source position and (vx,i,vy,i)i=1,2 are the
components of the velocity vector on source legs 1 and
2. We state without proof the following lemma.

LEMMA For (`,m 2N),

F`2F
m
1 =

0BB@
Id `®Id m®Id

0 Id 0

0 0 Id

1CCA
and

F`2F
m
1 = F

m
1 F

`
2 : (25)

The general structure of the observability matrix
O and therefore of O0 (defined as in (9)) immediately
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follows, i.e.,

O0 =

0BBBBBBBBBBBBBBB@

rx(1) ry(1) ®rx(1) ®ry(1) 0 0

...
...

...
...

...
...

rx(k) ry(k) k®rx(k) k®ry(k) 0 0

rx(k+1) ry(k+1) k®rx(k+1) k®ry(k+1) ®rx(k+1) ®ry(k+1)

...
...

...
...

...
...

rx(k+1)| {z }
Rx

ry(k+1)| {z }
Ry

k®rx(k+ j)| {z }
Sx

k®ry(k+ j)| {z }
Sy

j®rx(k+ j)| {z }
Tx

j®ry(k+ j)| {z }
Ty

1CCCCCCCCCCCCCCCA
: (26)

Using (24) and (25), the vectors fRx, : : : ,Tyg take
the following form:¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄

Rx = rx(1)
μ
1

10

¶
+®vx,1

μ
Z

k10

¶
+®vx,2

μ
0

Z0

¶

Ry = ry(1)
μ
1

10

¶
+®vy,1

μ
Z

k10

¶
+®vy,2

μ
0

Z0

¶

Sx = ®rx(1)
μ Z
k10

¶
+®2vx,1

μ Z2
k210

¶
+®2vx,2

μ 0

kZ0

¶

Sy = ®ry(1)
μ
Z

k10

¶
+®2vy,1

μ
Z2

k210

¶
+®2vy,2

μ
0

kZ0

¶
and¯̄̄̄
¯̄̄̄
¯̄
Tx = ®rx(1)

μ
0

Z0

¶
+®2vx,1

μ
0

kZ0

¶
+®2vx,2

μ
0

Z02

¶

Ty = ®ry(1)
μ 0
Z0

¶
+®2vy,1

μ 0

kZ0

¶
+®2vy,2

μ 0

Z02

¶
(27)

Note that in (27), the index —0— stands for
the second leg. The definition of the vectors
1,10,Z,Z0,Z2,Z02 is that of (11) and (15).
The following subspace inclusion1 results from

(27):

Im(O0)½ sp
½μ 1

10

¶
,
μ Z
k10

¶
,
μ 0
Z0

¶
,
μ Z2
k210

¶
,
μ 0

Z02

¶¾
and therefore

rank(O0)· 5: (28)

Consequently the system is unobservable which
is not unexpected. However under the non zero

1The symbol “Im” denotes the image [19] of a matrix.

bearing-rate hypothesis (denoted H2),2 i.e.,

H2 :
μ
det
μ
rx(1) vx,1

ry(1) vy,1

¶
and det

μ
vx,1 vx,2

vy,1 vy,2

¶¶
6= 0

then

rankO0 = 5: (29)

It is rather surprising that the dimension of the
observable space increases with the source maneuver
(note that the maneuver instant is assumed to be
known, this point is discussed later). Tediously, the
above property may be extended to the multileg
case (H2 becoming H`) yielding thus the following
result.

PROPERTY 2 Consider a nonmaneuvering observer.
Then, under the hypothesis H`, the dimension of the
observable space is 2`+1 (the dimension of X0 is
2`+2).

A general proof of Property 2 is given in the
section devoted to the dual approach.
There are various means to recover observability.

One of them may consist in using multiple arrays [22].
The more classical one consists in allowing source
maneuvers. Under H`, the unobservable space is
spanned by X0.
Let us consider now the general case. At this

point, we can devise from Property 2 that an
observer maneuver may be sufficient to recover
observability.

C. Maneuvering Source and Observer

For the sake of simplicity, we first consider the
case where the source and observer paths consist

2The hypothesis H2 correponds to a non-zero bearing-rate
hypothesis for each of the two legs, Hl corresponds to the same
hypothesis for each of the l legs.
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of two legs. The observations fzig stand as
follows:¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄

z1 =H1F1X0
...

zk =HkF
k
1 X0

zk+1 =Hk+1F2F
k
1 X0Ã source maneuver

...
...

zk+` =Hk+`F
`
2F

k
1 X0

zk+`+1 =Hk+`+1F
`+1
2 Fk1 X0Ã observer maneuver

...

zk+`+m =Hk+`+mF
`+m
2 Fk1 X0

with

Hj = (cosμj ,¡sinμj ,0,0,0,0) 1· j · k+ `+m
and F1 and F2 defined as in (25) and

dimX0 = 6: (30)

Let Rx,Ry,Sx,Sy,Tx,Ty be the columns of the
modified observability matrix O0, i.e.,

O0 = (Rx,Ry,Sx,Sy,Tx,Ty): (31)

Using (30), the vectors Rx, : : : ,Ty may be written
as linear combinations of elementary vectors, i.e.,

Rx = rx(1)

0B@ 1

10

100

1CA+®vx,1
0B@ Z

k10

k100

1CA+®vx,2
0B@ 0

Z0

`100

1CA+®vx,3
0B@ 0

0

Z00

1CA

Ry = ry(1)

0B@ 1

10

100

1CA+®vy,1
0B@ Z

k10

k100

1CA+®vy,2
0B@ 0

Z0

`100

1CA+®vy,3
0B@ 0

0

Z00

1CA

Sx = rx(1)

0B@ Z

k10

k100

1CA+®2vx,1
0B@ Z2

k10

k100

1CA
(32)

+®2vx,2

0B@ 0

kZ0

k100

1CA+ k®2vx,3
0B@ 0

0

Z00

1CA
Sy = ”

Tx= ®rx(1)

0B@ 0

Z0

Z00

1CA+®2vx,1
0B@ 0

kZ0

kZ00

1CA

+®2vx,2

0B@ 0

Z02

`Z00

1CA+®2vx,3
0B@ 0

0

Z002

1CA
Ty = ”:

In (32) the index —0— stands for k+1· j · k+ `,
the index —00— stands for k+ `+1· j · k+ `+m. The
structure of Sy is identical to that of Sx, that of Ty is
identical to that of Tx.
Equations (16)—(18) are straightforwardly (but

quite tediously) extended to this scenario if ` is non
null, that is to say the source and the observer do not
maneuver at the same instant.
Hence, the following result is obtained.

1) Assume that the source and the observer do not
maneuver at the same instant.
2) Assume that there are no zero bearing-rate legs

then:
rank(O0) = 6:

Extension to the multileg case is direct but very
tedious, yielding the following.

PROPERTY 3 Suppose that:
1) the source and the observer do not maneuver at the

same instant, the source maneuver instants are known,
2) the observer path is at least constituted of two legs,

and
3) there is no zero bearing-rate leg.

Then the vector X0 is observable.

We stress that under the hypotheses of Property 3
only one maneuver of the observer is necessary
whatever the number of source legs. At a first glance
this result may appear quite surprising but actually
if we think of Property 2, Property 3 appears quite
natural.
The analysis of observability has culminated

with the analysis of a maneuvering source. We have
presented a general approach able to cope with more
and more complicated scenarios. In [22] this method
is applied to the case of multiple observers. Even if
the analysis in [22] was restricted to a RUN motion
of the source, the discrete-time approach may be
directly extend to maneuvering sources. It is then easily
shown that the multiple observer system is generally
observable.
Another interesting problem is the observability

analysis for multiple sources. Once again, the
discrete-time approach yields a simple and efficient
framework and Property 3 may thus be extended to
multiple maneuvering sources. It should be stressed
that, in this case, the observability analysis is purely
algebraic which means that the statistical assignment
problem is not considered. For the sake of brevity,
the calculations corresponding to these cases are
omitted.

V. THE DUAL APPROACH

The aim of this section is to present a dual
approach of the observability analysis.

LE CADRE & JAUFFRET: DISCRETE-TIME OBSERVABILITY AND ESTIMABILITY ANALYSIS 185

Authorized licensed use limited to: UR Rennes. Downloaded on July 10, 2009 at 11:49 from IEEE Xplore.  Restrictions apply.



If V is an n-dimensional vector space (over R),
then we denote by V¤ (the dual space of V) the vector
space of linear mappings of V into R.
For a (linear) subspace W of V put [24, 25]:

W? = ff 2 V¤ s.t. f(x) = 0 8x 2Wg
where W? is the annihilator of W in V and the
following relations hold [24]:

r1 : (W1\W2)? =W?
1 +W

?
2 , (W1 +W2)

? =W?
1 \W?

