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ON THE PROPERTIES OF A RELATIVE ENTROPY FUNCTIONAL*

J.-P. LE CADREt

Abstract. The identification of the noise correlations (e.g., between the sensors of an array)
is an important problem. It is also ill posed unless some additional conditions are verified. Here,
these supplementary conditions are reduced to a low-rank hypothesis and to the knowledge (e.g.,
an upper bound of its length) of the general structure of the noise correlations. By introducing an
original functional (named relative entropy functional), we develop a new approach for solving the
above problem. In particular, it is shown that this functional inherits from its definition interesting
and useful properties (such as location of the extrema, concavity, etc.). These properties are shown
using elementary linear algebra.
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1. Introduction and problem statement. Usually, the signal received on an
array of sensors is composed of source and noise parts. The aim of array processing is
to estimate source parameters from the array measurements [1]. However, in numerous
practical situations, especially in the array processing context, the noise parameters
are unknown.

Most of the practical array processing methods are based upon the properties of
the covariance matrices (CM) of the various signals impinging on the array. This is
particularly true for high-resolution methods for which source and noise parts play
symmetric roles [2-7]. For readers unfamiliar with these methods, we note that they
are rather similar, in spirit, to principal component analysis methods [8-10].

At a given frequency (after discrete Fourier transform, for example) the problem
of separation in source and noise parts is reduced to the following matrix equation:

R=S+B

(1) with:

R sensor outputs CM,
S source CM,
B noise CM,
R, S, B q x q matrices.

The matrix R is assumed to be known (it is actually estimated from the sensor
outputs). The problem we deal with can be stated as follows:

How can we obtain an "estimate" of B from R?

The problem stated above is ill posed and is meaningless without the following
additional hypotheses:

H1 S is positive semidefinite and rank deficient,
(2) H2 the general structure of B is known,

(B is positive definite ).

The above hypotheses are generally accepted in the array processing literature
[1-7] even if H2 is frequently replaced by a drastically simpler hypothesis, say, H.
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The matrix B is known except for a scalar multiplier A (A is the noise level). The
hypothesis H2 is thus far less restrictive than H. The general structure of B may be
simply a banded Toeplitz structure (with the positivity hypothesis) or given by the
covariance structure of a moving average (MA) spatial process [11].

The hypothesis H1 is also quite acceptable since the rank deficiency hypothesis
amounts to assuming that the number of sources is strictly inferior to the number of
sensors. This assumption is instrumental for high resolution methods.

After the noise matrix B is estimated, the source parameters (defining S) can
be estimated [1, 2, 7]. We want to stress that, for this approach, the parameters
defining B are estimated independently of the source ones, using only the observation
(i.e., the matrix R). For that purpose, an original approach will be derived. It
relies on the "separating" properties of a relative entropy functional (REF). Roughly
speaking, this functional allows us to "extract" the smooth component (i.e., the noise)
of the observations. Another approach consists of using an approximated likelihood
functional. This functional involves only the eigenvalues of a whitened matrix. A
complete description of this approach is given in [12]. This method presents some

(hidden) similarities with the REF method since it too relies on a (hidden) barrier
functional. However, it is much more classical in principle and does not present the
same possibilities.

The optimal methods [13] (for the statistical meaning) consist in simultaneously
estimating the source and noise parameters. These approaches are rather direct al-
though they may involve rather intricate derivations. However, the main criticism
comes from the absence of any convergence property for the iterative algorithms that
optimize the related functionals. The practical interests of such methods may thus
be greatly reduced despite their (theoretical) optimality.

The method that will be presented obeys the following general scheme: we define
a barrier functional forbidding the description of sources by the noise model. We
shall carefully study the estimation of the noise model (or equivalently of B) as well
as iterative optimization of the functional (gradient-like procedure). We stress that
this optimization is defined only with respect to noise parameters, which constitutes
the major novelty of our approach. We recall that the present paper deals with the
exact properties of the functional and, thus, that statistical considerations are not in
the paper’s scope.

Actually, the barrier property of the REF appears to be instrumental since it is a
means to create a singularity at the boundary of the feasible region. This study can
thus be included in the much more general context of barrier methods [14]. According
to [14], barrier methods fell from favor during the 1970s partly because of inherent
ill-conditioning in the Hessian matrix. We shall see that the proposed method does
not suffer from this drawback and enjoys interesting properties.

We use the following notation throughout the text of this paper:
matrices are represented by capital letters (e.g., R, S, B, Ui, Zi); all the matrices

are q q except the matrices Z (5) and N,
vectors are represented by capital bold letters (e.g., X, B, V, W),
scalars are denoted by small letters (e.g., b, 1), eigenvalues by small Greek letters

R generally represents the observation (or a resume), S the source part, and B
the noise part (noise parameters or b),

the symbols det and tr denote, respectively, the transpose and the trace (of a
q q matrix),
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diag denotes a diagonal matrix,
A and A* denote, respectively, the transpose and the hermitian adjoint of A,
Id stands for the identity matrix,
R(k) denotes the spatial density (31) of the observation, and
Re(z) denotes the real part of z, 2 the complex conjugate of z.

2. The relative entropy approach. This approach deals with a functional
depending only on the matrices R and B. In what follows, this functional will be
named the relative entropy functional (REF) and will play the central role in solving
the problem (1) under the hypotheses (2). It is defined below as

(3) H(B) log det(R B) + I. log det B,

where is a scalar factor and det(A) denotes the determinant of the matrix A.
A brief statistical motivation of H is presented in Appendix A. The scalar factor

is considered (see Appendix A) as a redundancy factor since it is associated with the
number of (statistically) independent noise vectors available along the array. Practi-
cally, the choice of the factor is related to statistical considerations beyond the scope
of the present paper.

Now a parameterization of the B matrix is necessary. For that purpose, a banded
Toeplitz parameterization is quite convenient, i.e., [15, 16]:

P

i--1

(4) where

i are scalars (real),
Ui is a q q matrix defined as usual by:

1 if k-l=i-1,ai(k, t) 0 else.

The number q represents the sensor number and is consequently the dimension of
U qthe square matrices R, S, B. The matrices { i}i=l constitute an orthogonal (for the

euclidean product) basis of Tq (the vector space of q-dimensional symmetric Toeplitz
matrices). For practical applications [7], p is small with respect to q.

