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Abstract

We describe a method for the temporal tracking of
stochastic deformable models in image sequences. The
object representation relies on a hierarchical statisti-
cal description of the deformations applied to a tem-
plate. The optimal bayesian estimate of deformations
is obtained by mazximizing non-linear probability dis-
tributions using optimization technigques. The method
may be sensitive to local mazima of the distributions
and require an initial configuration close to the optimal
solution. In our approach, the initialization s provided
by a robust estimate of the rigid and statistically con-
strained non-rigid motions from the normal optical flow
computed along the deformable contour. The approach
s demonstrated on real-world sequences showing mouth
movements and cardiac motions with missing data.

1 Introduction

Tracking algorithms have been recently performed to
determine 2D motion and deformations of complex
shapes in image sequences. The representation and
processing of deformations has many potential applica-
tions, for instance in biomedical image analysis [7, 16]
or in human-computer interaction [5, 20, 10]. De-
formable models have been introduced to incorporate
geometric information about shapes and their varia-
tions and motion [5, 16]. Active contour models at-
tempt to extract regions of interest throughout the se-
quence and accurately delineate the shapes by applying
an image force field that is computed from the gradient
of the intensity image [11, 20, 16]. Additional a priori
constraints have been imposed to improve the initial
location of deformable structures and to control the

deformable contour displacements during the optimiza-
tion process. Previous works combine stochastic filter-
ing (Kalman filter) and optimization of the deformable
contour points under an affine motion constraint [5, 1]
or propose a modal analysis of the physical motion of
the dynamic contour [9]. An alternative approach con-
sists in using a dense optical flow field to displace the
deformable contour points [7] ; in some cases, the infor-
mation given by optical flow measurements computed
along the deformable contour only is required to con-
strain the deformable contour optimization accordingly
[3]. Another class of approach addresses the problem
of tracking a region surrounding the feature of interest
[1,4]. Affine motion models provide greater abstraction
and robustness than the purely flow-based methods yet
are weaker if models do not incorporate detailed infor-
mation about shape [1, 14].

In [12], we have introduced a hierarchical statisti-
cal deformable model able to constrain the a priori
structure and the global and local shape deformations.
In this approach, local deformations modeled as local
stochastic perturbations and the Karhunen Loeve (KL)
analysis allow to approximate the global deformations
observed on a training set of representative shapes [8].
A Marginalized Mazimum Likelihood (MML) estimate
of the global deformations and a Maximum A Pos-
terori (MAP) estimate of the deformable template are
finally derived by maximizing probability distributions
describing the interactions between observations and
the unknown variables. This general framework is re-
ported in section 2.

When the shape of the target feature is approxima-
tively known, it is desirable to incorporate a strong ten-
dency to a particular initial configuration of the model



in each frame [5, 13]. Incorporating knowledge on the
motion reduces the model to be distracted when the
tracked structure moves over background clutter and
solve the problem of the initialization of the model
before the deterministic optimization process is per-
formed. Here, this is achieved by coupling a normal
optical flow field to a statistical deformable template.
The rigid and non-rigid parametric motions are esti-
mated over an image sequence using a robust regres-
sion scheme from optical flow measurements computed
along the deformable contours. This approach is de-
scribed in section 3 and provides initial estimates of the
deformation process. The approach is able to cope with
large motion magnitudes and enables to track reliably
deformable structures on real-world image sequences
showing mouth movements and cardiac motions (sec-
tion 5).

2 Stochastic deformable model-
based segmentation

In this section, we present a general framework for seg-
mentation which relies on a bayesian estimation scheme
incorporating the a priori deformable model.
2.1 A stochastic shape model

The approach described in [12] relies on the de-
scription of the object class of interest using a “de-
formable template” which incorporates a priori knowl-
edge on the structure of the object and its variabil-
ity [8]. A particular shape x is represented by a
set of n labeled points which approximate its outline.
The variations of shape x are represented by a dis-
placement vector dx = x — X with respect to a mean
shape (the “template”) x [8]. A Principal Compo-
nent Analysis (PCA) on the displacement vectors com-
puted from the set of training shapes allows to deter-
mine the m most significant deformation modes. If
D=, b, b, P, " designates the (2nxm)
matrix of the m unit eigenvectors corresponding to the
m largest eigenvalues, and if b denotes the modal am-
plitudes vector (m x 1) corresponding to the m defor-
mation modes, the deformable template is represented
by the following model [12]:

X = M(k,0) [x + &b] + T. (1)

From Eq. 1, a shape in the model frame is transformed
into the image frame by a 2n x 1 translation vector T =
[Ty, Ty, ---]7 and by a 2n x 2n rotation of angle 6 and
scaling by factor k matrix M(k,6) = diag(M (k,6))
with :
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In this modeling, let point out that the matrix of m unit
eigenvectors ® and the mean vector X are definitively
estimated off-line.