2

r2 : dimW
? = n¡ dimW (34)

r3 : V
¤=W? 'W¤

(V=W is the factor space of V over W).
Let ' be an endomorphism of V then we

denote '¤ the dual mapping of ','¤ itself is an
endomorphism of V¤ defined by '¤(f) = f ±' (f 2
V¤,±: composition). We have the relation [24]:

r4 : (ker')
? = Im('¤): (35)

Using (r1,r4) the following (instrumental) relation is
obtained:

fker(O0)g? =
(\

i

ker(HiF
i)

)?
=§i Im(F

i¤H¤i ): (36)

In view of (36), determining §iIm(F
i¤H¤i ) is

sufficient to obtain kerO0.
Consider, first, the case of a nonmaneuvering

source and denote e0 and v0 the 4-dimensional vectors
defined by

e0
¢
=

0BBB@
rx(0)

ry(0)

0

0

1CCCA , v0
¢
=

0BBB@
vx

vy

0

0

1CCCA :
For all this section we assume (for the sake of

simplicity) that ®= 1.
The following equality is easily proved:

(3F¤1 ¡ 2Id)(e0 +3v0)¡ 3(2F¤1 ¡ Id)(e0 +2v0)
+3F¤1 (e0 + v0)¡ e0 = 0: (37)

If we recall the following equalities:

F¤21 = 2F¤1 ¡ Id,F¤31 = 3F¤1 ¡ 2Id, : : : ,F¤k1
= kF¤1 ¡ (k¡ 1)Id

H¤0 = e0,H
¤
1 = e0 + v0, : : : ,H

¤
k = e0 + kv0

then (37) takes the following form:

F¤31 H
¤
3 ¡3F¤21 H¤2 +3F¤1 H¤1 ¡H¤0 = 0 (38)

or
(F¤1 ¡ Id)3e0 +3F¤1 (F¤1 ¡ Id)2v0 = 0: (39)

Note that (39) may be interpreted by considering
the minimal polynomial of F¤1 which is (x¡ 1)2. Further

note that the derivative of the polynomial (x¡ 1)3
(associated with the initial position vector) is the
polynomial 3(x¡ 1)2 (associated with the velocity).
In the general case (k ¸ 3), the following equation

is obtained by direct identification of the terms factors
of the vectors fe0,F¤1 e0,v0,F¤1 v0g which constitute a
basis of R4

F¤k1 H
¤
k ¡

k(k¡ 1)
2

F¤21 H
¤
2 + k(k¡ 2)F¤1 H¤1

¡ (k¡1)(k¡ 2)
2

H¤0 = 0: (40)

Following (40) we obtainX
i

Im(F¤iH¤i ) = sp[e0,F
¤
1 (e0 + v0),F

¤2
1 (e0 +2v0)]

and consequently (36):

dim(N ¢
=kerO) = dim

Ã\
i

ker(HiF
i)

!
= 1: (41)

The classical result (nonmaneuvering source and
observer) has been retrieved by the dual formalism
which does not appear, at a first glance, particularly
useful. But the situation is reversed for the study of
more complicated situations.
Let us consider now the case of a maneuvering

observer and a nonmaneuvering source. Let the vector
u be the new velocity vector after the time k+1. Then
we have

F
¤(k+1)
1 H¤k+1 = F

¤(k+1)
1 [e0 + (k+1)v0 +u¡ v0]

= F¤(k+1)1 (e0 + (k+1)v0)+F
¤(k+1)
1 (u¡ v0)

and more generally:

F
¤(k+`)
1 H¤k+` = F

¤(k+`)
1 (e0 + (k+ `)v0)

+ `F¤(k+`)1 (u¡ v0): (42)

Now, according to (40):

F
¤(k+`)
1 (e0 + (k+ `)v0)

2 sp[e0,F¤1 (e0 + v0),F¤21 (e0 +2v0)] (43)

so that the observability analysis is reduced to
consideration of the vector F¤(k+`)1 (u¡ v0).
Let us denote u0 the 2-dimensional vector defined

by
u0x

¢
=ux¡ vx, u0y

¢
=uy ¡ vy (44)

then we must calculate the following determinants
Dk,`:

3

Dk,`
¢
=det

μ u0

(k+ `)u0

¯̄̄̄
e0
0

¯̄̄̄
e0 + v0
e0 + v0

¯̄̄̄
e0 +2v0
2(e0 +2v0)

¶
:

(45)

3By a slight abuse of notation, e0 is then considered as a
two-dimensional vector.
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These determinants may be easily calculated (see
Appendix A) yielding

Dk,` = (k+ `)det(e0 + v0,u
0)det(e0,e`)

with
e` = 2v0¡¯0k,`(v0¡u0)

¯0k,` =
(k+1)(k+ `¡ 1)

k+ `
¯0k,1

: (46)

Since it has been assumed that the vectors e0 + v0
and u0 are linearly independent, the determinants
fDk,`gj`¡1 are null iff the determinants fdet(e0,e`)gj`=1
are null altogether. Now the nullity of all these
determinants implies (j ¸ 3):

v0¡u0,v0 and e0 are colinear
or equivalently:

e0,v0 and u
0 are colinear:

Property 1 is thus proved by using the dual formalism.
Although the dual formalism appears more

complicated at first, more complex scenarios can
be analyzed in this way. Extensions to complex
scenarios are straightforward since the dual analysis
of observability enlightens the thorough algebraic
structure of the problem.
Consider now the case of a maneuvering source

(with a velocity change at time k) and an observer
with a constant velocity. For a two-legs path of the
source, the dimension of the state X0 and of the
transition matrices F1 and F2 (4) is equal to 6. Using
(36) observability analysis is reduced to consider the
following sequence of 6-dimensional vectors:

H¤0 ,F
¤
1 H

¤
1 ,F

¤2
1 H

¤
2 , : : : ,F

¤k
1 H

¤
k ,F

¤
2 (F

¤k
1 H

¤
k+1)

F¤22 (F
¤k
1 H

¤
k+2), : : : ,F

¤j
2 (F

¤k
1 H

¤
k+j ):

(47)

Let us denote e00 the (k+1)st vector of the
sequence, i.e.,

e00
¢
=F¤k1 H

¤
k

then we have

F¤k1 H
¤
k+1 = e

0
0 + v

0
2, : : : ,F

¤k
1 H

¤
k+` = e

0
0 + `v

0
2

where:4

v02
¢
=F¤k1 v2

(v1 and v2 are the two consecutive velocity vectors).
Quite similarly to (37) the following equality is

obtained by direct identification:

(3F¤2 ¡ 2Id)(e00 +3v02)¡ 3(2F¤2 ¡ Id)(e00 +2v02)
+3F¤2 (e

0
0 + v

0
2) = e

0
0 (48)

4Actually v02 = v2 thanks to the structure of F1.

and more generally:

F¤`2 F
¤k
1 H

¤
k+` ¡

`(`¡ 1)
2

F¤22 (F
¤k
1 H

¤
k+2)

¡ `(`¡ 2)F¤2 (F¤k1 H¤k+1) =
(`¡ 1)(`¡ 2)

2
e00:

(49)

Therefore, the following inclusion holds:

spfH¤0 , : : : ,F¤k1 H¤k ,F¤2 (F¤k1 H¤k+1), : : : ,F¤j2 (F¤k1 Hk+j )g

½ spfe0,F¤1 (e0 + v1),F¤21 (e0 +2v1),

F¤2 (e
0
0 + v

0
2),F

¤2
2 (e

0
0 +2v

0
2)g

and thus
dim(§ Im(FiH¤i ))· 5: (50)

Now the following observations, due to the
structure of F1 and F2, are instrumental.

1) O1: The general form of the vectors
fe0,F¤1 (e0 + v1),F¤21 (e0 +2v1)g is a vectorμx

0

¶
where x 2R4, 0 2 R2:

2) O2: The two last components of the vectors
F¤2 (e

0
0 + v

0
2) and F

¤2
2 (e0 +2v

0
2) are non-zero (under the

non-zero bearing-rate hypothesis for leg 2).
Using the above observations (O1 and O2), we have

proved that if the non-zero bearing-rate assumption is
valid on each leg (H` hypothesis), then we have

dimN = 1

which is nothing but Property 2.