Obviously, this parameterization does not ensure the positive definiteness of B,
so to avoid such a problem B can be parameterized as the covariance matrix of a MA
process:

(The symbol "t" denotes matrix transposition.)
Here the matrices Zi are (p p + q) rectangular matrices given by

0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 0 1 0
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or

liflk-gI=i,(5) Zi(k, g) 0 else.

(This model is the assumed minimum phase [11].)
This parameterization will be especially useful for the special case study of large

arrays (5), but for the moment our attention will be restricted to the banded Toeplitz
parameterization. The REF will thus be defined as follows:

H (/1,...,/p) log det(R B) + 1. log det B

with B B (1,..., p) (R, B are q x q matrices).
The general optimization problem takes the following form. Find

under the constraints

(6) c

maxH (1,..., p)

R-B > 0,
B > 0.

(A > B means, as usual, that A- B is positive definite.)
Let B, be the parameter vector maximizing H under C, i.e.,

B. arg maxH (/,...,/p) under C.

As will be seen later, the functional H can be efficiently maximized by iterative
methods. But let us first consider the properties of B..

3. Properties of B.. Because the REF depends nonlinearly on the parameters
{/i}, it seems much simpler to formulate the problem in terms of the eigensystems.

The spatially white noise case is presented first. It is not relevant to our problem,
but it allows us to obtain a simple result and enlightens the role of the factor 1. Then
the general case is considered.

3.1. Spatially white noise case. This case is very simple but the reasoning is
rather similar to that used in the general case.

The noise is assumed to be uncorrelated (sensor to sensor), so

B=AId

(Id" identity matrix, A > 0, A ).
Consider now an eigendecomposition of R, i.e.,

q

R EaiVV, V _[_ Vj(i j), IIVill 1
i--1

(c >_ a >_... >_ cq > 0).

(, denotes transposition and conjugation.)
Then by means of elementary algebra, we have

q

(8) H(/k) E log (a .k) 4- ql. log/k.
i--1
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The problem now consists of determining the value of A that maximizes H(A)
under the constraints C.

Now

OH ql
q

-1
+

and denoting by the following particular value of A,

we obtain

Cq i--1
(l - 1)O/q "Jr" (O/q O/i)

--1

Now ai -aq _> 0 for i 1, 2,..., q and therefore

Furthermore, if A tends towards Cq, then OH/OA tends towards- x. Since H is
a differentiable and concave function of A in the interval ]0, q [, it follows that the
maximum of the REF under the constraints C is attained for a value A, of A satisfying
the following inequalities:

) < ,, < Cq.

3.2. General case. Let B0 be the exact noise CM and assume that B0 may
be described by the parameterization defining the B matrices. Then the following
proposition is valid.

PROPOSITION 3.1. Let { q}i=1 be the eigenvalues of the (whitened) matrix

BIB,, where B, denotes the matrix maximizing the REF H under the two con-
straints (B and R- B positive definite). Then these eigenvalues satisfy the following
inequalities:

Proof. The decomposition of R in source and noise parts (i.e., R S + B0) is
assumed to be unique (see Proposition 4.3). The rank of S is denoted by s (the source
number). Note that s is strictly inferior to q. Then the REF H takes the general
following form"

H(B) log det (S / (B0 B)) + I. log det B.

Let us now examine the various terms of the functional H(B). For that purpose,
let us note the following assumptions:

1. B0 is positive definite,
2. (B0 B) is positive definite.
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The first assumption is quite classical in the signal processing context since B0 is a
covariance matrix [1, 3]. The second will be justified later (Comment 1, pp. 361-362).

Since the matrix B0 is positive definite, it can be factorized in triangular factors
(Choleski factorization [17]), i.e.,

Bo ToT.
Thus

(11)

log det IS + (Bo B)] log det [S(Bo B) -1 q-Id]
+ log det (B0 B)
log det [ST-1, (Id T-IBT 1")-1T0-1 + Id]
+ log det (B0 B).

((B0 B)-1 T0-l* (Id- T-IBT-I*)-ITd-1).

Since the matrix (Id- T-IBT 1,)-1 is hermitian it is diagonalizable, i.e.,

(Id_ TIBT-I*)-I WAW*

(W unitary matrix, A diagonal) with

(1

(Ai eigenvalue of B B.)
In what follows, it is necessary to preserve the symmetry of the problem obtained

by using elementary algebra as follows:

logdet [ST* (Id- ToBT*) T + Id] logdet [STI*wAW*T + Id]
log det [I/2w*s’WI/2 + Id]

(12) with" S’= TST*.

(This last equality results from intensive use of the classical formula det(AB)
det(BA) [17].)

The matrix A1/2 in (12) is the diagonal matrix defined by A1/2(i, i) (A(i, i))1/2.
Its existence follows from the hypothesis that (B0 B) is positive definite. Thus, the
following equality holds trivially:

logdet [A1/2W*S’WA1/2-t-Id] logdet [A1/2W* (St-[ WA-1W*) WA1/2]
(13) log det A + log det (S’ + WA-1W*).

We are now able to calculate the partial derivatives of the REF H with respect
to the parameters Ai. More precisely, using a classical formula for the differentiation of
the determinant of a matrix A() [18] (i.e., 0/0 log det A() tr (A-I()O/OA())),
the partial derivatives OH/OAi take the following form:

OH 1 1 { 1 [OA l’A I A - 1- Ai + tr (S’ + WA-1W*)-IW W*

(14)
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(tr denotes the trace).
Now the following equality comes from the orthogonality property of the eigen-

vectors [17]"

(15) tr I(S’ T WA-1W*)-IwOA-1W*] W
0: -w (:’ + wzx-lw*) -1

(W is the ith column of the matrix W.)
Furthermore, one has

S’ + WA-1W >_ WA-1W*;

hence,

(St+WA-1W*)-I (WA-1W*) -1,
so that, finally,

(16) W (! -- WA-1W*)-Iw -- --Wi (WAW*)-IwiIn conclusion, we note that the term between braces in (14) (i.e., 1/(1- Ai)+
tr[(S’ + WA-1W*)-Iw( o A-1)W,]) is positive when Ai runs throughout the open
interval ]0, 1[. Consequently, the partial derivatives OH/OA are positive (i 1,..., q)
when Ai runs throughout the open interval ]0,1/1 + 1 [.