A local deformation process is introduced to refine
this first (eventually crude) description. Local defor-
mations é are modeled as random perturbations on
the location of the points belonging to the globally de-
formed pattern and are assumed to follow a first-order
zero-mean Gauss-Markov random process :

P(6) = L oexp-L TR (3)
~ 7z, 9P 73
where R is the covariance matrix of § and Z,, is the par-
tition function. The complete parametric deformable
model (denoted Y) becomes :

Y = M(k,6) [x + ®b] + T + &. (4)

2.2 Bayesian estimation of deformations

The stochastic deformable model is used to extract
moving objects from image sequences. The MAP esti-
mate of the deformable template is defined by:

Y* 2 argmax P (d|Y) P (Y). (5)

The prior distribution of Y is a Gauss-Markov distri-
bution according to the assumption on the statistics
of 6 (Eq. 3). A (gibbs) distribution P(d|Y) describes
the interactions between the observations d and the
deformations to estimate :

P|Y) « exp—Ey(Y,d)=exp »_ [VL| (6)
sely

where E4(Y,d) is an energy function which tends to
attract the contour of the deformable template I'y to-
ward salient features of the image corresponding to
large spatial gradients, denoted ||VI,]|| at site s in the
image [11, 13]. The MAP estimate of deformations may
be expressed as:

1
Y* = argmax — exp — Ee(Y,d) (7
where  the  joint  distribution P(Y,d|©)
has been rewritten as a Gibbs distribution,

® = [M(k,6), T,b] is the hidden hyperparam-
eter vector of the probabilistic model Y (the partition
function Z does not depend on ®) and Ee(Y,d) is
an energy function :

Eo(Y,d) = - Y VL]l
sely
+ %(Y — X(@))TR7L(Y - X(@)). (8)



2.3 Marginalized Maximum Likelihood

Since © is unknown, the problem of estimating the
pair (®,Y ) according to the above criterion (7) of
optimality remains extremely difficult to implement in
practice. The idea we propose is to consider the hidden
hyperparameters @ at a different level than Y. Thus,
© may be estimated by marginalizing with respect to
Y [15] :

®* = argmax / P(Y,d|®)dY 9)
e Jy

Under the assumption that Y is very concentrated
around X(®), we have :

P(Y|®) ~ 6(Y —-X(O)) (10)

where (-) designates the Dirac function. We obtain:

@*

Il

argmélx/ P(d|Y,0)6(Y - X(®))dY
Y

= argmax P(d]Y =X(0O)) (11)
and from Eq. 8 the estimate of ® is finally given by:
0* = arg min Ey(X(©), d). (12)

Finally, the MAP estimate of Y is easily derived given
the optimal estimate ®* where the criterion is equiv-
alent to minimize a global energy function:

Y* = argmin Egx (Y, d). (13)

In practice, the estimation of ® and Y are performed
using a steepest descent gradient algorithm in all ex-
periments.

3 Robust Estimation of non-
rigid motions

We take advantage of the temporal coherence of the
object movements to predict the location of the model
in each image. If X;y; is expanded in Taylor series
to the first order at time ¢ + ¢, the corresponding dy-
namics of the global parameters are easily derived [13]

Tiee = Ty + 6t i‘t
Mt+6t = Mt + ot Mt
bist = by + dtby

where the ﬁrst. order temporal derivatives Tt =
[Ty, Ty, ---1%, My = diag(M;) and b, express the ve-
locities of the parameters T;, M; and b; respectively

and 6t is the time step between two successive frames.
The dynamic information is given in our approach by
a normal optical flow field computed along the de-
formable model contour. The model motion is then
naturally decomposed into two rigid and non-rigid com-
ponents and constrains the prediction in each frame of
the sequence.
3.1 Temporal evolution of the deformable
template

The determination of the parametric motion relies
on the analysis of the dynamic behavior of the de-
formable template X. The local deformation process is
not considered here because of its sensitivity to spatio-
temporal measurements. At time ¢, the first order tem-

.t

poral derivative X; = [Xi, --+, X,.]T may be expressed

as:
Xt == Mt [)_( + q)bt] + Mt‘I)l:)t + Tt. (14)

and the matrix of the unit eigenvectors @ and the mean
vector X doe not depend on t. The first order derivative
of any control point of the model X = [Xii,XZi]T is
thus :
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Defining E as :
E = [ o, T, T b (16)

where the four first parameters describe the rigid com-
ponent of the motion and b; is referred as the de-
formable motion parameters, X : = [X i,- X Z,-]T can be
stated in the following way:

i =W, E (17)
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which is linear with respect to the (m + 4) motion pa-
rameters =.
3.2 A statistical B-spline model

A shape is represented by a B-spline curve with its
n control points X} = [X, , X! ] corresponding to
the “landmarks” defined in section 2. Such a B-spline
based representation of curved edges is attractive be-
cause B-splines can describe most real-world shapes
rather realistically [1, 2]. From a mathematical point
of view, a B-spline curve is piecewise polynomial. As a