The above reasoning can be directly extended to
any number of legs thus yielding a general proof of
Property 2 (under H`, dimN = 1).
The case of maneuvering source and observer can

be treated by the same way. In this case, the sequence
of vectors (49) is extended by including the vectors
F
¤(`+j)
2 F¤k1 H

¤
k+`+j appearing in (42).

Now

F
¤(`+j)
2 F¤k1 H

¤
k+`+j

= F¤(`+j)2 F¤k1 [e0 + kv1 + (`+ j)v2¡ `u]
(51)

which leads us to consider (as in (44)) the following
vectors:

F
¤(`+j)
2 F¤k1 (v2¡u) (52)

and the associated determinants (see (45)).
Using (51) it is then a trivial matter to prove

Property 3.
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VI. UNKNOWN INSTANTS OF SOURCE VELOCITY
CHANGES

Up to now (Sections IV and V), the instants
of source maneuvers were assumed known. Next
supposing, as previously, a leg-by-leg source trajectory
we extend the previous observability analysis to
unknown instants of source velocity changes.
We consider the following jump linear system [26]

(cf. (5), (14), (24), (30))

Xk+1 = F(rk)Xk +Ur0
k

zk =HkXk:
(53)

In (53) the index rk is the source leg index. The
instants of observer maneuvers are denoted by r0k(Ur0

k
=

(0, : : : ,0,ux(r
0
k),uy(r

0
k))

¤). Note that both rk and r
0
k are

assumed discrete and deterministic. The matrix F(rk)
and the state vector have the appropriate dimension
which is 2(`+1) where ` is the number of source legs.
Consider the jump linear system (53), then we define
observability as follows [26].

DEFINITION Let T0a be the minimum time such that
equivalent outputs zk(X0 =X#1 ) = zk(X0 = X#2 ) and
known inputs U in the interval 0· k · T0a imply that
X#1 =X#2 . We say that the jump linear system (53) is
absolutely observable if T0a is finite.

Equivalently, the system (53) is observable if the
following conditions are fulfilled:

C1 : T ¸ T0a) rank(OT) = 2(l+2)
C2 : (T ¸ T0a)

for any given output sequence fz0,z1, : : : ,zTg and
corresponding input sequence fu0,u1, : : : ,uTg, the
initial state vector X0 can be uniquely determined
(without the knowledge of the values of r1,r2, : : : ,rT¡1).
We now investigate the implications of the above

definition for a maneuvering source. For the sake
of simplicity, the observability analysis is restricted
to a two-legs source path. Consider for instance the
following scenarios:
Scenario 1: Observer maneuver at time k+1(r0k =

±(k+1)), source maneuver at time k+ j+1, state
vector X#1 .
Scenario 2: Observer maneuver at time k+1(r0k =

±(k+1)) source maneuver at time k+ j 0+1(j0 > j),
state vector X#2 .
We now consider the conditions ensuring the

unicity of the state vectors X0. Practically, we show
that under non-zero bearing-rate assumptions and
given the input and output sequences, X#1 and
X#2 are equal. As a by-product, we see that the
source maneuvering instants are identical for the two
scenarios (j = j 0).
For that purpose, let us denote O1 the observability

matrix associated with the scenario 1 and O2 the

observability matrix associated with the scenario 2,
then (see (53)) O1 and O2 take the following form:5

O¤1 = (H¤0 ,F¤1 H¤1 , : : : ,F¤1 H¤k , : : : ,
F¤k+j1 H¤k+jF

¤k+j
1 F¤2 Hk+j+1, : : : ,

F¤k+j1 F¤j
0¡j+1

2 Hk+j0+1, : : : ,

F¤k+j1 F¤j
0¡j+r

1 H¤k+j0+r )

and

O¤2 = (H¤0 ,F¤1 H¤1 , : : : ,F¤k1 H¤k , : : : ,
F¤k+j1 H¤k+j ,F

¤k+j+1
1 H¤k+j+1, : : : ,

F¤k+j
0

1 F¤2 H
¤
k+j0+1, : : : ,

F¤k+j
0

1 F¤r2 H
¤
k+j0+r ): (54)

The system equations (5) result in the following
equality:

OX0 = z (55)

where z is the output vector associated with X0.
The output vectors zi (scenario i) are directly

deduced from (53), yielding

z1 = (0, : : : ,0,Hk+1U, : : : ,Hk+jF
j
1U,Hk+j+1F2F

j
1U, : : : ,

Hk+j 0+1F
j0¡j+1
2 Fj1U, : : : ,Hk+j 0+rF

j 0¡j+r
2 Fj1U)

¤

(56)
z2 = (0, : : : ,0,Hk+1U, : : : ,Hk+jF

j
1U,Hk+j+1F

j+1
1 U, : : : ,

Hk+j 0+1F
j0
1 F2U, : : : ,Hk+j0+rF

j0
1 F

r
2U)

¤:

Assuming rankO1 = rankO2 = 6, let us denote X#1
and X#2 the associated state vectors. Then:

OiX#i = zi for i= 1,2: (57)

At this point it is worth considering the following
decomposition of the 6-dimensional state vector X#i :

X#i =
μ
Yi
yi

¶
where

Yi 2R4, yi 2R2: (58)

Let us denote y2 and y
0
2 the respective velocity vectors

on the second source leg for the two scenarios6 i.e.,

y2
¢
=(vx,2,vy,2)

y02
¢
=(v0x,2,v

0
y,2):

Then the consideration of the first (k+ j) rows of
(57) implies

Y2 =Y1
¢
=(rx,ry,vx,vy)

¤: (59)

5F1 and F2 defined as in (24) and Hk = (cosμk ,¡sinμk ,0,0,0,0).
6(The index 2 stands for the 2nd source leg) (cf. (57)).
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Similarly, considering the k+ j+ s rows of (57)
where s runs from 0 to j0 ¡ j we obtain the following
set of equalities:

Hk+j+sF
k+j
1 Fs2X#1 ¡Hk+j+sFk+j+s1 X#2

= sHk+j+sF12UHk+j+s (F
j
1 F

s
2 ¡Fj+s1 )U

= sHk+j+sF12U

with

F12
¢
=

0B@0 ¡Id Id

0 0 0

0 0 0

1CA , and s= 0, : : : ,j0 ¡ j:
(60)

Note that F12 may be equivalently defined by the
following matrix equality:

Fk+j1 Fs2 = F
k+j+s
1 + sF12: (61)

Using (61), (60) simply results in

s[cos(μk+j+s )(vx,2¡ vx¡ ux)

¡ sin(μk+j+s )(vy,2¡ vy ¡ uy)] = 0

s= 0 to j0 ¡ j:
Similarly, considering the last r rows of (57) the

following set of equalities holds:

s[cosμk+j0+s (v
0
x,2¡ vx,2)¡ sinμk+j 0+s (v0y,2¡ vy,2)]

+ (j 0 ¡ j)[cosμk+j0+s (vx,2¡ ux)

¡ sinμk+j 0+s (vy,2¡uy)] = 0 (62)

s= 0 to r:

Thus under the non-zero bearing-rate hypothesis,
we see that (61) and (62) imply that j = j0 (see (62))
and v0x,2 = vx,2 (see (63)). Therefore:

X#1 =X#2 and j = j 0: (63)

The following property has thus been obtained.

PROPERTY 4 Assume that the observer maneuvers
occur at times different from all the source maneuver
instants and that there are no zero bearing-rate legs.
Then the jump linear system is observable.

VII. SOME PROPERTIES OF THE FIM DETERMINANT
AND OPTIMIZATION OF THE OBSERVER
TRAJECTORY

Up to now, we have been only concerned with
observability analysis which is a binary yes/no
parameter. However a practical fundamental

question remains: if the system is observable what
is the accuracy of the state estimate? A classic
approach consists then in considering the FIM
and more precisely its determinant. The choice of
the determinant functional is reasonable. This is a
common cost functional in the estimation literature
[1, 28, 29, 34, 35]. It is the inverse of the square of the
volume of the uncertainty ellipsoid. Furthermore, we
show (Section VIII) that, under hypotheses reasonable
in the BOT context, the maximum of det(FIM) is
attained when the sphericity criterion is maximum.
However, as we see later, the det functional does not
own the monotonicty property (see Section VIII) so
it is not evident that adding an optimal control for
the time t+1 to a control sequence optimal up
to time t will yield a control sequence up to time
t+1.
This explains, for a large part, the relative

complexity of this section. We show that
using elementary multilinear algebra accurate
approximations of det(FIM) may be obtained.
More specifically, we prove that det(FIM) may be
approximated by a functional involving only the
successive source bearing-rates yielding thus the
general form of the optimal controls (observer
maneuvers). In particular it is shown that, under the
long-range and bounded controls hypotheses, the
sequence of optimal controls lies in the general class
of bang-bang controls. These results demonstrate
the interest of maneuver diversity. More generally,
they provide a general framework for optimizing
the observer trajectory by means of feedback
control.
First, approximations of det(FIM) are derived for

a constant source bearing-rate (Section VIIA). Using
the same approach, these results are extended to the
case of time-varying (PWCS) source bearing-rates. A
geometric interpretation of these results is presented in
Section VIIB.