Furthermore, the equality

Bo B To (Id T BTI* T
proves that (under the basic assumptions) the matrix (Id T0-1BT-1,) must be
positive definite and that all the eigenvalues (i.e., 1 A) of the matrix Id- BIB
must be positive. It is thus sufficient to restrict our attention to the parameter values
/ such that all the eigenvalues Ai are smaller than 1.

Now the following fact is instrumental for the proof of Proposition 3.1: the REF
H is a concave functional on the whole domain C of the constraints (6). This property
will be shown in the next section independently of Proposition 3.1.

Denote by C’ the following (restricted) constraint domain defined as { B
such that (s.t.) B and B0 B are positive definite }. Then it is directly shown that
C’ is a convex subset of C.

When A tends towards 1_ then H tends towards- c. Since all the partial
derivatives OH/OA are positive when A runst,hrough the interval ]0,1/1 + 1[ and ,re
continuous on C’, there exists a matrix B, of such that the maximum of H on C is

C’attained for B,. Note that this maximum is unique on (concavity) and is attained
for a matrix B, such that all the eigenvalues A of B-IB,) belong to the interval

]l/l+ 1, 1[. So there is a point (,... ,) of C’ such that all the partial derivatives
OH/OA are altogether null.

Because the REF H is concave on the whole domain C, its maximum on C is
unique and is attained for a matrix B, of C’. This proves Proposition 3.1.

Comments. The preceding calculations require some comments.
1. In the proof of Proposition 3.1, the positive definite hypothesis (R- B) has

been replaced by the positive definite hypothesis (B0 B).
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Actually, the two subsets C and C’ (C’,- (B s.t. B and B0 B are positive
definite}) are convex and C contains C. Because the functional H is concave
on C (Proposition 4.1) and attains its maximum value on this maximum
is unique and satisfies Proposition 3.1 on the whole subset C [19].

2. Consider (16). Then this inequality becomes an equality (for all the values
of i) if and only if the source matrix S’ is null. In this case, all the partial
derivatives cOH/OA are null for {b } values s.t.

)IdBIB* i+ 1

or

) B0.B.= ll
The matrix B0 is thus perfectly "estimated" up to a scalar factor. We want
to stress that this scalar factor (i.e., 1/1 + 1) has no practical importance.

3. As has been seen in the proof of Proposition 3.1, the effect of sources is to
move the maximum of H and to cancel the equality of all the ’. Thus, in
the presence of sources, B0 cannot be perfectly "estimated" by maximizing
H. Of course, the "quality" of the estimate increases with the scalar 1.

4. Proposition 3.1 is still valid when the noise model is overdetermined (i.e.,
P0 _< P); this fact follows clearly from the proof of Proposition 3.1. For
practical applications, it is a fundamental point.

5. The following property seems valid (at least for sufficiently great values of q).
Conjecture 1. Consider two distinct values of the parameter l, say ll and 12

(/1 >/2), and denote {A} (respectively, {#}) to be the eigenvalues of BIB.tl (re-
spectively, B-1B.t2). Then the following property holds:

This property has been verified by numerous simulation results (see Figs. 3-6).
A very rough "proof’ is based on the following fact: two banded Toeplitz matrices
commute (approximately).

Actually, the REF method can be considered as a way to tackle the following prob-
lem: how to determine the "more random" noise model (i.e., maximizing log det B)
under the positive definiteness constraints (B and R- B positive definite). Clearly,
for this sense, the term log det(R- B) appears as a barrier functional forbidding in-
teraction between source and noise models. The factor represents the compromise
between the accuracy of estimated parameters (Proposition 3.1) and the statistical
variability of the estimated data (i.e.,/). It can thus be considered as a redundancy
factor (see Appendix A).

Obviously, this interpretation of the factor relies upon statistical considerations
that are not in the scope of this paper..

4. Maximization of the REF H. The numerical problem now consists of
determining the values of the parameters (/i p}i=1 that maximize the REF H under
the positivity constraints. After a general study of the functional concavity, the
problem of practical optimization will be considered.

Actually, the REF enjoys a useful property which has been instrumental in the
proof of Proposition 3.1.
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PROPOSITION 4.1. On the constraints domain (6) the REF is a concave func-
tional with respect to the {i}iP_-i parameters.

Proof. The proof of Proposition 4.1 relies upon classical results of linear algebra.
More precisely, we use the following classical lemmas, valid for any differential family
of isomorphisms [20]:

(17)
-logdetB(/) tr B-I()-
ff_ OBB-1 (Z) -B-1 (/)-b-B-

Then the Hessian matrix (denoted H2) of H with respect to the {/i}iP----1 is easily
obtained:

(lS) H2(i,j) zx 02H

Let X be any vector of P (X (Xl,..., Xp)); then

t92HXtH2X E xi OiOj
i,j

and using (18) and the linearity of the trace we get

(19)

The two terms -tr(--) of (19) are of the form -tr(AC AC) with

P

A (R-B)-1 or B-1 and C= ExU.
i=1

Since the matrix A is assumed to be positive definite, it admits a Choleski fac-
torization, say A TT*, so that

(20)

-tr [ACAC] -tr [TT*CTT*C]

(The symbol liE denotes the Frobenius norm [17] of a matrix.)
Finally, the quadratic form XtH2X is negative for any (nonnull) vector X. The

matrix H2 is therefore negative definite and H is therefore a concave functional with

{fl}=l on C. Consequently, gradient-like methods (with optimal stepsize)respect to P

will converge on C. [:]

Actually, this concavity property is very strong and quite dependent on the noise
parameterization. Thus Proposition 4.1 holds for a linear parameterization but not
for more restrictive (especially nonlinear) parameterizations. Consider, for instance,
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the MA parameterization of the noise (5); then the partial derivatives of the functional
H (with respect to bi) are directly calculated, yielding

OH
Ob

c)2H

--tr [(R- B)-ID/1] -+-1.tr [B-1D/1]

-1.tr [B-1 -1 [B-1D2DiB DJ]+l.tr ,]
with

D2BD.2.=
*" ObiObj

+ z z;.
The sign of the quadratic form XH2X is thus not at all evident. So the reason-

ing previously used for proving Proposition 4.1 cannot be directly extended to this
parameterization. The simplicity of the proof of Proposition 4.1 is essentially due to
the linear parameterization of the noise matrix B.