B-spline curve, X;(u) = [x:(u), y,(u)]* (with u € [1,n])
can be written as a linear combination of the B-spline
basis functions B(.) and control points X*:

n
nw=| 3w = ¥ swxl
i=1

In our approach, the deformable B-spline curve is in-
deed parametrized by the global parameters ® and
not by its shape control points as done classically. If
X (u) = [%¢(u), 7;(u)]T denotes the first order temporal
derivative of a point X;(u) and the B-spline basis does
not depend on ¢, we may write:

Kw) = Y Biw) X; = 3 Bi(w) Wi E. (19)

3.3 Robust regression
We have computed normal displacements (denoted

X;L (u) hereafter at point X;(u)) along contours deter-
mined by the deformable contour in image sequences
using the technique described in [6] ; it is well known
that the so-called aperture problem restricts the esti-
mation to the perpendicular-to-the-edge motion com-
ponent only. The motion estimation technique under
concern has the advantage to cope with large motion
magnitudes and any class of contours that differential
methods cannot handle properly.

The estimation of the motion parameters E relies
on the adjustment of the model to the corrupted mea-
surements [19, 3]. Ifn(u) = [n,(u), n,(u)]” denotes the
unit normal to the deformable contour at point X;(u),
we have:

n
X () = Y Bi(w)nT(u) W, E = Ai(w) E. (20)
i=1
Although the object shape is represented by a contin-
uous curve, it is convenient in practice to sample the
curve with p points {u;}}_;.

In statistical analysis, the goal of robust estimation
is to find the parameters E which best fits a model
A;(u) E to the observations XtL (u), when some data
behave like outliers. Classical statistical robust esti-
mators can tolerate up to 161?% outliers where k is the
number of parameters of the model to estimate. The
number of motion parameters is kK = m + 4 and the
breakdown point does not exceed (.08 or 0.1 respec-
tively if m corresponds to 5 to 7 deformation modes
typically. So we prefer to adopt the least-median-of-
squares (LMedS) estimator since it remains reliable up
to 50% of the data as outliers. The parameters are esti-
mated by solving the non linear minimization problem:

[

. L =2
= argmin Medye[; ... . (xt (ui) — Ai () :) . (21)
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The computation cost is not too high in our case be-
cause of the low amount of data on the one hand and
the use of the speed-up technique described in [18] in
the other hand. We use LMedS for its ability to de-
tect outliers and a mean square solution is derived af-
fer elimination of these outliers to cope with the ineffi-
ciency of LMedS in the case of Gaussian noise.

4 Experimental results

In our first experiments, we have considered the seg-
mentation and tracking of a mouth. In this case, the
model is initialized by hand intervention on the first
frame, close to the optimal configuration [13]. The
motion of the mouth estimated between two frames
is used to predict automatically the location of the fea-
ture of interest in the subsequent frames. The differ-
ent steps of the tracking procedure are demonstrated
on two frames of a sequence composed of more than
one hundred 128 x 128 frames (Fig.1). Fig.la shows
the result of the estimation of the normal flow field
along the deformable B-spline contour at time ¢ (15sec
cpu time on Sun Sparcl0). In this case the measure-
ments are corrupted in the region of interest because
of low contrast but contain some information corre-
sponding to important displacement magnitudes of the
non-rigid object. A robust regression is necessary to
extract the useful dynamic information (447 parame-
ters) to predict the location of the model in the next
frame at time t + 0t (Fig 1c) and requires 1mn cpu
time on Sun Sparcl0. However, the prediction of the
global parameters ® computed from the estimation of
E is rather inaccurate. So this result is considered as
an initialization to the estimation of the global param-
eters ® and the local deformations §, requiring 15sec
on Sun Sparcl0 (Fig.le) . From the segmentation re-
sult given by the estimation of the global parameters,
a new optical flow field is computed at time ¢+ dt along
the deformable contour (fig.1b). The prediction of the
model at time ¢+ 26t and the final segmentation result
are presented respectively in Fig.1d and Fig.1f.

The second experimental results allow to demon-
strate the ability of the method to solve the problem of
tracking of a cardiac left ventricle in X-ray imagery and
in ultrasound imagery ; the final segmentation results
of the tracking on 2 successive frames are demonstrated
in Fig.2 and Fig.3 respectively. In all applications, time
computing necessary is about 2mn on Sun Sparcl0 for
the complete procedure and the robust regression is
the most computing demanding. In the future, it is
planned to combine this approach with a tracking pro-
cedure based on Kalman filter techniques and to exploit
a regularized optical flow field [17] to improve segmen-
tation results and computational costs.
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Figure 1: Tracking of mouth movements
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Figure 3: Tracking of the ventricle in ultrasound im-
agery.
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