A. Some Approximations of the FIM Determinant and
Their Consequences

Consider the case of a nonmaneuvering source
(constant velocity vector), then the calculation of the
FIM is a routine exercice yielding, under the Gaussian
assumption [1]:

FIM =
μ
@£(X)
@X

¶¤
§¡1

μ
@£(X)
@X

¶
(64)

where £(X) is the measurement vector generated by
the state vector X and § is the diagonal matrix whose
diagonal terms are the inverses of the variances of the
measured bearings. The partial derivative matrix of the
bearing vector £(X) with respect to the state vector is
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directly calculated [1, 2] yielding

@£(X)
@X

=

0BBBBB@
cosμ1
r1

¡sinμ1
r1

cosμ1
r1

¡sinμ1
r1

...
cosμn
rn

¡sinμn
rn

ncosμ1
rn

¡nsinμn
rn

1CCCCCA
(65)

where fμigni=1 represent the source bearing at the
instant i and frig the source-observer distance. In
(65) the reference time is the instant 0. Obviously,
another reference time may be chosen but it is quite
remarkable that the determinant of the FIM does not
depend on the reference time.
The distance is assumed to be constant (at first).

Further, we assume that the diagonal noise matrix § is
proportional to the identity (i.e., § = ¾2Id).
We denote Fk,4 the FIM corresponding to a

reference time k and 4 consecutive measurements,
μk, : : : ,μk+3. Then the FIM Fk,4 takes the following form
(4 measurements):

Fk,4 = (¾r)
¡2Gk,4G¤k,4

where
Gk,4 = (Gk,Gk+1,Gk+2,Gk+3)

and Gk is the gradient vector of μk with respect to X0,
i.e.,

Gk = (cosμk,¡sinμk,k cosμk,¡k sinμk)¤: (66)

Assuming Gk,4 invertible, we have

det(Fk,4) = (¾r)
¡8(detGk,4)2:

It is thus sufficient to calculate detGk,4. For that
purpose, we consider a second-order expansion of
cos(μk+i) and sin(μk+i) (i= 1,2,3), i.e.,

cos(μk+i)
2
=cosμk ¡ i(sinμk)_μ

+
i2

2
(¡_μ2 cosμk ¡ μ̈ sinμk)

sin(μk+i)
2
= sinμk + i(cosμk)_μ

+
i2

2
(¡_μ2 sinμk + μ̈cosμk)

_μ
¢
=
μ
@μ(t)
@t

¶
t=k
:

(67)

The calculation of det(Gk,4) is detailed in Appendix
B. Denoting f®ig3i=1 and f¯ig3i=1 constants deduced
from (67), we obtain (see Appendix B)

det(Gk,4) = ®1(2®3¯02¡®2¯03)

where

®i =
i2

2
μ̈+ i _μ, ¯i =¡

i2

2
_μ2

¯02 = 2(1+¯2)¡
®2
®1
(1+¯1)

¯03 = 3(1+¯3)¡
®3
®1
(1+¯1):

(68)

Notice that the formula (68) is valid whatever the
order of the approximation since it involves only the
two vectors gk and vk.
It is now quite enlightening to calculate explicitly

the second-order approximation of det(Fk,4) given by
(68).

PROPERTY 5 Approximating the source-observer
distance as constant, then the second-order
approximation of detFk,4 is given by

detFk,4
2
=(¾r)¡8(6_μ4¡ 3μ̈2)2: (69)

This approximation is null under the following
condition:

6_μ4¡ 3μ̈2 = 0
which is equivalent to

4_μ4¡ 6μ̈2 +2_μ_̈μ = 0: (70)

At this point, it is worth recalling the observability
criterion given by Nardone and Aidala [9], i.e., with
their notations:

det[A(t)] = 4_μ4¡ 3μ̈2 +2_μ_̈μ 6= 0: (71)

We can remark that (70) and (71) only differ on the
scalar coefficients affecting μ̈ which are respectively ¡6
and ¡3.
If a third-order approximation of

(cos(μk+i),sin(μk+i)) is considered then (68) is still
valid, only the f®ig and f¯ig are slightly modified:

®i = i _μ+
i2

2
μ̈+

i3

6
(μ̈¡ _μ3)

¯i =¡
i2

2
_μ2¡ i

3

6
_μμ̈:

(72)

The following approximation of the determinant of
the third-order approximation of Fk,4 is then

detFk,4' (¾r)¡8 ¢ (4_μ4¡ 3μ̈2 +2_μ_̈μ)2 (73)

which leads to the observability criterion of Nardone
and Aidala.
Obviously, our attention is not limited to four

measurements per legs. So, the previous calculations
are now extended to any number of measurements.
Let ` be the number of measurements and consider
now the (4£ 4) FIM Fk,` (l ¸ 4) defined as in (66) by

Fk,` = (¾r)
¡2Gk,`G¤k,`
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where

Gk,` = (Gk,Gk+1, : : : ,Gk+`) `¸ 0: (74)

Note that in (74) the source-observer distance
is again assumed to be constant. Using classical
properties of multilinear algebra, namely the
Cauchy—Binet formula [19, 24], det(Fk,`) is given by the
following formula:

det(Fk,`) = (¾r)
¡8X

E

det(GE)2

where

E = fi1, i2, i3, i4g s.t. 1· i1 < i2 < i3 < i4 · `
and

GE = (Ci1 ,Ci2 ,Ci3,Ci4): (75)

In (75) Cij stands for the ij th the column of the
matrix G. Considering for instance, a first-order
expansion of the bearings μk+i (i.e., μk+i

1
= μk + i _μ), the

calculation of det(Fk,`) is reduced to the calculation
of the determinants det(GE). Now each of these
determinants is the determinant of a 4£4 matrix and
may be calculated by using the general calculation
given in Appendix B, yielding the following.

RESULT 1

detFk,4
1
=
μ
sin _μ
¾r

¶8
16

detFk,5
1
=
μ
sin _μ
¾r

¶8
32[18+16cos(2 _μ) + cos(4_μ)]

detFk,6
1
=
μ
sin _μ
¾r

¶8
32

£ [313+416cos(2_μ)+136cos(4_μ)
+16cos(6_μ)+ cos(8_μ)] (76)

detFk,8
1
=
μ
sin _μ
¾r

¶8
32

£ [26691+44912cos(2 _μ) +27608cos(4_μ)
+12368cos(6_μ) +3867cos(8_μ)

+816cos(10_μ) +136cos(12 _μ)

+16cos(14_μ) + cos(16_μ)] etc.

The general form of this approximation of det(Fk,`)
is thus:

detFk,`
1
=
μ
sin _μ
¾r

¶8
32P̀ [cos(2_μ), : : : ,cos(4(`¡ 4)_μ)]:

(77)

This expression of detFk,` is directly deduced
from the general expression of detGE obtained in
Appendix B. This leads to the following result.

PROPERTY 6 The following approximation of detGE
holds:

detGE = (c¡ b)(d¡ b) sin(c1¡ d1)sinb1
+ (c¡ b)(c¡ a) sin(b1¡ d1)sinc1
+ (b¡ d)(b¡ a)sin(b1¡ c1)sind1

where
a= i1, b = i2, c= i3, d = i4

b1
¢
=(i2¡ i1)_μ c1

¢
=(i3¡ i1)_μ d1

¢
=(i4¡ i1)_μ:

(78)

Note that the only approximation lies in the
first-order approximation of μk+i since the other
steps are exact calculations. Using this formalism, an
extension of (76)—(77) to higher order expansions of
μk+i is quite straightforward but not truly enlightening.
Instead the effect of observer maneuvers is now
considered.
Consider that the temporal evolutions of the source

bearings on two successive legs are described by the
two following linear models:

μk+i
1
= μk + i _μ1 on the 1st leg

μk0+j
1
= μk0 + j _μ2 on the 2nd leg:

(79)

Then the following property holds (cf. Appendix B)
and extends the previous result (78).