The concavity property seems (generally) wrong for the MA parameterization.
This is illustrated by Fig. 1, which represents the level curves of the functional
H (b0, bl). The cross corresponds to the exact values of b0 and bl. However, even
if Proposition 4.1 is not (generally) valid for the MA parameterization, the following
proposition holds.

PROPOSITION 4.2. The coefficients (b,..., b) of the MA process maximizing H
on the constraint domain satisfy the following inequalities:

Furthermore, the gradient of H is null for a unique point of the parameter set; this
point verifies the above proposition. This is a direct consequence of Proposition 4.1
and the one-to-one mapping between the coefficients (say {b}) of a rain-phase MA
model and its covariance set say {/i}). Therefore, there is a unique maximum of
H for the MA parameterization on the constraint domain C. Locating this point
is not at all obvious since the correspondence between the MA parameters and the
eigenvalues of the matrix B-1B, is highly nonlinear. So this property will be proved
by analytic arguments (see the proof of Proposition 5.1). A direct algebraic proof of
Proposition 4.2 seems unfeasible.

Let us now consider practical considerations and, more precisely, iterative meth-
ods for maximizing H.

We shall now briefly present the gradient method.



RELATIVE ENTROPY FUNCTIONAL 365

[RELIM] Fonction H(bo,bl )
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FIG. 1. Values of the functional H (bo, bl), one source (bearing" 45 deg.,-10dB).

The calculation of the gradient vector is straightforward. The ith component of
the gradient vector Gk (at iteration k) is given by

(21) k(i) --tr [(]:- [k)-lvi] - l.tr (B-Iui)

(Bk is the noise matrix at iteration k.)
The gradient algorithm takes the following general form:

(22) X+l X pGa

with

and G defined by (21).
The scalar pk is the stepsize of the algorithm. In order to ensure convergence (on

C) of the gradient algorithm, it is worth determining the optimal stepsize.
The matrix translation of (22) is

Bk+l Bk pD

with

(23)

p

,--1

p

D c(i)u.
i:l
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The optimal stepsize Pk can be easily obtained by using eigendecompositions.
The corresponding algorithm is presented below (and detailed in Appendix B).

Step 1. Since Bk and R- B are positive definite, decompose them in
triangular factors:

Step 2.
matrices:

kCompute the eigenvalues {a } and {k} of the two hermitian

Step 3. Then the REF becomes an explicit function of the parameter (step-
size) p, given by

q q

(24) H(p) E log (1 + pc/k) + 1E log (1 pki) +cst.
i--1 i---1

Furthermore (it is perhaps the most important fact), the positivity constraints
C are translated into explicit (relatively to p) constraints, i.e.,

l+pa > 0, i=l,...,q,(25) C 1-p > 0, i=l,...,q.

Step 4. The optimal stepsize p is simply obtained by maximizing H(p) given
by (24) under the constraints (25). This task is easily achieved by means of
a unidimensional Newton method initialized at 0.

Obviously, the gradient method may be replaced by more sophisticated iterative
methods (Newton, BFGS, etc.). However, this does not appear drastically important
since the number of parameters defining the noise model (i.e., p) is generally quite
smaller than q and because of Propositions 4.1 and 4.2. A direct extension to the
complex case (the noise parameters are complex) is provided in Appendix C.

We now consider the unicity of the decomposition in source and noise parts. This
is an important problem of identifiability [21]. The source’s CM matrix S is assumed to
be Toeplitz. Physically, this corresponds to the plane wave hypothesis and a uniform
linear array assumption [1-7]. Since S is rank deficient and semipositive definite, S
may be written in the following form (thanks to the theorem of Caratheodory [22]):

(26)

s
j=l

with :aj > 0,

Zj 1, zj,...,zj Izjl 1,
rank (S) s.

Then a sufficient (and very rough) condition ensuring unicity of the decomposition
will be obtained as follows. Assume the existence of two such decompositions. Then

R $1 - B1 q2 + B2;
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hence

$1 $2 B2 B1

(B1 and B2 are p-banded Toeplitz matrices).
In order to annihilate the noise effect, we consider the (- x t_) lower left

submatrix L of $1 $2 defined by

L(i, j) ($1 $2) (q + i p, j), l<i,j<
q-p

We assume, in the previous equation, that q-p is even. Otherwise, it must be replaced
by q-p- 1. All the components of the matrix L must be null since B1 and B2 are
two p-banded Toeplitz matrices. The following equality is then directly obtained from

. ,Z j,1 O’j,2 j,2( j,2)Z’ Z"
j--1 j--1

with

(27)

Ztj,1A (zq--q q--l)j,1 Zj,1

Z" A (zO Zq’-l)j,1 j,l’’’’ j,1

q’ q-P
(j= l, s).

Now there exist coefficients {ao, al,... ,as} such that the roots of the polynomial
equation

A(z) ao + alz + a2z
2 +... + asz8 0

are {Zl,1,..., Zs,1}. Hence the s x (q- p) matrix N defined by

annihilates the columns of Z (Z[ is the rectangular matrix whose colums are the
vectors Zi; i 1,..., s) when s < q. In other words,

NZ O,

which implies that NZ O.
This implication is easily shown by considering the columns of Z and Z. They

span the same space since by (27)

Z’IA1Z Z 2 2Z2
with

A1 diag(a,,..., A2 diag(al,2,..., as,2).
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Consequently, {Zl,2,..., Zs,2} are also the roots of A(z). So there exists a permutation
matrix P such that Z1 Z2P.

Now assume that the dimension of Z’j (i.e., q’) is superior to s. Then using a
basic result on Vandermonde determinants [23], the solution to (27) is either

(7j,1 0, j 1,..., s,
aj,2 O, j 1, s,

or, for each source index j (related to $1), there exists a source index k (related to
$2) such that

(28)

or, equivalently, there exists a s s permutation matrix P such that

(29) Zl Z2P.

(The matrices Zi and Z2 are the rectangular matrices (27) whose columns are the
source vectors.)

Thus, the following proposition holds.
PROPOSITION 4.3. Assume that S and B are Toeplitz matrices and assume,

furthermore, that q-p is greater than 2s. Then the decomposition in source and
noise matrices is unique.

Note that the plane wave assumption or, equivalently, the Toeplitz hypothesis,
has been instrumental for proving Proposition 4.3, which may be only considered as
a sufficient and rough identifiability condition. The identifiability problem is greatly
complicated by the noise correlation. In this case, the noise subspace has no clear
algebraic meaning, as opposed to the white noise case.