PROPERTY 7

det(GE) = (c¡ b)(a¡b)sin(b1 + c1)sind1
+ (b¡ d)(a¡ d) sin(b1 + d1)sinc1
+ (c¡ d)(d¡ b)sin(c1¡ d1)sinb1 (80)

where b1,c1,d1 have, this time, the following meanings:

b1 = (i2¡ i1)_μ1 c1 = (i3¡ i2)_μ2 d1 = (i4¡ i2)_μ2
a= i1, b = i2 c= i3 d = i4

(i1, i2) 2 1st leg, (i3, i4) 2 2nd leg:
Since the parameters _μ1 and _μ2 are usually small,

we examine an expansion of det(GE) wrt _μ1 and _μ2
around the point (0,0). Then, we obtain the following
types7 of fourth-order expansions (in _μ1 and _μ2) of
det(GE) given by (80):

(detGE)2 'K(x2y2¡2xy3 + y4)
or : K(x2y2¡2x3y+ y4)
or : K(x2y2¡2x3y+ x4)

(81)

with
K
¢
=(b¡ a)2(c¡b)2(c¡ d)2(d¡ b)2

x
¢
= _μ1, y

¢
= _μ2:

(82)

7The type of the expansion only depends on the relative values of
i1, i2, i3, i4.
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Also, it is worth recalling the following expression
of _μ, i.e., [27]:

_μ =
vxry ¡ rxvy

r
=
det
μ
vx rx

vy ry

¶
r

: (83)

Since the velocity modulus v (i.e., v = (v2x + v
2
y)
1=2)

is physically limited (i.e., v · vm), it follows from (81)
that

0· j _μj · _μmax
with

_μmax =
1
r
det
μ
vxm rx

vym ry

¶
and

vxm = vm

μ
ry
r

¶
, vym = vm

μ¡rx
r

¶
: (84)

In other words, _μ is maximized when the velocity
vector (components vx,vy) is orthogonal to the position
vector (components rx,ry). It is therefore quite
legitimate to consider the optimization of the FIM
determinant on the following 2D domain:

¡ _μmax· _μ1 · _μmax
¡ _μmax· _μ2 · _μmax:

(85)

Consider a two-legs path for the observer and a
nonmaneuvering source and denote F̀ ,m the associated
FIM. The index k is omitted since det(Fk,`,m) is
independent of k. Then, as previously, we have:

det F̀ ,m = (¾r)
¡8X

E

2
det(GE) (86)

det(GE) given by (80)8
(fμ1, : : : ,μ`gÃ leg 1,fμ`+1, : : : ,μ`+mgÃ leg 2):

Considering det F̀ ,m as a function of _μ1 and _μ2,
we see directly that det F̀ ,m is maximum when each
of its elementary terms (i.e., det2(GE)) is maximum.
Now it follows directly from (81) that each det2(GE) is
maximized when

j _μ1j= j _μ2j= _μmax
_μ2 =¡ _μ1:

(87)

For these values of the parameters _μ1 and _μ2, the
maximum of det F̀ ,m has the following expression:

max
_μ1,_μ2

(det F̀ ,m)' (¾r)¡8K`,m _μ4max: (88)

The positive scalar K`,m depends only on ` and m.
The minimum value (for a given value of _μ) of det F̀ ,m
is attained for _μ1 = _μ2 = _μ giving

min
_μ1,_μ2

det F̀ ,m '
μ _μ
¾r

¶8
k`+m: (89)

8The symbol Ã means that fμ1, : : : ,μlg are bearings corresponding to
the leg 1.

Actually (89) constitutes a minoration of det F̀ ,m
which has been rather intensively used in the literature
[28, 29] for deriving an integral criterion.9 However,
when we compare (88) and (89) this minoration
appears quite pessimistic since it roughly corresponds
to a nonmaneuvering observer. On the other hand,
(88) shows us that optimized observer maneuvers may
improve the values of the FIM criterion dramatically.
Note that the optimal observer maneuvers then appear
as a bang-bang control sequence. This general result
is confirmed by numerical results [29, 30]. A difficult
problem consists then in determining the switching
instants.
Let us now illustrate (80) with some examples. By

using (81) and (85) we obtain

(¾r)8detF4,3' 200x4¡ 800x3y
+5120x2y2¡ 8640xy3 +4120y4

(¾r)8detF6,7' 694820x4¡ 2075640x3y
+3599540x2y2¡ 3751440xy3

+1532720y4:

(90)

where
x= _μ1, y = _μ2:

The values of detF6,7(x,y) are plotted in Fig. 2.
Considering unsymmetric legs, we obtain for instance,

(¾r)8detF2,7' 56448y4¡ 112896xy3 +56448x2y2

(¾r)8detF3,6' 94864y4¡ 193648xy3 (91)

¡ 5488xy3 +103488x2y2:
The above calculations may be extended to a

three-leg path, yielding

arg_μ1,_μ2,_μ3maxdet F̀ ,m,n = "(
_μmax,¡ _μmax, _μmax)

"=§1:
(92)

Up to now, the effects of range variations have
not been considered. However, the analysis is greatly
simplified if we remark that the effects of range and
bearing-rate variations are uncoupled. Consider for
instance, a first-order expansion of the source-observer
distance (i.e., rk+i

1
= rk + i_r). Then, as previously, the

calculation of detFk,` is reduced to the calculation of
the determinants det(GE) yielding for instance,

detFk,6'
32(sin _μ)8

¾8(r0 + _r)2 ¢ ¢ ¢ (r0 +6_r)2
P̀ (_μ,_r)

where
P̀ (_μ,_r) = P̀ (_μ) ¢Q`(_r)

9Even if the analysis was restricted to localization.
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Fig. 2. Values of approximation (see (90)) of det(F6,7); ¡10¡3 · _μ1 · 10¡3 and ¡10¡3 · _μ2 · 10¡3.

with (see (77))¯̄̄̄
¯̄̄̄
¯̄̄
P̀ (_μ) = 313+416cos(2 _μ) +136cos(4_μ)

+16cos(6_μ) + cos(8_μ)

Q`(_r) = r
4
0 +14r

3
0_r+73_r

2
0_r
2 +168r0_r

3 +144_r4

r0
¢
= rk:

(93)

From (93) we see that the polynomial P̀ (_μ,_r) is
actually the product of the two polynomials P̀ (_μ)
and Q`(_r). This factorization is quite general and is
simply due to the basic properties of the determinant.
Therefore, the effects of range variations are easily
taken into account. More precisely, it is sufficient to
replace the matrix R1 by the matrix (1+_r=r)

¡1R1 in the
previous analysis. The coefficients ®l, : : : ,°l (100) are
then subsequently modified.
The practical interest of the preceding results is

evident since explicit forms of the FIM determinant
have been obtained. We stress that these explicit forms
involve only directly observable [27, 30] parameters.
More precisely _μ may be directly estimated (i.e.,
without any prior knowledge about the source
trajectory) and even _r=r may be estimated (since
_r=r =¡μ̈=2_μ) from the spatio-temporal data received
on the sensor array. Hence, the above results allow us
to optimize the observer trajectory without any prior
knowledge about the source trajectory [31, 32].

B. Geometric Interpretations of the Properties of the
FIM Determinant

The preceding results advocate for a more
systematic and geometric interpretation. Thus, we
consider the determinant detGE (see (74)) where as
previously (see (75)), E = fi1, i2, i3, i4g and i1 < i2 < i3 <

i4

detGE = det(Gi1, : : : ,Gi4)

= det(Ri11Gk,R
i2
1Gk,R

i3
1Gk,R

i4
1Gk)

where

R1
¢
=
μ
R0 0

R0 R0

¶
and R0

¢
=
μ
cos_μ sin _μ

¡sin _μ cos_μ

¶
:

(94)

In the same spirit, the vector Gk may be written as

Gk = S
k
1E

where

S1
¢
=
μ
S0 0

S0 S0

¶
and S0

¢
=
μ
cosμ +sinμ

¡sinμ cosμ

¶
(95)

μ
¢
= μk=k, E= (1,0,0,0)¤:

Now the following property is instrumental: the
matrices R0 and S0 commute. The matrices R1 and S1
then also commute and using this property detGE then
becomes

detGE = det(Ri11 E,Ri21 E,Ri31 E,Ri41 E): (96)

The following property has thus been proved:
detGE is independent of k and μk. This remarkable
property is due to the basic property of the
determinant (detAB = detAdetB). A further step
yields

detGE = det(E,Ri2¡i11 E,Ri3¡i11 E,Ri4¡i11 E)