We would like to stress that the accuracy of noise parameter estimates (i.e., the
{/i }) is expressed only in terms of the eigenvalues of B-1B. and not directly in terms
of the/i. However, these two subsets are strongly related even if these relations are
nonexplicit and highly nonlinear in the general case.

Actually, there is a one to one correspondence between the noise parameter vector
and the vector of the eigenvalues of the matrix B-1B,.
Indeed, consider the Jacobian matrix of partial derivatives [17]:

Ov

Using the classical lemma (simple eigenvalues) [17] we have

OAi 0v,

and thus

(3o)
tr (B-IuIVIV)

tr (BlgpVlV)

tr (B-1Ulvqv) /
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Now the matrices {VV}q=1 are linearly independent in Mq(C) (the space of
hermitian q x q matrices) and, consequently, the rank of the rectangular matrix J is
generally equal to p q > p).

Finally, when becomes great the eigenvalues of BIB, approach 1 (Proposi-
tion 3.1) and the parameter vector B, approaches B0. Using simple algebraic con-
siderations, it seems difficult to go further, but as will be seen in 5, an analytic
formulation of the REF will allow us to refine the results of Proposition 3.1.

5. Analytic properties of the REF. The REF properties, previously consid-
ered, rely upon algebraic considerations. We shall see now that the REF definition can
be translated in terms of analytic functions, allowing us to make the REF properties
precise.

Let R(k) be the (spatial) density of the stationary process received by the array.
For a uniform array, R(k) is simply the Fourier transform of the covariance matrix R,
i.e.,

q--1

R(k) E rj exp (2irkjd)
j--l--q

with

(31)

R Toepl (to, rl,..., rq-1),
d intersensor distance,
k (d/A). sin 0, A :wavelength, 0: bearing.

Even if the scalar d has a physical meaning, this meaning may be forgotten for
what follows. Using Szego’s theorem [22] one obtains (for q large)

(32) lim
1
log det R

1
logR(k)dk,

q--*cx) q

where w is the spatial bandwidth.
Once again the physical meaning of w is not at all fundamental for what follows.

Usually it is assumed to be 1/2. Hence for a large value of q, the REF can be expressed
as follows:

(33) log (R(k) B(k)) dk + 1. log B(k)dk.
w

An MA noise modelling (5) seems to be quite convenient since it avoids the
positivity problems while conserving the banded Toeplitz structure of the covariance
matrix. For this model, B(k) is given by

(34)

B(k) IF(z)I
with
F(z) bo + blz +... + bp_Zp-
z exp(2irkd),
2 =-1.

Then the following proposition of the REF holds.
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PROPOSITION 5.1. Assume that the noise may be exactly modelled by an MA
process (b, bl,..., bp_l). Then for any MA modelling of the same order (p), the

coefficients (b b b* 1) of the MA process that maximizes U (33) underC satisfy...p_
the following set of inequalities:

i-0,1,...,p- 1.1

Proof. Previously, the proofs basically used the tools of linear algebra. From
now on they will be replaced by complex analysis arguments. A direct approach will
be considered. More precisely, the study of the sign of functionals involving partial
derivatives (e.g., Ai0H/Obi) will be instrumental.

The REF H is given by (33) and its partial derivatives (with respect to the {bi})
are straightforwardly obtained:

OH f’ Re (zi-’(k)) [1R(k) (l + 1)B(k)]
(a) dk

Obi J_ (R(k) B(k)) B(k)

(Re: real part of a complex number, 2: complex conjugate of z.)
We first consider the noise alone case. Then R(k) Bo(k) and the partial deriva-

tives OH/Obi become

OH /? Re (zi(k)) [1Bo(k) (1 + 1)B(k)]
Ob- , (Bo(k) B(k)) B(k)

dk.

Because of the independence of the functions {Re (zi(k))} in the polynomial space,
there exists a set of scalars {i} such that

E AiRe (zi(k)) 1Bo(k) (1 + 1)B(k),

which implies

OH /? (1Bo(k) (1 + 1)B(k))2

(Bo(a)

Let us now examine the right member of (36). Clearly, the integrand is positive
since the function B0 (k) B(k) must be positive on I-w, +w] because of the definition
of the REF. Therefore, iOH/Obi is positive and is null if and only if the numerator
(lBo(k)- (1 + 1)B(k)) is almost everywhere (a.e.) null on I-w, w] or

B(k) (1/1 + 1)Bo(k),

which implies

obi + i bi’ 0,1,...,p- 1.

Consequently, the gradient ofH is null only when bi v/i/l + i.b( 0, 1,... ,p-l).
Proposition 5.1 is thus proved for this (special) case.

The coefficients bi are assumed to be real.
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We now assume that at least a source is present and we consider the following
functional of the partial derivatives:

with

(37)

dk

S(k)
I1 R(k) B(k)

dk,

fw So(k) (1 + l/l)B(k) dk,J_ R(k)- B(k)

R(k) S(k) 4- Bo(k), B(k) given by (34).

The scalar product bOH/Ob is thus written as the sum of the terms I1 and
I2. We shall now examine them.

First, note that (R(k)- B(k)) is positive no matter what k is in the interval
I-w, +w]. This is due to the definition of the REF and involves the barrier functional
log (R(k) B(k)). Furthermore, S(k) is also positive (it is a power spectral density),
so that the term I1 is always positive.

Second, now assume that a single source is present. Then

r2

S(k) =,
Iz- zol

with z0 the pole of the source, z0 E D(0, 1).
Then the following inequality holds:

S(k) 1 /__ a2

(38) S(k)dk
1

R(k) B(k)
dk >

o o 1 -Izo["
(c: lower bound of n(k)- B(k)on [-w, +w], a2 source power.)

Let us consider the term I2. For that purpose, it is worth partitioning the pa-
rameter domain ({b}) into zones, as depicted below. For the sake of clarity, only the
two-dimensional (2-D) case will be presented in Fig. 2.

Let us now prove that the maximum of H cannot be attained on Z1. More
precisely, assume that the coefficients {bi} satisfy the following inequalities (defining
Zl):

Ibil < Ibl l+ 1
for i 0,1,...,p- 1.

Now Parseval’s equality asserts that

p-1

B0( )
i=0
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FIG. 2. Decomposition of the positive orthant in 4 zones (Z1,Z2,Z3,4) b, b, b x/l/1 q- 1,

b V/i/ +

and, consequently,

/-w Bo(k)- +l 1
e(k) dk- Ei=o (b)2- 1 (b)

so that

Therefore, the term I2 is bounded on 21. So when the source pole z0 approaches
the unit circle, then I1 tends towards +c. Note that this is equivalent to the rank
deficiency hypothesis for source CM. Finally, the following result has been obtained:

(40) bi-h-. >0 on 21
i=0

When the source contribution is null (i.e., S 0), then the partial derivatives
OH/Ob are null for b b V/1/l + 1, 0,..., p- 1. The effect of the source is thus
to displace the location of the maximum of H.

Let us now consider the zones 22 and 23.
If the coefficients {b} belong to 22 or 23, then the term I2 of (37) is not neces-

sarily positive, but it remains bounded. Therefore when Iz01 tends towards 1 (plane
wave hypothesis) then one has once again

(41) b-h--. > 0 on 22,23.
i--1

Finally, if the coefficients {b} approach their exact values {b}, then H tends
toward- cx. According to (40), (41) the maximum of H is thus attained on 24,
achieving the proof.
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Obviously, the reasoning is strictly similar for the multiple source case. [:]

Jensen’s theorem [24] can be used to calculate the REF. Thus, since B(k) is
analytic in D(0, 1) we obtain (w 1/2)

log(B(k))dk 2 log IF(0)[- log(Izl

where {z} are the zeros of B(k) inside the unit circle.
Thus, the following equality holds:

1/2
log(B(k))dk 2 log(b0).

1/2

It is rather surprising that the limit (q - cx) of the term (1/q)log
(detB (b0,..,,bp)) is simply 2log(b0). The first part (noise alone case) of Propo-
sition 5.1 can be proved in this way (Jensen’s theorem). However, practically, this
proof is restricted to first-order MA models.

Practically, R(k) must be replaced by an estimate/(k), generally obtained by
Fourier transform of the spatial covariances:

j=q-1

(42) (k) P(jd)wj exp (2ikjd)
j=-q+l

where P(jd) are estimates of the spatial covariances.
Estimates of P(jd) are themselves obtained by replacing the exact mtrix R by

n orthogonal projection of the periodogram matrix [11] on the Toeplitz subspace
[15,16]. The scalars wj represent the array weighting. They are necessary for sidelobe
reduction and, overall, to ensure the positivity of (k). For this purpose, the following
weighting ensures the positivity constraint of (k)"

w (1,

since it amounts to a consideration of (k) defined by

(k) DDk.
The REF method can be easily extended to multifrequency nalysis. Under the
independence sumption, the following formulation of the REF is obtained:

f max

]
I=I min

6. he whitening procedure. he more classical and direct whitening proce-
dure consists of performing a Choleski Nctoriation of the matrix B, (i.e., B, TT,,
T triangular factor) and defining the whitened matrix R by

R T-1RT-1..

However, this approach suffers from some drawbacks, which may become important.
Among them are the computation cost (for a large array) and the numerical condi-
tioning if the matrix B. is near to singularity. So the following procedure is generally
preferable.
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1. Determine an autoregressive (AR) model "equivalent" to the MA model. Let
p’ be the AR model order. The term "equivalent" means that the covariance sequence
of the AR model is as close as possible to the MA ones. Usually, this is achieved by
means of the Yule-Walker equation [11]. Standard procedures exist for this problem

2. Consider the whitened matrix defined as follows:

Ro- AoRAo,

where Ao is a rectangular q- p’ q defined by

(44)
ZoO ap, 0 0

ao ap, 0

0 0 ao ap,

This whitening method enjoys the following properties.
1. Rzo is a Toeplitz matrix.
2. The transform of a source CM matrix (i.e., DoD) is a rank-one matrix

associated with the same bearing and given by

with

A, (DoD) A, q (0) DoDo

q (0) IA (z)I.
Both the Toeplitz and plane wave structures are preserved by using this whitening

procedure. In the case of a very large array, the above formula suggests the following
(approximated) whitening:

7. Computation results and further comments. In this section, the be-
havior of the REF will be illustrated by computation and simulation results. The
covariance matrix of the sensor outputs is given by

2Do,D, +Bo(45) R
i=1

(B0 exact noise CM; Do steering vector [1] associated with a source coming from the
bearing 0i and with spectral density a2).

The aim of the following results is to illustrate the REF properties.
1. Effects of signal to noise ratios and of the factor 1. The effects of the signal to

noise ratios are illustrated by Figs. 3 and 4. The eigenvalues of BIBt,, are ranked
in increasing order. The index of each eigenvalue is plotted in the x-axis and its
corresponding value in the y-axis. For these two figures, both the source bearings
and the noise parameters are similar. They differ only by the source powers ("level"
indicates the source spectral density a).

The REF (3) is maximized by using a standard gradient algorithm, initialized on
(ill 0.1, f12 .0,..., f15 ---.0) or, in other words Binit -/" .Id ( is chosen "small").
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Thanks to Propositions 3.1 and 4.1, the convergence of the iterative maximization
algorithm is ensured no matter what initialization satisfies the constraints C. The
previous choice (for initialization) appears to the simpler. Once the gradient method
has converged, a matrix B,, is obtained for each value of l. For each value of a
horizontal dotted line y 1/1 / 1) is plotted and the eigenvalues of BIB,, are
compared to this line.

Proposition 3.1 is verified no matter what the value of and the signal to noise
ratios are. The lowest eigenvalue of B-1B,, may be slightly inferior to the theoretical
lower bound (i.e., 1/1 + 1) because of the stopping rule of the iterative algorithm.

i0.0_ 0.91.
5.0_ 0.83_

2.0_

1.0_

0.5.

0.2,

0.67

0.33.

0.17.

Eigenwlues of B-B,L/(L+I)

|O. O’ ,. 0.0
o

Sources 2 Noise parameters
Bearing 60.0 70.0 0 2 3 4

Level 0.10 0.10 1.00 0.60 0.18-0.14-0.10

q=lO p=

FIO. 3. Verification of Proposition 3.1. Eigenvalues of the matrix B1Bl,, for various values
of l, p 5, q 10, s 2. Noise parameters (fl 1, f2 0.6, f3 0.18, f4 --0.14, f5 --0.10),
two sources (bearings 60 and 70 deg., powers 0.1 and 0.1).