= det

Ã
e

0

¯̄̄̄
¯ R

i02
0 e

i02R
i02
0 e

¯̄̄̄
¯ R

i03
0 e

i03R
i03
0 e

¯̄̄̄
¯ R

i04
0 e

i04R
i04
0 e

!
(97)
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where

e
¢
=(1,0)¤, i0k

¢
= ik ¡ i1 k = 2,3,4: (98)

The calculation of detGE may then be achieved by
recalling the expression of the minimal polynomials of
R0:

R20 = 2cos_μR0¡ Id2 (99)

so that the minimal polynomial of R1 is [(x¡¸)
¢ (x¡¸)]2, ¸= exp(i _μ).
Thanks to the Cayley—Hamilton Theorem, the

following equality holds (l ¸ 4):
Rl1 = ®lId+¯lR1 + °lR

2
1 + ±lR

3
1:

The coefficients ®,¯,°,± are determined by the
following recursion:

±l+1 = °l+4cos_μ±l

°l+1 = ¯l¡ 2(1+2cos2 _μ)±l
¯l+1 = ®l+4cos_μ±l, ®l+1 = ±l:

(100)

The determinant detGE can thus be calculated
for any subset E, yielding the general form (see (77))
of detFk,l . Further note that the vector sequence
fE,Ri2¡i11 E,Ri3¡i11 E,Ri4¡i11 Eg is a part of a Krylov
sequence [33].
Another way to calculate (detGE)2 consists in

considering the determinant of the gramian matrix of
the Krylov sequence, more precisely:

(detGE)2 = det(G¤EGE)
= det[Gram(E,Ri1E,R

j
1E,R

k
1E)]: (101)

Now, the calculation of the elements of the
gramian matrix is direct since we have

E¤R¤i1 R
j
1E= (1+ ij)e

¤R¤i0 R
j
0e

= (1+ ij)cos(i¡ j)_μ: (102)

Using (102) an explicit form of (detGE)2 is
straightforwardly obtained:

(detGE)2 = (det(V1,V2,V01,V02))2

where10

V¤1 = (1,cosi _μ,cosj _μ,cosk _μ)

V¤2 = (1,sini _μ, sinj _μ, sink _μ)

V0,¤1 = (0, icosi _μ,j cosj _μ,k cosk _μ)

V0,¤2 = (0, isini _μ,j sinj _μ,k sink _μ)

(103)

yielding finally (80).
The previous calculations provide interesting

insights about the optimization of the observer
maneuvers. For instance, using (97), (100) and the

10E = f0, i,j,kg.

determinant properties the following expression is
obtained:

det(Fk,5) = det(Fk,4)(2+®4
2 +¯4

2 + °4
2): (104)

A more general expression of det(Fk,l) can be
easily obtained by this way, since the calculation is
reduced to a simple enumeration (see Appendix C).
Furthermore, interesting insights about the observer
maneuvers may be thus obtained. Consider for instance
the following determinant:

f(y) = det(E,R1,xE,R
2
1,xE,R

2
1,xR1,yE) (105)

where x= _μ1, y = _μ2.
Let us now calculate the partial derivative

@f=@y(x). We obtain

@f

@y
(x) = det(E,R1,xE,R

2
1,xE,R

2
1,xS1,xE) (106)

where S1,x= ((@=@y)R1,y)(y=x) , or, explicitly:

S1,x=
μ
S0,x 0

S0,x S0,x

¶
(107)

with

S0,x=
μ¡sinx ¡cosx
cosx ¡sinx

¶
:

Using (94) and (107) the following property is then
easily proved:

S1,xR
2
1,x= R

2
1,xS1,x= S1,3x

so that
@f

@y
(x) = det(E,R1,xE,R

2
1,xE,S1,3xE)

= 2sin(2x)¡ sin(4x)
2

(108)

and, therefore

f(y) ¼ f(x)+ (y¡ x)@f
@y
(x)

¼ cx4 + (y¡ x)(2x)
¼ 2x(y¡ x): (109)

At this point, it is worth noting that the vector
S1,3xE= (¡sin3x,cos3x,¡3sin3x,3cos3x)¤
(see (108)) is approximately orthogonal to the
vectors fE,R1,xE,R21,xEg. This fact is typical of a
four-dimensional state vector and corresponds to
a diversity in maneuvers. The effect of an observer
maneuver corresponds to a change from x(_μ1) to y(_μ2).
From (109) it is clear that the increase of det(Fx,y) is
maximized when the term (2x(x¡ y))2 is maximized.
Since _μ is bounded, an optimal sequence of controls
is necessarily a bang-bang one or, more precisely, a
sequence of the form f _μmax,¡_μmax, _μmax, : : :g.
It remains to determine the optimal number of

control commutations (from _μmax to ¡ _μmax) as well
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as their locations. Using the previous results, the
problem may be formulated as follows. Consider a
multilegs observer trajectory, then the problem consists
in maximizing det(Fl1,l2,l3,:::) (li is length of the ith leg)
given below (see (93))

(¾r)8det(Fl1,l2,l3) ¼ P(l1, _μmax)μ8 +P(l1, l2, _μmax)(2 _μmax)
4

+P(l1, l3, _μmax)(2 _μmax)
4
+ ¢ ¢ ¢ : (110)

The instants of commutation may then be determined
by maximizing the previous expression. In (110), the
polynomials P(li, lj , _μ) may be obtained by means of
the Cayley-Hamilton Theorem (see (99)).

VIII. SOME CONSIDERATIONS ABOUT THE FIM
FUNCTIONALS

The previous section has been devoted to the study
of the determinant of the FIM. As it has been shown
this functional inherits quite interesting properties
from multilinear algebra. Furthermore, it has been
widely considered in the TMA literature [34—36]. We
now see how elementary considerations advocate for
the use of this functional.
Consider the inequality of the arithmetic-geometric

means [19], it yields

(detF)1=4· 1
4tr(F): (111)

Now if–as in the previous section–the source
receiver distance is assumed to be constant. The trace
(denoted by tr) is directly calculated, providing (n is
the number of estimated bearings):

trF =
1
r2¾2

n ¢ n+3
2

: (112)

Equality in (111) can occur only if F is
proportional to the identity matrix. Due to the
particular structure of F (66) this is generally
impossible. The scalar detF may be interpreted as
the inverse of the volume of the uncertainty ellipsoid.
Another interesting criterion may be the condition
number ·(F)(·(F) = ¸max=¸min). However there exists
no general relation between the eigenvalues of F
and the variances of fr̂x, r̂y, v̂x, v̂yg. The determinant
thus appears as a good criterion involving all the
eigenvalues. Furthermore, as it is shown in (112),
maximizing detF(F Â 0) amounts to optimize the
sphericity test (111). The smallest eigenvalue of F thus
cannot tend towards zero.
Indeed, since, under the long range hypothesis,

tr(F) (cf. (112)) does not depend on the parameters
_μi it is thus equivalent to maximize detF and the
sphericity criterion [37] s(F) defined by

s(F) =
p tr(F)
(detF)p

(113)

where p is the dimension of F (here p= 4).

Thanks to the basic inequality of the arithmetic-
geometric means, the following property holds:

0· s(F)· 1 (F º 0)
with

s(F) = 1() F = ¸Id (¸ > 0): (114)

However, as stressed in [1], the FIM inherits a very
special structure from its definition (65), (66). More
precisely with the notations of [1], the general structure
of F is given below:11

F =
1
¾2r2

nX
i=1

μ
−i i−i

i−i i2−i

¶
where

−i =

Ã
cos2 μi ¡ 1

2 sin2μi

¡ 1
2 sin2μi sin2 μi

!
: (115)

Very interesting insights about the eigenvalues
of F have been given in [1]. More precisely, using
the Weyl’s Theorem [19] and the Cauchy’s inclusion
principle [38, 39], it has been shown that, under
reasonable hypotheses, the two largest eigenvalues
of F are within a distance n of the eigenvalues of
the submatrix −22(−22 =

P
i i
2−i). The two smallest

eigenvalues, which usually correspond to the position
estimate are always less than or equal to eigenvalues
of −11(−11 =

P
i−i). Therefore, the matrix F cannot be

proportional to the identity matrix.
Remarkable bounds for the ratios of eigenvalues

using only tr(F) and tr(F2) have been obtained in
[40]. More precisely, let p be the dimension of F and
assume 1· k < `· p, then the ratio °k,`(°k,`

¢
=¸k=¸`)

admits the following bound:

°k,` ·
c+ k+

½
p¡ `+1

k
(c+ k)(p¡ `+1¡ c)

¾1=2
c+ k¡

n
k

p¡`+1(c+ k)(p¡ `+1¡ c)
o1=2

where

c=
(trF)2

tr(F2)
¡ (`¡ 1): (116)

However, the special structure of F is not
considered in this bound, but, actually, maximizing
the determinant (and thus the sphericity criterion) will
“almost” optimize the condition number.
More generally, if we consider a functional f (of

F), it would be worth that the following monotonicity
property be satisfied by the functional f.