2. Noise modelling overdetermination and Proposition 4.3. The proof of Propo-
sition 3.1 shows that it still holds when the noise model is overdetermined. This fact
is illustrated by Fig. 5, where we assumed that the noise model was defined by 7
parameters when the true order was 5. The REF has been maximized with respect to
fl,...,/7. Note that the true parameters are those of Fig. 4. Proposition 3.1 is still
verified in Fig. 4 even if an effect of overdetermination is an increase in the greater
eigenvalues of BIB,,, thus enlarging the dispersion of the eigenvalues. Conversely,
Proposition 3.1 is not verified if the noise model is underdetermined.

The effects of a "large" source number are presented in Fig. 6. Obviously, the
dispersion of the eigenvalues is enlarged, but Proposition 3.1 still holds when the
hypotheses of Proposition 4.3 are not satisfied. Proposition 4.3 thus appears to be
very pessimistic. Note that Conjecture 1 is valid for all these simulations.

3. Verification of Proposition 5.1. Proposition 5.1 is illustrated by Table 1, for
which the computation parameters are

q 32,
Bo MA(2)’bo 1, bl =0.3, b2--0.3.

As can be seen in Table 1, Proposition 5.1 is verified no matter what the value
of is. The parameters {b}*} have been computed by using a gradient algorithm for
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10.0
5.0

2.0

1.0

0.5

0.2,

L/(L+I)
1-

0.91_

0.83.

0.67

0.50

0.33.

0.17_

Eigenvalues of B-B,

-0.6

0.4

0.2
e,,.,..,..=_-

0 0.0
o , 7 a o

Sources 2 Noise parameters
Bearing 60.0 70.0 0 2 3 4

Level 10.00 10.00 1.00 0.60 0.18-0.14-0.10
q=10 p= 5

FIG. 4. Verification of Proposition 3.1. Eigenvalues of the matrix BIBI,. for various values
of 1,p 5, q 10, s 2. Noise parameters (1 1,f12 0.6, fl3 0.18, fl4 --0.14, fl5 --0.10),
two sources (bearings 60 and 70 deg., powers 10 and 10).

Eigenvalues of B-1B,
L L/(L+i)

5.0 0.83
0.8

2.0 0.67.
| 0.6

1.0. 0.50J

_
0.5 0.33

0.2 0.17 0.2

o ,o.o
0 1 2 4 7 8 9 10

Sources 2 Noise parameters
Bearing 60.0 70.0 0 2 3 4 5 6

Level 10.00 10.00 1.00 0.60 0.18 -0.14-0.10 0.00 0.00

q=10 p= 7

Fro. 5. Effect of the noise model overdeteination. Eigenvalues of the matrix B Bt,. for
vaous values of l,p 7, q 10, s 2. Noise parameters (1 1, 2 0.6, 3 0.18,4
-0.14,5 -0.10,6 0.0,7 0.0), two sources (bearings 60 and 70 deg., powers 10 and 10).

maximizing the REF H (30). Because it is quite direct, the calculation of the gradient
is skipped. No convergence problem occurs.

4. Simulation results. Practically, the REF H (3) is replaced by the following
functional:

(46) H logdet (/- B) +/logdet B,
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10.0
5.0

2.0

1.0

0.5

0.2

Sources
Bearing
Level

2 3 4 5
30.0 40.0 50.0 60.0 70.0

1.00 1.00 .1.00 1.00 1.00
q=10 p= 5

Eigenwlues of B-* B,
L/(L+ 1)

0.91 L :_-

0.83

0.67

0.6
0 50

0.2

0 ,’ ," ’,’ 0.0
0 2 3 4 5 6 7 8 9 10

Noise parameters
0 2 3 4

1.00 0.60 0.18 -0.14 -0.10

FIG. 6. Verification of Proposition 4.3. Eigenvalues of the matrix B1Bl,. for various values
of l, p 5, q 10, s 5. Noise parameters (/1 1, f2 0.6,/3 0.18, f4 -0.14,/5 -0.10),
five sources (bearings 30, 40, 50, 60, and 70 deg., powers 1).

where/ is an estimated CM of the sensor outputs.
The vectors Xi of array outputs have then been simulated. The general scheme

of the simulation is presented below.
1. Let B0 be the exact noise matrix, which performs a Choleski factorization of

Bo, say,

Bo TT*.

2. Let Yi be a zero-mean gaussian complex vector of dimension q with covariance
matrix Id; then a noise vector is Yi TYi.

3. A source vector Si is simulated by

2Si ai,jDo,j with" ai,j Af (0, aj )
j----1

The covariance matrix/2/is then estimated by the following.
1. / (l/N)Ei XiX, Xi Si + Yi.
2. /= proj(/).
The projection is the orthogonal projection on the Toeplitz subspace, which is

simply obtained by averaging along the diagonals [15-16]. The gradient algorithm
is once again used for maximizing the REF (cf. 4). Since the initialization is not
critical, we simply choose Binit ) Id. The value of A must be inferior to the lowest
eigenvalue of R. After runs of the algorithm, noise estimates are obtained. The
eigenvalues of the matrix BIB, are presented in Figs. 7 and 8 for 10 trials, each
corresponding to N 300. In other words, the snapshot number is 300.

Figures 7 and 8 correspond to the same simulated data; they differ only by the
value of 1. Proposition 3.1 advocates choosing a large I. This is not true for simulated
data. If the value of is 3, then Proposition 3.1 is "almost" valid. The statistical
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TABLE
Values of b (1) for various values of I.

Value of

bo
1

b2
bo

2 bl
b2
bo

3 bl
b2
bo

4 bl
b2
o

5 bl
b2
bo

10 bl
b2

{b } without {b } with

source source

0.71
0.21

-0.21

0.82

0.24
-0.24

O.87

0.26

-0.26

0.89
0.27

-0.27

0.91
0.27

-0.27

0.va .0 0.
0.22 0.3 0.21

-0.23 -0.3 -0.21

0.84 1.0 0.82
0.25 0.3 0.24

-0.27 -0.3 -0.24

0.89 1.0 0.87
0.26 0.3 0.26

-0.2s -o. -o.6

0.91 1.0 0’89
0.27 0.3 0.27

--0.28 --0.3 --0.27
0.93 1.0 0’91
0.28 0.3 0.27

-0.29 --0.3 --0.27

0.95 0.97 1.0 0195
0.29 0.29 0.3 0.29

--0.29 --0.29 --0.3 --0.29

dispersion of the results of the various trials is rather reduced. This is not the case
when the value of is 10. It thus seems that there is an optimal value of 1.