DEFINITION
1) Simple Monotonicity Property:

F 0 Â F Â 0) f(F 0)> f(F)> 0: (117)

110: reference time.
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2) Additive Monotonicity Property (AMP):

F,F 0 Â 0 and G º 0
f(F 0)> f(F)) f(F 0+G)> f(F +G):

(118)

Actually, the second property should be highly
desirable for optimizing the observer motion since
it justifies the use of dynamic programming [41, 42].
Unfortunately, it is not satisfied by the determinant
(f(F) = detF) and is trivially satisfied by the trace.
Indeed, this property is very strong and it can be
proved that it may only be satisfied by functionals
derived from the trace [43]. More precisely, the only
functionals satisfying the AMP are of the form f(F) =
g(tr(AF)), g increasing function and A fixed matrix.
The nonvalidity of the AMP for the determinant
largely explains the relative complexity of the previous
section.

IX. STOCHASTIC OBSERVABILITY AND
ESTIMABILITY

We now consider a Markovian sequence of state
vectors:

Xk+1 = FXk +Uk +Wk

with

Wk IID sequence (cov(W) =Q): (119)

where IID is independent identically distributed. The
measurement equation is unchanged (4) since, as
previously, we use the pseudomeasurement equation.
According to the definition of Boguslavskij [43], we
say that the system is stochastically observable if, in
estimating its states from its outputs, the posterior
error variances of all the state components are strictly
smaller than the priors.
Let X̂k be the linear least-mean-square estimate

of Xk given the measurements fyk, : : : ,y0g and
define the matrices ¦k and Pk (¦k = cov(Xk),Pk =
cov(Xk ¡ X̂k)) then we consider the following
definition of observability.

DEFINITION The system (4), (120) is said to be
observable12 iff:

e¤i Pkei < e
¤
i ¦kei 1· i· n: (120)

It can easily shown that the general form of Pk is

Pk =¦k ¡Lk§¡1k L¤k: (121)

The rectangular (n£ k)Lk is defined later. Since
the matrix §k (the covariance matrix of the noise
measurements) is positive definite, the matrix
¦k ¡Pk is positive semidefinite. So, the inequality
e¤i Pkei · e¤i ¦kei always holds, whatever i. The values
of i ensuring a strict inequality are the observable
state components. In fact, the above definition is

12feigni=1 usual orthogonal basis of Rn (n= dimX).

rather arbitrary and does not take into account the
possible coupling between the estimates of the state
components. A convenient definition may then be
the estimability condition of Baram and Kailath
[44].

DEFINITION The system (4), (120) is said to be
estimable iff: ¦k ¡Pk is positive definite.

Denote μ(Lk) the number of rows of the matrix Lk
with non-zero elements, then a direct consequence of
(121) is that the system is stochastically observable
iff μ(Lk) is equal to n. Another direct consequence
of (121) is that the system is estimable iff the rank of
Lk is n. Direct calculations [43,44] yield the following
expression of Lk:

Lk = f©k,0N0,©k,1N1, : : : ,©k,kNkg
where

©k,j = F
k¡j (j · k)

Nj =¦jH
¤
j

and ¦j satisfies the following Lyapunov state equation:

¦j+1 = F¦jF
¤+Q: (122)

From (122) and quite direct but lengthly calculations
it is easily seen that the BOT system is stochastically
observable except for very pathological cases, i.e.,
the sequences fcosμ0, : : : ,cosμkg or fsinμ0, : : : , sinμkg
are identically null. As pointed in [43] stochastic
observability is thus less demanding than deterministic
observability which requires a maneuver of the
observer.
We now consider estimability for BOT. In view of

the following factorization of the matrix Lk [43, 44]:

Lk = F
k(¦0H

¤
0 ,¦

0
1H

¤
1 , : : : ,¦

0
kH

¤
k ) (¦ 0i = F

¡i¦i)
(123)

it is easily shown (Fk = kF ¡ (k¡ 1)Id) that the
matrices ¦ 0i are spanned by the three matrices
¦0,¦

0
1,¦

0
2, i.e.,

¦ 03 = 4¦0¡ 6¦ 01 +4¦ 02,

¦ 04 = 13¦0¡ 20¦ 01 +10¦ 02, : : : :
(124)

From (124) we deduce that the rank of Lk is generally
equal to 3 for a zero-bearing-rate scenario. The system
is then not estimable. Excepting this case, the BOT
system is generally estimable since the rank of Lk is
equal to 4.
A convenient “measure” of the information

contained in the measurements may be det(Lk§
¡1
k L

¤
k).

Direct calculations yield the following results rather
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similar to (88):

(¾r)8det(L4§
¡1
4 L

¤
4)

= 16[43¡47cos2 _μ]2(sin _μ)4

(¾r)8det(Lk§
¡1
k L

¤
k)

=Ql[cos2 _μ, : : : ,cos(4(k¡4)_μ)](sin _μ)4:

(125)

In order to optimize the observer maneuvers,
a reasonable criterion may consist in maximizing
det(Lk§

¡1
k L

¤
k) for whom an explicit form is given by

(122), (125). Note, however, that this formula is valid
only if _μ is approximatively constant and that the true
problem is a difficult stochastic control problem.

X. CONCLUSION

A discrete-time BOT observability analysis has
been developed allowing us to immerse it in the simple
formalism of linear algebra. Using the direct approach,
observability analysis is essentially reduced to basic
considerations about subspace dimensions. Even if this
approach is conceptually straightforward, it becomes
more and more cumbersome as the source-encounter
scenario complexity increases. For complex scenarios,
the dual approach may present certain advantages due
to the direct use of multilinear algebra. New results
for BOT observability of a maneuvering source were
obtained by this way. Thus, observability analysis has
been extended to piecewise linear systems which allows
us to analyze observability for general source and
observer trajectories. Using the same formalism, the
observability analysis was then extended to unknown
instants of source velocity changes.
Even if observability analysis provides thorough

insights about the algebraic structure of the BOT
problem, the optimization of the observer maneuvers
is essentially a control problem. It was shown that a
relevant cost functional to this problem is the FIM
determinant. So, a large part of this paper was devoted
to the analysis of this functional. Using multilinear
algebra, general approximations of this determinant
were obtained. Although if this problem has been
widely investigated in the literature, new insights were
given. More specifically, it has been shown that the
FIM determinant can be approximated by a functional
involving only the consecutive source bearing-rates.
The structure of this functional has been carefully
detailed. It was then possible to determine the general
form of the optimal control sequence (observer
maneuvers). In particular it was proved that, under
the long range and bounded controls hypotheses,
the sequence of optimal controls lies in the general
class of bang-bang controls. This result illustrates the
interest of maneuver diversity. More generally, these
results provide a general framework for optimizing the
observer trajectory by means of feedback control.
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XI. APPENDIX A

This Appendix is devoted to the calculation of the
determinants Dk,` defined in (45).
If we assume that the vectors (e0 + v0) and u

0 are
linearly independent, they constitute a basis of R2 and
there exists two scalars ® and ¯k,` such that:

2(e0 +2v0) = ®(e0 + v0)+¯k,`(k+ `)u
0:

Notice that we have necessarily:

¯k,` =
μ
k+1
k+ `

¶
¯k,1:

Let us denote e` the 2-dimensional vector defined by

e`
¢
= e0 +2v0¡®(e0 + v0)¡¯k,`u0

then
¡e` = e0 +2v0¡¯k,`(k+ `¡ 1)u0:

Let us denote C1,C2,C3,C4 the columns of Dk,` and
perform the following algebraic manipulation of the
columns:

C04 =C4¡®C3¡¯k,`C1 =
μ
e`
0

¶
then, we obtain (determinant of block matrices [20])

Dk,` = det
μ
e0
0

¯̄̄̄
e`
0

¯̄̄̄
e0 + v0
e0 + v0

¯̄̄̄
u0

(k+ `)u0

¶
= (k+ `)det(e0,e`)det(e0 + v0,u

0):