The choice of the optimal value of the parameter results from statistical consid-
erations relating the values of the parameters p, q, with the statistical properties of
the b’s estimates. Actually, the quantities defining the statistical behavior (standard
deviation bias) of the b estimates can be calculated by using an expansion of the {}
around their asymptotic values b.

This kind of calculation presents no major difficulty, but it is omitted here since
it is beyond the scope of this paper. Roughly, there is a compromise between the
accuracy of the b’s estimates (large values of l) and their variance. Thus appears as
an uncertainty factor describing the redundancy of information relative to the noise
structure.

8. Conclusion. The properties of an original functional have been studied. They
appear to be quite interesting, proving furthermore that the maximization of the REF
is easy and reliable. The REF thus appears to be a promising method for solving an
ill-posed problem.

Appendix A: A definition of the REF. We shall consider, for the REF def-
inition, that the physical array is constituted of n8 equispaced sensors impinged by s
sources, and we shall assume that the correlation length of the noise is null beyond p
sensors.

Now consider the vector B defined by

B (BI,B,...,B),
where the vectors Bi are (statistically) independent sample vectors of the noise im-



RELATIVE ENTROPY FUNCTIONAL 379

3.0

Eigenvalues of B-1B,
L/(L+I)
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o
Sources 2 3
Bearing 60.0 70.0 60.0
Level 1.00 1.00 0.00

q=lO p= 5

0.8

0.6

0.4

0.2

Noise parameters"
0 2 3 4

1.00 0.60 0.18 -0.14 -0.i0
TN i0

FIC. 7. Simulated data. Eigenvalues of the matrix B1Bl,. for 3. Ten trials, number
of snapshots N 300, two sources (bearings 60 and 70 deg., powers:l and 1), noise parame-
ters :(D1 1, D2 0.6, D3 0.18,/4 -0.14, D5 -0.10).

L
1-

i0.0. 0.91.

0 0
o

Sources 2 3
Bearing 60.0 70.0 80.0
Level 1.00 1.00 0.00

a=lO p= 5

Eigenvalues of B-1B,
L/(L+I)

-i.0

0.8

0.6

0.4

0.2

0.0
4 +

Noise aarameters
0 2 3 4

1.00 0.60 0.18 -0.14 -0.10
BT 300 TN 10

FIC. 8. Simulated data. Eigenvalues of the matrix BIBI,, for 10. Ten trials, number
of snapshots N 300, two sources (bearings 60 and 70 deg., powers:l and 1), noise parame-
ters :(D1 1, 2 0.6, 3 0.18,/4 -0.14, D5 -0.10).

pinging on the array and with

(47) Bi q dimensional vector.

Furthermore, let X be an observation vector (sensor outputs) of the same di-
mension q. Then denote Bi[X to be the linear minimum variance estimate of the
zero-mean random vector X (i.e., the orthogonal projection of the random vector Bi
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on the Hilbert space spanned by X). The following results:

B/IX E (SIX*)[IE (XX*)]-lX,
E denotes expectation, and by a slight abuse of notation (concatenation of the pro-
jections), we have

(48) BIX ] (X*)[I (XX*)]-lx.
Then a "measure" of the "uncertainty" upon/3 which is not "explained" by X is

deduced from the conditional variance of B and is equal to

(49) I(B, X) log det [covar

Actually, the observation vector X is the sum of a source part (X) and a noise
part (B1), say,

(50) X S + B1.

Using (48) and (49), the following expression of I(B, X) is easily derived, yielding

B

I(B, X) log det
0

B
0 O. R-I(B 0 O)

(51) log det (Rq B) + 1. log det B log det Rq.

Appendix B: Optimization of the stepsize. This appendix is devoted to the
calculation of the optimal stepsize p of the gradient’s algorithm on C.

The major aim of this appendix is to obtain an explicit formulation of the REF
H (R, Bk+l). For that purpose, consider the following factorization:

Bk TkT and R- Bk Sk,S
(by assumption Bk and R- Bk are positive definite) so that

log det (R Bk + pDk) log det (SkS; + pDk)
(52) log det [Sk (Id + PS-1DkkS-l*)Sk]*

logdet (R- Bk)+ logdet (Id +
Similarly, one obtains

(53) log det (Bk pDa) log det Bk + log det (Id pT[1DkT[1,).
Therefore, using (52) and (53), the following results:

(54) H(p) log det (Id + pS;1DkS;1.) + I. log det (Id pT[1DkT1.) + cst.

The two matrices SIDkS1. and TIDkT1. are hermitian and therefore diag-
konalizable. Let {hi } and {flk} be their respective eigenvalues. The following explicit

form of H(p) is thus

q q

(55) H(p) E log (1 :t- pak) + 1. E log (1 pfl) + est.
i=1 i=1
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The two constraints C (6) are translated into explicit constraints (with respect to
p), i.e.,

(56) R Bk+l positive definite,
Bk+l positive definite.

The optimal stepsize Pk is obtained by maximizing H(p) (55) under the con-
straints (56). Practically, Pk is obtained by means of a unidimensional Newton method
initialized at p 0. The convergence of Newton’s method on C is ensured since H(p)
is concave on this domain.

Appendix C: The complex case. The gradient algorithm for REF maximiza-
tion will now be extended to the complex case. For that purpose, let V/be the q q
matrix defined by

1 if 1-k=i-1,
0 else.

The noise matrix B then takes the following form:

A real gradient vector Gk is then defined by

-t (/xu),
t(/x(v + y)),
t (x(y ))

v t(( + )),
g’ -itr (Ak(Vp V)),

with

Ak=I.(Bk-1)-(R-Bk)-1.

The gradient iteration takes then the following form:

Bk+l Bk PkDk

with

2’Ok g U1 + g V2 q- V -k gk (V2 V +’" q- g Vp nt- Vp + ig Vp Vpt
The rest of the algorithm is strictly similar to the real case.
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