XII. APPENDIX B

This Appendix deals with the calculation of det(Gk)
defined by (66) and (67).
Equation (66) may be written in vectorial form,

yieldingμ
cosμk+i
¡sinμk+i

¶
| {z }

gk+i

2
=
μ
cosμk
¡sinμk

¶
| {z }

gk

+
μ
i2

2
μ̈+ i _μ

¶
| {z }

®i

μ¡sinμk
¡cosμk

¶
| {z }

vk

+
μ
¡ i

2

2
_μ2
¶

| {z }
¯i

μ
cosμk
¡sinμk

¶
| {z }

gk

or simply
gk+i = gk +®ivk +¯igk
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where

®i =
i2

2
μ̈+ i _μ ¯i =¡

i2

2
_μ2

kgkk= kvkk= 1 and gk ? vk:
Consequently, we have

Gk+i
2
=Gk +V

i
k

with

Vik =

¯̄̄̄
¯®ivk +¯igkigk +®i(k+ i)vk +¯i(k+ i)gk:

The determinant being multilinear and alternate,
we have

det(Gk) = det(Gk,V1k ,V2k ,V3k ) (C1):

Assuming the 2-dimensional vectors gk and
¯1gk +®1vk linearly independent, we can find 4 scalars
(¸1,¸2,¹1,¹2) such that:(

®2vk +¯2gk = ¸1(gk) +¸2(®1vk +¯1gk)

®3vk +¯3gk = ¹1(gk) +¹2(®1vk +¯1gk)

and direct calculations yield8>><>>:
¸1 =

®1¯2¡®2¯1
®1

, ¸2 =
®2
®1

¹1 =
®1¯3¡®3¯1

®1
, ¹2 =

®3
®1
:

The following operations are performed on the
columns of the 4£ 4 matrix (Gk,V1k ,V2k ,V3k ):

V3k ¡¸1Gk ¡¸2V1k=
μ 0
d3

¶

V4k ¡¹1Gk ¡¹2V1k=
μ
0

d4

¶
so that

det(Gk) = ®1det(gk,vk)det(d3,d4)
= ®1(2®3¯

0
2¡®2¯03)

with

¯02 = 2(1+¯2)¡
®2
®1
(1+¯1)

¯03 = 3(1+¯3)¡
®3
®1
(1+¯1):

Consider now a linear modeling of μk+i in _μ, i.e.,

μk+i
1
= μk + i _μ

then we have½gk+i = cos(i _μ)gk +sin(i _μ)vk
(k+ i)gk+i = (k+ i)cos(i _μ)gk +(k+ i)sin(i _μ)vk:

Consider first the calculation of det(Gk,4), (C1) yields
det(Gk,4) = det(Gk,V1k ,V2k ,V3k )

where

Vik =

¯̄̄̄
¯sin(i _μ)vkicos(i _μ)gk +(k+ i) sin(i _μ)vk

for 1· i· 3. It is then sufficient to consider the
following algebraic manipulations of the Gk,4 columns:

Vik ¡
sin(i _μ)

sin(_μ)
V1k =

μ 0
di

¶
where

di = (i¡ 1)sin(i _μ)vk

+
·
(i¡ 1)cos(i _μ)¡ sin[(i¡ 1)

_μ]

sin _μ

¸
gk

from which it follows that

det(Gk,4) = 4(sin _μ)4(det(gk,vk))2

= 4(sin _μ)4

which is the first result of (76).
More generally, we consider the matrix GE (74):

GE = (Gk+i1 ,Gk+i2 ,Gk+i3 ,Gk+i4 ) where

k · i1 < ¢ ¢ ¢< i4 · k+ `:
Then using the previous reasoning, we obtain

detGE = det(gk+i1 ,gk+i2 )det(di3,di4)
with

di3 = (i3¡ i2)sinc1vk+i1

+
·
(i2¡ i1)

sin(b1¡ c1)
sinb1

+ (i3¡ i2)cosc1
¸
gk+i1

idem for di4 (i4 replacing i3,d1 replacing c1) where

b1
¢
=(i2¡ i1)_μ

c1
¢
=(i3¡ i1)_μ

d1 = (i4¡ i1)_μ:
The following simple expression of detGE is thus

deduced:

detGE = (c¡ b)(d¡ b) sin(c1¡ d1)sinb1
+ (c¡ b)(b¡ a) sin(b1¡ d1)sinc1
+ (b¡ d)(b¡ a)sin(b1¡ c1)sind1

where

a= i1, b = i2, c= i3, d = i4 (C2):
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Using the above relation, the determinant of Fk,5 is
easily calculated since we have

E1 = f1,2,3,4g! detGE1 = 4(sin _μ)4

E2 = f1,2,3,5g! detGE2 = 16(cos _μ)(sin _μ)4

E3 = f1,2,4,5g! detGE3 = 8(2+cos(2 _μ))(sin _μ)4

E4 = f1,3,4,5g! detGE4 = 16(cos_μ)(sin _μ)4

E5 = f2,3,4,5g! detGE5 = 4(sin _μ)4

so that finally:

detFk,5 = (¾r)
¡8

5X
i=1

(detGEi )2

=
μ
sin _μ
¾r

¶8
32[18+16cos(2_μ) +cos(4_μ)]:

This calculation may be extended to detFk,6 i.e.,

detFk,6 = (¾r)
¡8

15X
i=1

(detGEi)2

with
E1 = f1,2,3,4g, : : : ,E15 = f3,4,5,6g

and detGEi given by (C2).
The case of a maneuvering observer may be treated

with the same approach. Assume, for instance, that the
source maneuver occurs at time i2 and consider thus
the following determinant:

det(Gk+i1 ,Gk+i2 ,Gk+i3 ,Gk+i4 )
¢
=det(GE):

Assume furthermore that the two following
approximations are valid on each observer leg:

μk+i
1
= μk + i _μ1 on the 1st leg

μk0+j
1
= μk0 + j _μ2 on the 2nd leg

then8><>:
gk+i2 = cos(b1)gk+i1 + sin(b1)vk+i1 , (i1, i2 2 1st leg)
gk+i3 = cos(b1 + c1)gk+i1

+sin(b1 + c1)vk+i1 , (i3, i4 2 2nd leg)
so that

detGE = det(gk+i1 ,gk+i2 )det(di3,di4)
where

di3 = (i3¡ i2)sin(b1 + c1)vk+i1

+
·
(i3¡ i2)cos(b1 + c1)+ (i1¡ i2)

sinc1
sinb1

¸
gk+i1

idem for di4 (i4 replacing i3, d1 replacing c1), which
finally yields

det(GE) = (c¡ b)(a¡ b)sin(b1 + c1)sin(d1)
+ (b¡ d)(a¡ d)sin(b1 + d1)sin(c1)
+ (c¡d)(d¡ b) sin(c1¡ d1)sin(b1):

As an illustration, consider the following example:

a= kμ0, b = kμ0 + _μ1,

c= kμ0 +4_μ1 + _μ2 d = kμ0 +4_μ1 +2_μ2

then applying (C2) we obtain

detGE = 1
2[24cos(

_μ1¡ _μ2)¡ 25cos(_μ1 + _μ2)
+ cos(7_μ1 +3_μ2)]:

The above calculations may be extended to a three
leg path and we obtain, for instance,

(¾r)8detF3,3,3' 784_μ41 +5264_μ31 _μ3¡ 224_μ31 _μ2
+147114_μ21 _μ

2
3¡ 56928_μ21 _μ2 _μ3

+13302_μ21 _μ
2
2:

XIII. APPENDIX C

We consider here the use of the geometric
interpretation of the FIM given in Section VIIB. First,
denote Vi the vector R

i
1E. Using the Cauchy—Binet

formula (85), we have

(¾r)8det(Fk,5) = det
2(V0,V1,V2,V3)

+det2(V0,V1,V2,V4)

+det2(V0,V1,V3,V4)

+det2(V0,V2,V3,V4)

+det2(V1,V2,V3,V4):

Let us denote c2 the term det2(V0,V1,V2,V3). Using the
Cayley-Hamilton Theorem we have

V4 = ®4V3 +¯4V2 + °4V1 + ±4V0:

The scalars f®i, : : : ,±ig are defined by (99). Then,
the following equalities are directly deduced from
the alternating and multilinear properties of the
determinant:

det2(V0,V1,v2,V4)= ®
2
4c
2

det2(V0,V1,V3,V4)= ¯
2
4c
2, : : :

so that

(¾r)8det(Fk,5) = c
2(2+®24 +¯

2
4 + °

2
4):

The formula (76) has thus been retrieved by this way.
Extension to the calculation of det(Fk,l) are reduced
to a simple enumeration of the elementary subsets E
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(see (75)) and to the calculation of the scalar factors
®l, : : : ,°l.
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